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The missing link between 
progranulin and TDP-43
Neurodegenerative diseases, with their 
relentlessly progressive clinical course 
and sparse therapeutic options, are 
responsible for substantial morbidity and 
mortality worldwide. These disorders are 
characterized clinically by progressive 
motor and/or cognitive dysfunction and 
pathologically by the accumulation of 
misfolded proteins in vulnerable neuronal 
populations. Most genetic mutations asso-
ciated with neurodegenerative conditions 
directly affect the production, solubili-
ty, intracellular localization, or turnover 
of aggregate-prone proteins. However, 
FTLD-GRN is a notable exception. In this 
subset of frontotemporal lobar degen-
eration with TDP-43 inclusions (FTLD-
TDP), patients have a heterozygous loss-
of-function mutation in GRN, resulting in 
haploinsufficiency of the secreted protein 
progranulin. The mechanism by which 
progranulin haploinsufficiency leads to 
neurodegeneration and the characteristic 
TDP-43 protein aggregates remains an 
important yet unanswered question.

Progranulin is a secreted, cysteine- 
rich protein that is proteolytically cleaved 
into seven granulin proteins with poten-
tial functions in lysosomal degradation 
and neuroinflammation. In contrast to 
the late-onset neurodegenerative disease 
associated with heterozygous GRN muta-
tions, homozygous loss-of-function GRN 
mutations result in neuronal ceroid lip-
fuscinosis, a pediatric lysosomal storage 
disease appearing with seizures, develop-
mental delay, and vision loss (1). Consis-
tently, progranulin regulates lysosomal 
acidification and function in cultured cells, 
and there is evidence of lysosomal dys-
function in Grn KO (Grn–/–) mice as well as 
in the brains of patients with FTLD-GRN 
(2, 3). In addition, Grn–/– mice demonstrate 
increased inflammation in response to a 
variety of insults including infection, toxin 
exposure, and traumatic brain injury (4–6). 
Progranulin is also essential for microglial 
lipid metabolism; this function is partic-
ularly pertinent given the appearance of 
lipid droplets in a proinflammatory subset 
of microglia found in aging mouse and 
human brains (7).

Glia move from backdrop to 
center stage in FTLD-GRN
While hemizygous Grn (Grn+/–) mice dis-
play only mild behavioral phenotypes 
and no neuropathologic abnormalities, 
Grn–/– mice recapitulate key clinical and 
neuropathologic features of FTLD. These 
animals display age-associated learning 
and memory deficits together with TDP-
43 aggregates, neuronal loss, and gliosis 
in the thalamus and hippocampus (2, 4, 
8, 9). In this issue of the JCI, Marsan, et 
al. use NanoString, a single nucleus RNA 
sequencing (snRNA-Seq) technique, to 
uncover cell-type specific transcriptional 
changes in FTLD-GRN human and Grn–/– 
mouse brains (10). In so doing, they pres-
ent a compelling argument for neuroin-
flammation and the noncell autonomous 
contributions of glia to neurodegeneration 
in FTLD-GRN (Figure 1). Moreover, their 
comprehensive study provides a thorough 
characterization of Grn–/– mice, highlight-
ing where this common model of FTLD 
accurately mimics human disease, while 
also revealing important discrepancies.

Microglia, the resident inflamma-
tory cells of the brain, are increasingly 
recognized for their contribution to neu-
rodegeneration and disease progression. 
Previous snRNA-Seq studies of microglia 
in Grn–/– mice demonstrated a mutant- 
specific transcriptional profile, similar to 
disease-activated microglia (DAM) pro-
files seen in Alzheimer’s disease and amy-
otrophic lateral sclerosis (ALS) (8). Mar-
san and colleagues build upon this work 
by (a) expanding the cell types assessed 
to include neurons, astrocytes, and other 
glial cells; (b) complementing the studies 
in Grn–/– mice with snRNA-Seq of post-
mortem patient’s brain tissue with FTLD-
GRN; and (c) independently evaluating the 
cortex and thalamus from both mouse and 
human samples (10).

Importantly, these experiments 
showed a considerable overlap in microg-
lial differentially expressed genes (DEGs) 
from each model, particularly within the 
thalamus. Moreover, unsupervised trajec-
tory and pseudotime analyses of thalamic 
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A subset of the neurodegenerative disease frontotemporal lobar 
degeneration (FTLD) is caused by mutations in the progranulin (GRN) 
gene. In this issue of the JCI, Marsan and colleagues demonstrate disease-
specific transcriptional profiles in multiple glial cell lineages — astrocytes, 
microglia, and oligodendroglia — that are highly conserved between patients 
with FTLD-GRN and the widely used Grn–/– mouse model. Additionally, the 
authors show that Grn–/– astrocytes fail to adequately maintain synapses in 
both mouse and human models. This study presents a compelling argument 
for a central role for glia in neurodegeneration and creates a rich resource for 
extending mechanistic insight into pathophysiology, identifying potential 
biomarkers, and developing therapeutic approaches.
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were impeding synapse function and/or 
maturation, further studies are needed 
to confirm the functional readout of this 
morphologic change.

As focus has shifted to the contribu-
tions of glial cells to neurodegeneration, 
evidence of a role for oligodendroglia has 
emerged (12). Marsan and colleagues also 
uncovered a striking enrichment for oli-
godendroglial DEGs in the human FTLD-
GRN thalamus, implying that oligoden-
drocytes may be substantially affected 
in disease (10). FTLD-GRN is marked 
by prominent white matter hyperintensi-
ties on brain MRIs, the severity of which 
correlate with disease progression (13). 
These hyperintensities indicate areas of 
gliosis and myelin loss (14, 15) that are 
also seen in Grn–/– mice. Furthermore, 
myelin debris accumulate within the lyso-
somes of white matter microglia in tissue 

cifically, Grn–/– astrocytes failed to ade-
quately maintain synapses in both mouse 
and human models, and, in fact, actively 
reduced synapse number and disrupted 
synapse morphology. While conditioned 
media from Grn+/+ astrocytes enhanced 
synapse number in both WT and mutant 
neurons, Grn–/– astrocyte conditioned 
media had the opposite effect. To pur-
sue this phenomenon in a human model 
system, the authors differentiated astro-
cytes from induced pluripotent stem cells 
(iPSCs) before engrafting them into cor-
tical organoids. Unlike in mice, the num-
ber of synapses was unaffected by GRN–/– 
astrocytes. However, organoids engrafted 
with GRN–/– astrocytes exhibited abnor-
mally large synapses that appeared mor-
phologically similar to those in cortical 
organoids without astrocytes (10). While 
this result implied that GRN–/– astrocytes 

microglia emphasized the relevance of 
these transcriptional changes to disease 
and prognosis. Two trajectories were highly 
correlated with FTLD-GRN, one of which 
predicted shorter disease duration. Among 
the microglial DEGs associated with FTLD-
GRN in humans and Grn loss in mice, C1q 
stands out. Grn–/– microglia actively prune 
the synapses of cocultured neurons in a 
C1q-dependent manner (11), and genetic 
deletion of C1q in Grn–/– mice partially ame-
liorates neurodegeneration within the thal-
amus (11). Notably, prior work suggests that 
cultured media from Grn-deficient microg-
lia — presumably rich in proinflammatory, 
secreted molecules such as C1q — induces 
cytoplasmic accumulation of TDP-43 in 
cultured neurons (8).

Marsan, et al. also unearthed an unan-
ticipated contribution from astrocytes to 
neurodegeneration in FTLD-GRN. Spe-

Figure 1. Noncell autonomous mechanisms contribute to FTLD-GRN. Multiple cell and tissue types factor into neurodegeneration in FTLD-GRN. Data from 
Marsan et al. (10) indicate that GRN deficiency induces downstream changes in all four cell types of the brain. Atrophy, gliosis, neuronal loss, and TDP-43 
poteinopathy are prominent in gray matter, evident at both the subcellular and transcriptional levels. Microglia increase synaptic pruning and display a 
disease-specific transcriptional profile, including the upregulation of C1q. Astrocytes fail to maintain synapses, resulting in disrupted synapse number and 
morphology. The downregulation of synaptic genes in neurons include TDP-43 target RNAs associated with TDP-43 nuclear exclusion and cytoplasmic 
deposition. Although TDP-43 proteinopathy is mild and variable in white matter, other pathological changes, including gliosis, myelin loss, and myelin debris 
within microglia, are more common. DEGs are highly enriched in oligodendroglia, suggesting that these cells are substantially impacted in FTLD-GRN.
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pathology has led to the hypothesis that 
aggregates are inevitably tied to, and 
directly responsible for, neurodegenera-
tion in these conditions. Current therapeu-
tic strategies aimed at reducing aggregates 
or aggregate-prone proteins have pro-
duced underwhelming results in clinical 
trials (28) or are far from ready for testing 
in humans (29). For these reasons among 
others, focus has shifted toward neuroin-
flammation and immune modulation for 
therapeutic purposes in FTLD and related 
conditions. Through a comprehensive and 
systematic analysis of single cell transcrip-
tomics, Marsan and colleagues expose 
fundamental mechanisms by which glia 
— astrocytes, microglia, and oligodendro-
cytes alike — contribute to neurodegenera-
tion in FTLD-GRN. In so doing, they have 
created a rich resource and a strong basis 
for extending insight into disease patho-
physiology, identifying potential biomark-
ers, and developing alternative approaches 
to therapy in FTLD.
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