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Background: Red ginseng (RG) alleviates psychiatric disorders. Fermented red ginseng (fRG) alleviates
stress-induced gut inflammation. Gut dysbiosis causes psychiatric disorders with gut inflammation. To
understand the gut microbiota-mediated action mechanism of RG and fRG against anxiety/depression
(AD), we investigated the effects of RG, fRG, ginsenoside Rd, and 20(S)-b-D-glucopyranosyl proto-
panaxadiol (CK) on gut microbiota dysbiosis-induced AD and colitis in mice.
Methods: Mice with AD and colitis were prepared by exposing to immobilization stress (IS) or trans-
planting the feces of patients with ulcerative colitis and depression (UCDF). AD-like behaviors were
measured in the elevated plus maze, light/dark transition, forced swimming, and tail suspension tests.
Results: Oral gavage of UCDF increased AD-like behaviors and induced neuroinflammation, gastroin-
testinal inflammation, and gut microbiota fluctuation in mice. Oral administration of fRG or RG treatment
reduced UCDF-induced AD-like behaviors, hippocampal and hypothalamic IL-6 expression, and blood
corticosterone level, whereas UCDF-suppressed hippocampal BDNFþNeuNþ cell population and dopa-
mine and hypothalamic serotonin levels increased. Furthermore, their treatments suppressed UCDF-
induced colonic inflammation and partially restored UCDF-induced gut microbiota fluctuation. Oral
administration of fRG, RG, Rd, or CK also decreased IS-induced AD-like behaviors, blood IL-6 and corti-
costerone and colonic IL-6 and TNF-a levels, and gut dysbiosis, while IS-suppressed hypothalamic
dopamine and serotonin levels increased.
Conclusion: Oral gavage of UCDF caused AD, neuroinflammation, and gastrointestinal inflammation in
mice. fRG mitigated AD and colitis in UCDF-exposed mice by the regulation of the microbiota-gut-brain
axis and IS-exposed mice by the regulation of the hypothalamic-pituitary-adrenal axis.
© 2022 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article

under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Stress is a common experience in everyday life, and all organ-
isms have evolved ways to cope with it [1]. Excessive exposure to
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stressors triggers the release of adrenaline and cortisol in the ad-
renal glands and inflammation-involved cytokines in the immune
cells through the hypothalamicepituitaryeadrenal (HPA) axis
activation [2e4]. The imbalanced activation of neuron-endocrine
and hormonal function can give rise to affective disorders such as
depression by suppressing brain-derived neurotrophic factor
(BDNF), dopamine, and serotonin levels in the brain and gut
inflammation and microbiota dysbiosis by inducing inflammatory
immune responses in the gastrointestinal tract [5e7]. Gut micro-
biota dysbiosis causes gastrointestinal inflammation, which stim-
ulate the translocation of gut microbiota byproducts such as
endotoxin into the blood, leading to the occurrence of anxiety/
depression (AD) with neuroinflammation [8e10]. For instance,
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immobilization stress (IS) causes anxiety, gastrointestinal inflam-
mation, and overgrowth of Proteobacteria including Escherichia coli
in mice [11]. The gavage of Escherichia coli also induces anxiety and
gastrointestinal inflammation in mice [11,12]. These findings sug-
gest that gut microbiota bidirectionally communicate with the
brain via the regulation of the HPA andmicrobiota-gut-brain (MGB)
axes.

Red ginseng (RG, prepared by steaming and drying the root of
Panax ginseng Meyer, family Araliaceae) exhibits immunomodula-
tory, antidiabetic, antitumor, and anti-psychiatric effects [13e15].
Many studies suggest that the bioactive constituents of RG are
ginsenosides [16,17]. These ginsenosides are transformed into
absorbable compounds such as ginsenoside Rd, Rh2, and 20(S)-b-
D-glucopyranosyl protopanaxadiol (CK) in the intestine of mice
orally administered RG [18e20]. These metabolites exhibit more
potent pharmacological activities than their parental ginsenosides
such as ginsenosides Rb1 and Rg3 [21e23]. Therefore, to enhance
the biological activity of RG, many processing skills have been
developed [24,25]. Of these, fermentation increases the efficacy of
RG against gut inflammation: fermented RG (fRG) mitigates 2,4,6-
trinitrobenzenesulfonic acid (TNBS)- or Escherichia coli-induced
colitis [26,27]. Furthermore, fRG and its constituent ginsenoside Rd
ameliorate AD in IS-exposed mice [27]. Nevertheless, gut
microbiota-mediated anxiolytic and anti-depressive action mech-
anism of fRG is still elusive.

Therefore, to understand gut microbiota-mediated anxiolytic
and anti-depressive action mechanism of fRG, we prepared mice
with AD and colitis by transplanting the feces of patients with ul-
cerative colitis and depression (UCDF) or exposing IS and examined
the anxiolytic, anti-depressive, and anti-colitic effects of fRG.

2. Materials and methods

2.1. Preparation of RG and fRG

Water and ethanol extracts of red ginseng were prepared ac-
cording to the method of Kim et al [27]. For the preparation of fRG,
red ginseng ethanol extract was fermented by Bifidobacterium
adolescentis HY8502 and Bifidobacterium animalis ssp. lactis
HY8002 (36�C, 24 h), heated at 100�C for 15 min, and concentrated
by evaporation (processed in hy, Seoul, Korea), as previously re-
ported [27]. The ginsenoside Rb1, Rd, Rg3, and CK contents of RG
and fRGwere 3.2, 0.7, 2.1, and 2.5mg/g. respectively, and 9.3, 4.1,1.7,
and 3.0 mg/kg, respectively.

2.2. Volunteers

As previously reported [28], patients with ulcerative colitis and
depression (UCD) for the stool collection were recruited from
Kyung Hee University Medical School (KHUMS; Seoul, Korea) in
accordance to the protocol and informed consent forms approved
by the KHUMS Clinical Study Care and Use Committee (IRB file No.,
2018-12-004-003). All experiments were performed in compliance
with the principles of the Helsinki Declaration and Korean Good
Clinical Practice Guidelines.

2.3. Animals

C57BL/6 male mice (6-weeks old, 18ee21 g) were purchased
from Koatech Inc. (Korea). The mice were housed in plastic cages
with a 5 cm-raised wire floor under a controlled conditions: the
temperature, humidity, and light/dark cycle were 20BCe22BC,
50% ± 10%, and 12 h, respectively. Mice fed standard lab chow and
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water ad libitum. Approval for animal experiments was given by the
Kyung Hee University Institutional Animal Care and Use Committee
(IACUC No., KUASP(SE)-21098) and conducted according to the
University Guide for Laboratory Animal Care and Usage.

Mice with AD and colitis were prepared by exposing to IS or
transplanting UCDF, as previously reported [28e30].

First, to determine the effective dose of fRG against AD, we
investigated the effects of RG and fRG against IS-induced AD in
mice. Mice were categorized into six (NC, IS, IR50, IF25, IF50, and
IF100) groups consisting of seven mice in each group. Mice of five
(IS, IR50, IF25, IF50, and IF100) groups were exposed to IS (2 h/day)
daily for 5 days. Test agents (IS, saline [vehicle]; IR50, 50 mg/kg/day
RG extract; IF25, 25 mg/kg/day of fRG; IF50, 50 mg/kg/day of fRG;
and IF100, 100 mg/kg/day of fRG, dissolved in saline) were orally
gavaged daily for 5 days starting from 20 h after the final IS treat-
ment. Mice of normal control group (NC) were treated with vehicle
instead of test agents. AD-like behaviors were monitored 24 h after
the final treatment with test agents.

Second, we investigated the effects of fRG constituents ginse-
noside Rd and CK (Embo Laboratory, Daejeon, Korea) on IS-induced
AD in mice. Mice were categorized into six (NC, IS, IR1, IR5, IC1, and
IC5) groups consisting of seven mice in each group. Mice of five (IS,
IR1, IR5, IC1, and IC5) groups were treated to IS daily for 5 days. Test
agents (IS, saline [vehicle]; IR1, 1 mg/kg/day ginsenoside Rd; IR5, 5
mg/kg/day of ginsenoside Rd; IC1, 1 mg/kg/day of CK; and IC5, 5
mg/kg/day of CK, dissolved in saline) were orally gavaged daily for 5
days starting from 20 h after the final IS treatment. NC was treated
with vehicle instead of test agents. AD-like behaviors were
measured 24 h after the final treatment with test agents.

Third, to understand the MGB axis-mediated effect of fRG
against AD in vivo, we examined the effects of RG, fRG, and their
constituents against gut microbiota dysbiosis-induced colitis and
AD.Micewere categorized into seven (NC, FT, FR50, FF25, FF50, FD1,
and FC1) groups consisting of seven mice in each group. UCDF (10
mg/kg/day) was orally transplanted into mice of six (FT, FR50, FF25,
FF50, FD1, and FC1) groups daily for 5 days. Test agents (FT, saline
[vehicle]; FR50, 50 mg/kg/day RG extract; FF25, 25 mg/kg/day of
fRG; FF50, 50 mg/kg/day of fRG; FR1, 1 mg/kg/day ginsenoside Rd;
and FC1, 1 mg/kg/day of CK, dissolved in saline) were orally gavaged
daily for 5 day after the final UCDF treatment. NC group was treated
with vehicle instead of UCDF and test agents. AD-like behaviors
were observed 24 h after the final treatment with test agents.

For the bacterial suspension for FMT, UCDFs were freshly and
sterilely collected, suspended in sterilized saline at 4oC, and per-
formed the centrifugation (500 g, 5 min). The supernatant was
centrifuged (5000 g, 4oC, 5 min). The precipitate was suspended in
saline. The fecal precipitate suspension were used for FMT
experiments.

Mice were sacrificed 20 h after the final behavior tasks. Blood,
colons, and brains were then removed and stored at �80 �C for the
further study.

2.4. Behavioral tasks

The elevated plus maze task (EPMT), light/dark transition task
(LDTT), forced swimming test (FST), and tail suspension test (TST)
were carried out in accordance with the method of Jang et al [9,28].

2.5. ELISA

Tumor necrosis factor (TNF)-a, interleukin (IL)-1b, IL-6, myelo-
peroxidase, corticosterone, dopamine, and serotonin levels were
determined using ELISA kits, as previously reported [9].
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2.6. Immunofluorescence staining

Immunofluorescence staining for NF-kBþIba1þ, BDNFþNeuNþ,
and NF-kBþCD11cþ cells in the hippocampus, hypothalamus, and
colon tissues was performed according to the method of Lee et al
[30]. The stained samples were photographed with a confocal
microscope.
2.7. Gut microbiota composition assay

The bacterial DNAwas extracted from fresh mouse feces using a
QIAamp DNA stool mini kit (Qiagen, Hilden, Germany) and ampli-
fied using barcoded primers targeted a bacterial 16S rRNAV4 region
gene [12]. Amplicons were sequenced using Illumina iSeq100 (San
Diego, CA). Microbiota data were deposited in the NCBI's short read
archive (PRJNA741596).
2.8. Statistical analysis

All data values are described as mean ± standard deviation (SD).
The significance was analyzed by one way analysis of variance
followed by a Duncanmultiple range test (P < 0.05) using GraphPad
Prism 9.
3. Results

3.1. fRG mitigated IS-induced AD, colitis, and gut microbiota
dysbiosis in mice

fRG ameliorates AD in IS-exposed mice [27]. Therefore, to
confirm the anxiolytic and anti-depressive effect of fRG and
determine its effective dosage, we investigated the effects of RG and
fRG on IS-exposed AD and gut inflammation in mice. Exposure to IS
increased AD-like behaviors in the EPMT, LDTT, TST, and FST and IL-
6 expression and NF-kBþIba1þ cell number in the hippocampus and
hypothalamus, whereas BDNFþNeuNþ cell number in the hippo-
campus and serotonin and dopamine levels in the hypothalamus
decreased (Fig. 1). However, oral administration of RG or fRG
reduced IS-induced AD-like behaviors, hippocampal and hypotha-
lamic IL-6 expression, and hippocampal NF-kBþIba1þ cell number.
Their treatments partially increased IS-induced suppression of
hippocampal BDNFþNeuNþ cell number and hypothalamic seroto-
nin and dopamine levels. fRG at a dose of 50 mg/kg was the most
effective.

Exposure to IS also caused colitis in mice: it shortened colon and
increased colonic myeloperoxidase, TNF-a, and IL-6 expression and
NF-kBþCD11cþ cell (dendritic and macrophage cells) number,
resulting in colonic inflammation. However, oral administration of
RG or fRG down-regulated IS-inducedmyeloperoxidase, TNF-a, and
IL-6 expression, and NF-kBþCD11cþ cell number (Fig. 2). Further-
more, IS exposure also affected the gut microbiota composition: it
shifted b-diversity, not a-diversity (OTU richness). Furthermore, IS
exposure increased Proteobacteria and Tenericutes populations,
whereas Actinobacteria population decreased. However, RG or fRG
treatment partially alleviated IS-induced gut microbota fluctuation.
Their treatments decreased Proteobacteria population and
increased Actinobacteria population in IS-treated mice.
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3.2. Ginsenosides Rd and CK mitigated AD, colitis, and gut dysbiosis
in IS-exposed mice

Next, we investigated the effects of ginsenoside Rd and CK on IS-
induced AD and gut inflammation in mice. Treatment with ginse-
noside Rd or CK at doses of 1 mg/kg and 5 mg/kg also suppressed
IS-induced AD-like behaviors, hippocampal and hypothalamic IL-6
expression (Fig. 3). However, they increased IS-suppressed hypo-
thalamic serotonin and dopamine levels. The difference between
the efficacies of Rd and CK against AD and neuroinflammation was
not significant.

Oral gavage of Rd or CK at doses of 1 mg/kg and 5 mg/kg also
suppressed IS-induced colitis: their treatments alleviated colon
shortening and down-regulated colonic myeloperoxidase, TNF-a,
and IL-6 expression, and NF-kBþCD11cþ cell number (Fig. 4). The
difference between the efficacies of Rd and CK against colitis was
not significant. Oral gavage of ginsenoside Rd or CK modified IS-
shifted gut microbiota composition: they increased a-diversity
(OTU) and b-diversity (PCoA) and Bacteroidetes population,
whereas IS-induced Proteobacteria number decreased.

3.3. fRG, ginsenosides Rd, and CK mitigated AD in mice transplanted
with UCDF

Gut dysbiosis is in close connection with the outbreak of psy-
chiatric disorder [31,32]. Oral transplantation of UCDF causes AD
and colonic inflammation in mice [28]. Therefore, to understand
whether fRG could alleviate gut microbiota dysbiosis-induced AD
and gut inflammation in vivo, we transplanted the feces from pa-
tients with UCD intomice and investigated the effects of RG and fRG
on AD in the UCDF-transplanted mice (Fig. 5). Oral gavage of UCDF
increased AD-like behaviors in the EPMT to 45.1% of NC group, LDTT
to 32.2% of NC, TST to 39.7% of NC, and FST to 192.4% of NC,
respectively. And UCDF treatment also induced hippocampal and
hypothalamic IL-6 expression and NF-kBþIba1þ cell number, while
hippocampal BDNFþNeuNþ cell number and hypothalamic seroto-
nin and dopamine levels decreased. However, oral administration
of RG and fRG recovered UCDF-suppressed OT in the EPMT to 98.6%
and 90.5% of NC, respectively, and UCDF-suppressed LT in the LDTT
to 65.2% and 59.6% of NC, respectively, and UCDF-induced immo-
bility time in the TST to 133.6% and 201.7% of NC, respectively, and
in the FST to 122.8% and 147.2% of mice treated with UCDF alone,
leading to an decrease in AD-like behaviors. And their treatments
also suppressed UCDF-induced hippocampal and hypothalamic IL-
6 expression and NF-kBþIba1þ cell number and increased UCDF-
suppressed hippocampal BDNFþNeuNþ cell number and hypotha-
lamic serotonin and dopamine levels.

Furthermore, treatment with ginsenoside Rd or CK suppressed
UCDF-induced AD-like behaviors, hippocampal and hypothalamic
IL-6 expression and NF-kBþIba1þ cell number. Their treatments
increased IS-suppressed hypothalamic serotonin and dopamine
levels. The difference between the efficacies of Rd and CK against
AD and neuroinflammation was not significant.

3.4. fRG, ginsenosides Rd, and CK mitigated colitis and gut
microbiota fluctuation in mice transplanted with UCDF

The effects of fRG, RG, ginsenoside Rd, and CK on UCDF-induced
colitis were investigated in mice. Oral gavage of UCDF shortened
colon and upregulated myeloperoxidase, TNF-a, and IL-6



Fig. 1. RG and fRGmitigated IS-induced AD in mice. (A) Effects on AD-like behaviors: OT in the EPMT (a), LT in the LDTT (b), and immobility time in the TST (c) and FST (d). (B) Effects
on dopamine (a), serotonin (b), TNF-a (c), IL-6 (d), IL-10 (e) levels, NF-kBþIba1þ cell population (f), and intensity of (f) (g) in the hypothalamus. (C) Effects on IL-6 expression (a), NF-
kBþIba1þ and BDNFþNeuNþ cell populations (b), and (b) intensities (c, d) in the hippocampus. (D) Effects on corticosterone (CORT, a) and IL-6 levels (b) in the blood. Mice were
exposed to IS and test agents (IS, vehicle [saline]; IF50, 25 mg/kg/day of fRG; IF50, 50 mg/kg of fRG; IF100, 100 mg/kg/day of fRG; and IR50, 50 mg/kg/day of RG) were gavaged in IS-
treated mice. Normal control group (NC) was treated with saline. Data values are represented as mean ± SD (n ¼ 7). #p < 0.05 vs. NC. *p < 0.05 vs. IS.
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expression, and NF-kBþCD11cþ cell number (Fig. 6). However,
treatment with RG or fRG suppressed UCDF-induced myeloperox-
idase, TNF-a, and IL-6 expression, and NF-kBþCD11cþ cell number,
leading to the amelioration of colitis.

UCDF treatment shifted gut bacterial b-diversity, whereas the
difference of a-diversity was not significant. UCDF exposure
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increased Enterobacteriaceae population, while Bifidobacterium
spp. population decreased. However, RG or fRG treatment
decreased UCDF-induced Enterobacteriaceae population, while
Actinobacteria population increased.

Oral gavage of ginsenoside Rd or CK at a dose of 1 mg/kg also
alleviated UCDF-induced NF-kB/CD11cþ cell number and TNF-a, IL-



Fig. 2. RG and fRG mitigated IS-induced colitis in mice. (A) Effects on colitis: colon length (a), myeloperoxidase (b), TNF-a (c), IL-6 (d), and IL-10 expression (e), NF-kBþCD11cþ cell
population (f), and (f) intensity (g) in the colon. (B) Effect on fecal microbiota composition, analyzed by the pyrosequencing: (a) phylum level, (b) OTU, and (c) principal coordinate
analysis (PCoA) plot (b). Test agents were treated, as described in Fig. 1. Data values are represented as mean ± SD (n ¼ 7). #p < 0.05 vs. NC. *p < 0.05 vs. IS.
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6, and myeloperoxidase expression. The difference between the
efficacies of Rd and CK against colitis was not significant. Oral
gavage of ginsenoside Rd or CK also modified IS-shifted gut
microbiota composition: they increased a-diversity (OTU), b-di-
versity (PCoA), and Bacteroidetes population at the phylum level,
while IS-induced Proteobacteria population decreased.

4. Discussion

Exposure to stressors causes AD by inducing the release of ad-
renal hormones and proinflammatory cytokines through activation
of HPA axis [2,3,31]. In the present study, exposure to IS increased
AD-like behaviors. IS exposure also suppressed hypothalamic
dopamine and serotonin levels and hippocampal BDNF expression
and increased hippocampal and hypothalamic TNF-a and IL-6
expression, and blood IL-6 and corticosterone levels, leading to
neuroinflammation. Moreover, it caused colitis and altered gut
microbiota composition. These observations suggest that IS can
cause AD, neuroinflammation, colitis, and gut microbiota dysbiosis
by imbalanced activation of the HPA axis.

Oral gavage of antibacterials such as ampicillin and fecal
microbiota transplantation from mice or patients with colonic
inflammation cause gut dysbiosis, colitis, and neuroinflammation
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in mice, leading to AD [9,28]. In the present study, we also found
that oral transplantation of UCDF increased AD-like behaviors,
neuroinflammation, colitis, and gut microbiota fluctuation.
Furthermore, UCDF treatment increased blood IL-6 and cortico-
sterone levels as well as hippocampal and hypothalamic TNF-a and
IL-6 expression and NF-kBþIba1þ cell numbers and decreased hy-
pothalamic dopamine and serotonin levels. Jang et al observed that
the induction of gastrointestinal inflammation by TNBS, a colitis
inducer, caused neuroinflammation in mice [8]. These findings
make a suggestion that gut microbiota dysbiosis can raise AD with
systemic inflammation by imbalanced activation of the MGB axis.

We found that fRG, Rd, and CK alleviated AD-like behaviors and
colitis in mice with gut microbiota dysbiosis-induced AD and gut
inflammation. Furthermore, fRG, Rd, and CK partially restored
UCDF-induced gut microbiota fluctuation. Treatment with fRG, Rd,
or CK also reduced UCDF-induced blood corticosterone and IL-6
levels and hippocampal and hypothalamic TNF-a and IL-6 expres-
sion and NF-kBþ/Iba1þ cell number. Treatment with fRG, Rd, or CK
increased UCDF-suppressed hypothalamic dopamine and serotonin
levels and hippocampal BDNF expression. These findings suggest
that fRG, Rd, and CK may alleviate AD with colitis through the
modulation of gut microbiota.



Fig. 3. Ginsenoside Rd and compound K mitigated IS-induced AD in mice. (A) Effects on AD-like behaviors: OT in the EPMT (a), LT in the LDTT (b), and immobility time in the TST (c)
and FST (d). (B) Effects on dopamine (a), serotonin (b), TNF-a (c), IL-6 (d), IL-10 (e) levels, NF-kBþIba1þ cell population (f), and (f) intensity (g) in the hypothalamus. (C) Effects on IL-6
expression (a), NF-kBþIba1þ and BDNFþNeuNþ cell populations (b), and (b) intensities (c, d) in the hippocampus. (D) Effects on corticosterone (CORT, a) and IL-6 levels (b) in the
blood. Mice were exposed to IS and test agents (IS, vehicle [saline]; ID1, 1 mg/kg/day of ginsenoside Rd; ID5, 5 mg/kg of ginsenoside Rd; IC1, 1 mg/kg/day of CK; and IC5, 5 mg/kg/day
of CK) were gavaged. Normal control group (NC) was treated with saline. Data values are represented as mean ± SD (n ¼ 7). #p < 0.05 vs. NC. *p < 0.05 vs. IS.
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We also found that fRG, Rd, and CK alleviated IS-suppressed AD-
like behavior and colitis in mice. Furthermore, fRG, Rd, and CK
increased hypothalamic dopamine and serotonin levels and hip-
pocampal BDNF expression and decreased hypothalamic and hip-
pocampal TNF-a and IL-6 expression and NF-kBþIba1þ cell
numbers, and blood corticosterone and IL-6 levels. Furthermore,
260
their treatments partially restored IS-induced gut microbiota fluc-
tuation. In particular, they reduced fecal Proteobacteria population.
Tode et al observed that RG alleviated psychiatric symptoms in
patients with menopausal syndrome [33]. Han et al reported that
fluoxetine, an antidepressant, alleviated AD, colitis, and gut dys-
biosis [34]. These resultsmake a suggestion that fRG, Rd, and CK can



Fig. 4. Ginsenoside Rd and compound K mitigated IS-induced colitis and gut micriboitoa fluctuation in mice. (A) Effects on colitis: colon length (a), myeloperoxidase (b), TNF-a (c),
IL-6 (d), and IL-10 expression (e), NF-kBþCD11cþ cell population (f), and (f) intensity (g) in the colon. (B) Effect on the composition of gut microbiota, analyzed by the pyrose-
quencing: (a) phylum level, (b) OTU, and (c) principal coordinate analysis (PCoA) plot (b) based on Jensen-Shannon analysis. Test agents were treated, as described in Fig. 3. Data
values are represented as mean ± SD (n ¼ 7). #p < 0.05 vs. NC. *p < 0.05 vs. IS.
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alleviate AD by the regulation of HPA axis activation and can
improve colitis and gut dysbiosis.

Although stressors more exaggeratedly cause AD in germ-free
mice than in SPF mice, the susceptibility of germ-free mice to the
stressors was attenuated by the FMT from SPF mice [35,36]. Jang
et al observed that Lactobacillus johnsonii alleviated TNBS-induced
neuroinflammation in mice [8]. The disruption of gut microbiota by
ampicillin treatment raised AD in mice through colitis and neuro-
inflammation [9]. However, FMT or some probiotics, which relieve
stressors-induced gut dysbiosis, alleviate colitis, leading to the
decrease in AD [28,29]. These findings suggest that RG, fRG, Rd, and
CK may alleviate gut microbiota dysbiosis-induced AD with neu-
roinflammation and gut inflammation of by themodulation of MGB
axis activation.

In addition, when RG or fRG is orally given in humans and ani-
mals, their main components such as ginsenoside Rb1 and Rc are
seldom absorbed into the body due to their hydrophilic and high
weightmolecules [13,18]. Therefore, these components get in touch
with bacteria in the intestine and are able to be transformed into
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absorbable metabolites such as ginsenoside Rd and CK
[13,18,37,38]. Based on these findings, we evaluated the effects of
ginsenoside Rd and CK on UCDF- or IS-induced AD and colitis in
mice. These ginsenosides potently alleviated AD and gastrointes-
tinal inflammation. They also partially restored IS- or UCDF-
induced gut microbiota fluctuation. The protective effect of RG
against the cytotoxicity of neuron cells (SH-SY5Y cells) by hydrogen
peroxide was more potent than that of fRG (Supplement Figure S1).
However, the efficacy of Rd was not significantly different from that
of CK in vitro. Recent studies have suggested that ginsenosides Rb1
and Rg3 and their metabolites, ginsenosides Rd, Rh2, and CK, can
alleviate stressors-induced depression in rodents [39e41]. These
observations make a suggestion that the efficacy of RG and fRG
against AD and colitis can be dependent on their bioactive and
absorbable ginsenosides. Moreover, their efficacies may be
enhanced by the transformation of their ginsenosides into
absorbable ginsenosides into the blood. This proposal is supported
by a former report that Rd and CK were more completely absorbed
into the bloods of volunteers andmice orally administeredwith fRG



Fig. 5. RG, fRG, ginsenoside Rd, and CK mitigated UCDF-induced AD in mice. (A) Effects on AD-like behaviors: OT in the EPMT (a), LT in the LDT (b), and immobility time in the TST
(c) and FST (d). (B) Effects on dopamine (a), serotonin (b), TNF-a (c), IL-6 (d), IL-10 (e) levels, NF-kBþIba1þ cell population (f), and (f) intensity (g) in the hypothalamus. (C) Effects on
IL-6 expression (a), NF-kBþIba1þ and BDNFþNeuNþ cell populations (b), and (b) intensities (c, d) in the hippocampus. (D) Effects on corticosterone (CORT, a) and IL-6 levels (b) in the
blood. Mice were exposed to UCDF and test agents (FT, vehicle [saline]; FF25, 25 mg/kg/day of fRG; FF50, 50 mg/kg of fRG; FR50, 50 mg/kg/day of RG; ID1, 1 mg/kg/day of ginsenoside
Rd; and IC1, 1 mg/kg/day of CK) were gavaged. The normal control group (NC) was treated with saline. Data values are represented as mean ± SD (n ¼ 7). #p < 0.05 vs. NC. *p < 0.05
vs. FT.
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Fig. 6. RG, fRG, ginsenoside Rd, and CK mitigated UCDF-induced colitis and gut microbiota fluctuation in mice. (A) Effects on colitis: colon length (a), myeloperoxidase activity (b),
TNF-a (c), IL-6 (d), and IL-10 expression (e), NF-kBþCD11cþ cell population (f), and its intensity (g) in the colon. (B) Effect on the composition of gut microbiota, analyzed by the
pyrosequencing: (a) phylum level, (b) OTU, and (c) principal coordinate analysis (PCoA) plot (b) based on Jensen-Shannon analysis. Test agents were treated, as described in Fig. 5.
The normal control group (NC) was treated with saline. Data values are represented as mean ± SD (n ¼ 7). #p < 0.05 vs. NC. *p < 0.05 vs. FT.
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more highly than those orally treated with RG [42,43]. This finding
suggests that the ginsenosides of fRG may be transformed into
absorbable metabolites by gut micribota and thereby fRG may be
beneficial for the treatment of AD and colitis.

In conclusion, IS caused AD by the imbalanced activation of the
HPA axis, resulting in the colitis and gut dysbiosis. UCDF caused gut
dysbiosis and colitis, leading to the outbreak of AD with neuro-
inflammation by imbalanced activation of the MGB axis. Fermen-
tation of RG can enhance the efficacy of RG against AD and colitis:
fRG and its constituents Rd and CK may mitigate AD and colitis in
IS-exposed mice by the regulation of the HPA axis and in UCDF-
exposed mice by the regulation of the MGB axis.
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