
lable at ScienceDirect

Journal of Ginseng Research 47 (2023) 199e209
Contents lists avai
Journal of Ginseng Research

journal homepage: https: / /www.sciencedirect .com/journal / journal-of-ginseng-
research
Research Article
Notoginseng leaf triterpenes ameliorates mitochondrial oxidative
injury via the NAMPT-SIRT1/2/3 signaling pathways in cerebral
ischemic model rats

Weijie Xie a, b, c, d, e, Ting Zhu a, b, c, d, e, Ping Zhou a, b, c, d, e, Huibo Xu f,
Xiangbao Meng a, b, c, d, e, Tao Ding f, Fengwei Nan a, b, c, d, e, Guibo Sun a, b, c, d, e, *,
Xiaobo Sun a, b, c, d, e, **

a Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
b Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
c Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
d Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine,
Beijing, China
e Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Beijing, China
f Jilin Academy of Chinese Medicine, Changchun, China
a r t i c l e i n f o

Article history:
Received 9 May 2020
Received in revised form
17 September 2020
Accepted 16 November 2020
Available online 18 December 2020

Keywords:
NAMPT
Ischemia stroke
Mitochondria
Energy metabolism
Notoginseng leaf triterpenes (PNGL)
* Corresponding author. Institute of Medicinal Plan
Medical College and Chinese Academy of Medical Scie
Road, Haidian District, Beijing 100193, China.
** Corresponding author. Institute of Medicinal
Union Medical College and Chinese Academy of Med
China.

E-mail addresses: sunguibo@126.com (G. Sun
xbsun@implad.ac.cn (X. Sun).

https://doi.org/10.1016/j.jgr.2020.11.004
1226-8453/© 2020 The Korean Society of Ginseng. Pub
org/licenses/by-nc-nd/4.0/).
a b s t r a c t

Background: Due to the interrupted blood supply in cerebral ischemic stroke (CIS), ischemic and hypoxia
results in neuronal depolarization, insufficient NADþ, excessive levels of ROS, mitochondrial damages,
and energy metabolism disorders, which triggers the ischemic cascades. Currently, improvement of
mitochondrial functions and energy metabolism is as a vital therapeutic target and clinical strategy.
Hence, it is greatly crucial to look for neuroprotective natural agents with mitochondria protection ac-
tions and explore the mediated targets for treating CIS. In the previous study, notoginseng leaf tri-
terpenes (PNGL) from Panax notoginseng stems and leaves was demonstrated to have neuroprotective
effects against cerebral ischemia/reperfusion injury. However, the potential mechanisms have been not
completely elaborate. Methods: The model of middle cerebral artery occlusion and reperfusion (MCAO/R)
was adopted to verify the neuroprotective effects and potential pharmacology mechanisms of PNGL
in vivo. Antioxidant markers were evaluated by kit detection. Mitochondrial function was evaluated by
ATP content measurement, ATPase, NAD and NADH kits. And the transmission electron microscopy
(TEM) and pathological staining (H&E and Nissl) were used to detect cerebral morphological changes and
mitochondrial structural damages. Western blotting, ELISA and immunofluorescence assay were utilized
to explore the mitochondrial protection effects and its related mechanisms in vivo. Results: In vivo,
treatment with PNGL markedly reduced excessive oxidative stress, inhibited mitochondrial injury,
alleviated energy metabolism dysfunction, decreased neuronal loss and apoptosis, and thus notedly
raised neuronal survival under ischemia and hypoxia. Meanwhile, PNGL significantly increased the
expression of nicotinamide phosphoribosyltransferase (NAMPT) in the ischemic regions, and regulated
its related downstream SIRT1/2/3-MnSOD/PGC-1a pathways. Conclusion: The study finds that the
mitochondrial protective effects of PNGL are associated with the NAMPT-SIRT1/2/3-MnSOD/PGC-1a
signal pathways. PNGL, as a novel candidate drug, has great application prospects for preventing and
treating ischemic stroke.
© 2020 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article
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1. Introduction

Stroke, especially cerebral ischemic stroke (CIS), is one of the
leading causes of death worldwide; it has the characteristics of high
is is an open access article under the CC BY-NC-ND license (http://creativecommons.

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sunguibo@126.com
mailto:sun_xiaobo163@163.com
mailto:xbsun@implad.ac.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jgr.2020.11.004&domain=pdf
www.sciencedirect.com/science/journal/12268453
http://www.sciencedirect.com/journal/journal-of-ginseng-research
http://www.sciencedirect.com/journal/journal-of-ginseng-research
https://doi.org/10.1016/j.jgr.2020.11.004
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jgr.2020.11.004
https://doi.org/10.1016/j.jgr.2020.11.004


Abbreviations

ATP adenosine triphosphate
CIS cerebral ischemic stroke
NAD nicotinamide adenine dinucleotide;
ETC electron transport chain
H&E hematoxylins and eosin
I/R ischemia and reperfusion
MCAO/R middle cerebral artery occlusion and reperfusion
MDA malondialdehyde
NO nitric oxide;
MOJ mitochondrial oxidative injury
NAMPT nicotinamide phosphoribosyltransferase
PNGL notoginseng leaf triterpenes of Panax notoginseng

stem and leaves
ROS reactive oxygen species
SOD superoxide dismutase
SIRT sirtuin
TEM transmission electron microscopy
DMEM dulbecco’s modified eagle’s medium
MnSOD manganese superoxide dismutase
PGC-1a PPARg coactivator-1a
TAC tricarboxylic acid cycle
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morbidity, lethality, disability, and recurrence rate [1e3]. Although
ischemic stroke pathogenesis is incompletely clear, the related re-
searches and reports have proven that CIR is involved in energy
metabolism disorders [4], oxidative stress [5], Ca2þ overload,
excitatory neurotransmitters, apoptosis and necrosis [5]. Currently,
tissue plasminogen activator (TPA) has been deveolped and regar-
ded as the effective pharmacological therapy and drug for ischemic
stroke, and some neuroprotective drugs have been developed for
several aspects of ischemia-reperfusion injury [6,7], but it still re-
mains limited and relatively difficult to meet needs for clinical
treatment of stroke [3,5,7]. Therefore, novel therapeutic strategies
and agents are urgently needed to develop for preventing and
treating CIS.

The current reports have revealed that Nicotinamide adenine
dinucleotide (NADþ) plays a crucial role in regulating metabolism
and cell stress responses [8,9],．In the early stage of ischemia, the
cerebral blood flow severely declines, which results in the severe
oxygen and glucose deprivation [10,11] and insufficient NADþ,
decreases the ratio of NADþ/NADH [12e15], directly inhibits
impaired Hþ transmission in the oxidative respiratory chain and
insufficient intracellular ATP synthesis, and further causes mito-
chondrial damages and energy metabolism disorders [10]. These
mitochondrial disorders may further aggravate the multiple path-
ological progresses of cerebral ischemia and reperfusion (I/R) injury
(CIRI), including excitotoxicity, free radical release, and inflamma-
tion, leading to cellular death and neuronal loss after stroke
[3e5,16]. Thus, mitochondrial metabolic of energy is regarded as
one of key strategies against neuronal injury caused by I/R.

Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-
limiting enzyme for biosynthesizing NAD in mammals. Currently,
much evidence supports NAMPT and the NAMPT-NAD þ pathway
as a therapeutic target against ischemic stroke [9,17,18]. NAMPT
could increase neuronal ischemic tolerance, inhibit neuronal
apoptosis and necrosis, and improve energy metabolism under
ischemia [19e21]. Therefore, it is one of the hot tasks to find natural
active substances, which effectively inhibits mitochondrial dam-
ages, improves energy metabolism via NAMPT.
200
Notoginseng leaf triterpenes (PNGL) is total saponins isolated
and purified from stems and leaves of Panax notoginseng (Burk) F. H.
Chen ex C. H. Our previous study has shown that PNGL exerts
neuroprotective effects via attenuation of neuronal apoptosis
caused by ischemia. And the chemical fingerprinting assay was
used to identify and analyze eleven batches of PNGL samples [22]. It
finds that PNGL mainly contains mainly 20(s)-protopanaxadiol
saponins, such as ginsenoside Rb1, Rb2, Rb3, and Rc [23,24]. But the
neuroprotective mechanisms of PNGL are not completely elabo-
rated. In additions, our team previously has found that Panax
notoginseng saponins (PNS) and its monomeric saponin compo-
nents could reduce mitochondrial damages, such as notoginseno-
side R1, R2, and ginsenoside Rg1 [25,26]. Thus, we speculated that
PNGL might have protective effects on mitochondria. But it is
essential to further verify whether PNGL exerts mitochondria-
protective effects against CIS. And the relevant mechanisms are
not fully aware that how PNGL may alleviate mitochondrial
dysfunction, improve energy metabolism and thus suppress cere-
bral ischemic damages, which needs to further explore.

This present research was designed to further confirm the ef-
fects of PNGL against ischemic MCAO/R-induced brain injury,
explore the effects and mechanisms of PNGL on inhibiting mito-
chondrial injury and alleviating metabolic disorder of energy via
MCAO/R model rats, and conduct further researches on the regu-
lation of PNGL on the NAMPT pathway.

2. Methods

2.1. Animals

Adult male Sprague-Dawley rats (220~240g) were obtained
from Beijing Vital Lihua Experimental Animals Co., Ltd. Rats were
housed with standard conditions [22,27]. All operations and
treatments were obliged to conform to the Declaration of Helsinki
and the “3R” principles. And the protocol was approved by the
Laboratory Animal Ethics Committee (Permit Number: SYXK 2017-
0020).

2.2. Focal cerebral ischemia model

The ischemia model was produced by middle cerebral artery
occlusion and reperfusion (MCAO/R) as previously described
[22,27]. Briefly, after anaesthetization with Zoletil 50 (ip,10-15
mg$kg-1, Virbac S.A, Carros, France, Supplemental Material-S1),
rats were exposed to the MCAO/R operations according to the
standard operating specifications [22,27]. The occlusion last for 2h
and reperfusion for 24h. Rats in sham-operated group underwent
the same procedures except occluding the MCA. Stuporous animals
were kept under the conditions of 32 ± 0.1 �C until woke up. In
addition, the experimental design procedure was showed in Sup-
plemental Material-S2.

2.3. Drug administrations for animal

Based on our previous experiments [22], rats were divided into
6 groups (n ¼ 10 for each group): the Sham group, the MCAO/R
group, the PNGL(73 mg/kg, L) þ MCAO/R group, the PNGL(146 mg/
kg, M)þMCAO/R group, the PNGL(192 mg/kg, H)þMCAO/R group,
and the NBP group (butylphthalide, 60 mg/kg). PNGL samples were
provided by the Jilin Academy of Chinese Medicine (Lot No. 2018-
05-08, Changchun, China), and NBP was purchased from the Shi-
jiazhuang Pharmaceutical Group dl-3-butylphthalide Pharmaceu-
tical Co. Ltd (Lot No. 118180810). The solvent media was normal
saline. Rats were by intragastric administration for two weeks, and
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rats were exposed to the same volume of normal saline in the Sham
and MCAO/R group.

2.4. Histological examinations

After drug administration and MCAO/R operation, rats were
anaesthetized, the intact brains were prepared, and the patholog-
ical paraffin sections were made. Sections were stained using H&E
and Nissl staining according to the described standard protocol
[22,27,28]. The staining images were acquired using a pathological
scanner and analysis system (Aperio CS2, Leica, Wetzlar, Germany).

2.5. Detection of MDA, NO contents, SOD and GSH-Px activities

Following the MCAO/R operation and treatment, the blood
serum was prepared for further measurement [22,28]. The
malondialdehyde (MDA), nitric oxide (NO) contents, superoxide
dismutase (SOD) and GSH-Px activities in blood serum were
measured using colorimetric assay kits according to the manufac-
turer protocols [27]. The MDA level and NO level were measured
using the kits from Beyotime (Beyotime, Shanghai, China). SOD and
GSH-Px activities were detected by the kits (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China) according to the kit
operation specifications. And the results were obtained by the
Tecan Infinite microplate reader (M1000, Tecan Infinite,
Switzerland).

2.6. Transmission electron microscopy

The mitochondrial ultrastructural changes in neurons were
observed using transmission electron microscopy (TEM). Brain
sections were fixedwith 4% glutaraldehyde for 1 h and thenwith 1%
OsO4 for 2 h in 0.1 mol/L cacodylate buffer (pH 7.4). Then, they were
stained with 1% aqueous uranyl acetate for overnight, dehydrated
in an ascending series of ethanol and dry acetone, and embedded in
the Hard-Plus Resin-812 (SPI). Ultrathin sections (0.1 mm) were cut,
stained with 3% lead citrate, and examined with TEM (HT7700,
HITACHI, Tokyo, Japan).

2.7. ELISA assay

After the MCAO/R operation and treatment, the brain samples in
each group were prepared (as showed in Supplemental Material-
S1), homogenized, and centrifuged according to the operation
specifications [22,28]. The collected supernatants were used to
assess the cytokines and protein levels. A BCA protein assay kit was
used to determine protein concentrations of the supernatants
(CWBIO, Beijing, China). The total antioxidant capacity (T-AOC) in
blood serum was analysed using an ELISA kit (Hiton., Beijing,
China). The sirtuins, superoxide dismutase 2 (SOD2), and nicotin-
amide adenine dinucleotide phosphate (NADPH) concentrations
from the ischemic brains were detected by using ELISA kit (Hiton.,
Beijing, China) according to the operation instructions. The ATP,
ATPase, NAD and NADH levels in the ischemic brains were detected
by using an ELISA kit (Hiton., Beijing, China) according to the
operation instructions.

2.8. Immunofluorescence

Immunofluorescence staining was performed as previously
described [27,28]. Briefly, the micro-slides were prepared, and then
co-incubated with anti-NAMPT (ab236873, Abcam), and anti-beta
III Tubulin with Alexa Fluor® 488 (ab195879, Abcam) overnight
at 4 �C. Sections were then incubated with a TRITC-conjugated goat
201
anti-rabbit IgG (CW0160, CWBIO, Beijing, China) at room temper-
ature for 1 hr. Finally, after DAPI for nuclear counterstaining, the
sections were coverslipped with cover glass and examined under a
fluorescence microscope (Leica, Germany Q9).

2.9. Protein extraction

After MCAO operation and treatment, the cerebral ischemic
hippocampus and cortex region tissue were suspended in ice-cold
lysis buffer and homogenized as described previously [22,28,29].
Then, the protein concentrations in the supernatant were deter-
mined by the BCA protein assay kit according to the protocol.

2.10. Immunoblotting

Western blotting was performed as previously reported
[22,28,29]. Based on the standard operating specifications, protein
samples were loaded, separated and transferred onto NC mem-
branes (Millipore, Bedford, MA, USA). After blocking for 2h at 20 �C,
the transferred membranes were incubated overnight at 4 �C with
the special antibodies: NAMPT (ab236873, 1:1000), SIRT1
(ab189494, 1:1000), SIRT2 (ab211033, 1:2000), SIRT3 (cst5490,
1:1000), MnSOD (ab137037, 1:5000), PGC-1a (ab188102, 1:5000),
and b-actin (EXP0041F, 1:3000). Protein expression was examined
by using an enhanced chemiluminescence method and ChemiDoc
XRS (Bio-Rad, Hercules, CA, USA). To eliminate variations in protein
expression, three independent experiments were conducted.

2.11. Statistical analysis

GraphPad Prism 8.0 and statistical program SPSS 21.0. (SPSS,
IBM, Chicago, IL, USA) were used for statistical analysis. Data
expressed as means ± SD or standard error of the mean (SEM).
When the Kruskal-Wallis H test showed a significant difference, the
Mann-Whitney U test with the Bonferroni correctionwas in use. All
other data were analyzed using one-way ANOVA followed by the
least significant difference (LSD) or Bonferroni’s method, and
p < 0.05 was considered statistically significant.

3. Results

3.1. PNGL inhibits neurological damages caused by ischemia in vivo

The morphological damages were detected by using Nissl and
H&E staining. As showed in Fig. 1, the neuron cells possessed a clear
and obvious outline of the nucleus without obvious tissue defects
and edema, neurons and Nissl bodies arranged regularly in the
hippocampus and cortex, and exhibited clear staining. After MCAO/
R induction, most neurons and Nissl bodies exhibited weak stain-
ing, diffusely deteriorated, and neuron density and Nissl bodies
decreased (Fig. 1A and B). Compared with the model group, PNGL
(73, 146, 292 mg/kg) treatment dose-dependently exhibited
obvious staining, possessed neurons arranged regularly in the
hippocampus and cortex, and significantly increased neuron den-
sity and Nissl bodies (Fig. 1A and B). The PNGL group had less
swollen cells, decreased issue space, reduced edema, and possessed
more normal morphological cells, arrangedmore regularlywith the
nuclear shrinkage phenomenon (Fig. 1A and B).

In additions, PNGL (146 mg/kg) was equal to the NBP in the
hippocampus regions. All of these results indicate that PNGL in-
hibits the neurological damages and decreases the neuronal den-
sity loss caused by CIRI.

In addition, we further investigated the MDA, NO, SOD, and GSH
levels. In contrast with the sham group, the model group obviously
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increased the MDA and NO levels (Fig. 1CeD, p < 0.01 and p < 0.01),
and significantly reduced the SOD activity and GSH levels
(Fig. 1EeF, p < 0.01 and p < 0.01). Treatment of PNGL (73,146, 292
mg/kg) remarkably decreased the MDA and NO levels (Fig. 1CeD,
p > 0.05, p < 0.01 and p < 0.01). And PNGL raised the SOD activity
and GSH levels (Fig. 1EeF, p < 0.05 and p < 0.01) with a dose-
dependent manner; PNGL (73 mg/kg) showed no significant dif-
ferences on the NO and GSH concentrations with MCAO/R groups.
Moreover, the NBP showed similar improvements with PNGL (146
mg/kg, p < 0.01), which suggested that PNGL could alleviate
neuronal oxidative injury caused by CIRI.
3.2. PNGL alleviates mitochondrial injury and improves energetic
metabolism in ischemic brains

Mitochondrial dysfunction is viewed as one of major causes of I/
R-induced neuronal death [30,31]. To elucidate the effect of PNGL
on mitochondrial function under the cerebral ischemia conditions,
we assessed the mitochondrial structure and energy metabolism
via TEM and ELISA assays.

As showed in Fig. 2A, in the sham groups, mitochondrial cristae
were clear, almost no mitochondrial vacuolization occurred, and a
disruption of mitochondrial distribution was re regularly arranged
and showed no polymorphism of the mitochondrial ultrastructure
via TEM images (Fig. 2A). In the MCAO/R group, mitochondria
showed swelling, disorder of sparse cristae and fracture, and
obvious mitochondrial vacuoles. Contrast with MCAO/R. PNGL
(73,146mg/kg) reduced the mitochondrial vacuolization, swelling,
mitochondrial ultrastructure polymorphism, and disorder of sparse
cristae and fracture. And the mitochondria were slightly swollen
with less vacuolation and more visible mitochondrial cristae
(Fig. 2A), indicating that PNGL may protect the ischemic brains
against the mitochondrial injury caused by I/R.

Next, ATP production and energy metabolismwere evaluated by
ELISA kits in vivo. As showed in Fig. 2, the levels of ATP and ATPase
decreased in brain hippocampus and cortex after I/R injury
(Fig. 2CeD, p < 0.01, p < 0.05; Fig. 2FeG, p < 0.05, p < 0.01).
Meanwhile, the antioxidant capability (T-AOC) significantly
decreased (Fig. 2B, p < 0.01). In contrast, treatment with PNGL
(73,146, 292 mg/kg) increased the ATP and ATPase levels in
ischemia hippocampus and cortex (Fig. 2CeD, p > 0.05, p < 0.05,
p < 0.01; Fig. 2FeG, p > 0.05, p < 0.05, p < 0.01), and raised the T-
AOC, SOD, CAT, and GSH-Px levels (Fig. 2B, p < 0.01) with a dose-
dependent manner. In additions, NBP treatment evidently
improved the ATP and ATPase levels, which was similar to PNGL
(146 mg/kg).
3.3. PNGL upregulates cerebral NAMPT levels and its mediated
NAD þ levels in vivo

To further elucidate the effect of PNGL on mitochondrial
oxidative respiration and explore whether PNGL could regulate the
target NAMPT under ischemia and hypoxia, we assessed the
NAMPT level via immunofluorescence, the NADþ and NADH levels
by ELISA kits in the ischemic brains.

Immunofluorescence staining of the NAMPT, beta-III tubulin
and DAPI revealed that NAMPT was mainly located in neurons and
its nucleus, mainly expressed in ischemic cortex and hippocampus
areas, and then other brain regions 24 hours after MCAO (Fig. 3A
and B). And it demonstrated that NAMPT level was increased in the
ischemic hemisphere (Fig. 3C, p < 0.01 vs. Sham). Meanwhile, PNGL
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(73, 146, 292mg/kg) administration further increased the number
of NAMPT-positive neurons and its fluorescence value in the
ischemic brain (Fig.3AeC, p < 0.05, p < 0.01, p < 0.01 vs. MCAO/R),
The ELISA results suggested that the NADþ and NADH levels
decreased after MCAO/R (Fig. 3DeE, p < 0.05, p < 0.01); PNGL (73,
146, 292mg/kg) treatment increased the NADþ and NADH levels
with dose-dependence in ischemic cortex and hippocampus areas
(Fig. 3DeE, p < 0.05, p < 0.01). And thus PNGL raised the ratio of
NADþ and NADH in cortex (Fig. 3DeE, p < 0.05) and in hippo-
campus, accompanied by the increase of NAMPT level; however,
the trend did not reach statistical significance in hippocampus
(Fig. 3D and E p > 0.05). Additionally, NBP (60 mg/kg) has similar
increases in the NADþ (Fig. 3D and E).

All of these results above indicated the effects of PNGL on
improving the NADþ and ATP synthesis might be tightly relevant to
the activation and upregulation of the target NAMPT.
3.4. PNGL activates NAMPT-SIRT1/2/3 pathway in ischemic brains

To further determine the molecular pathways underlying
NAMPT-induced protection, we detected the protein levels of the
NAMPT-NAD-SIRT1/2/3 signaling pathways by western blot.

As shown in Fig. 4, the results revealed that the NAMPT
expression showed no significant improvement (Fig. 4A-C), and the
expression levels of SIRT1/2/3 was remarkably decreased by the
MCAO/R operation (Fig. 4DeF, p < 0.01, p < 0.01, p < 0.01).
Compared to the MCAO/R, treatment of PNGL (146mg/kg) upre-
gulated the NAMPT expression levels in cortex and hippocampus
areas (Fig. 4C, p < 0.05, p< 0.05). In addition, the PNGL inhibited the
decreases of SIRT1/2/3 expression in ischemic cortex and hippo-
campus areas (Fig. 4DeF, p < 0.05, p < 0.05, p < 0.05).

These results demonstrate that PNGL exerts protective effects
against mitochondrial injury and cerebral oxidative stress injury,
which may be related to the regulation of NAMPT-NAD and SIRT1/
2/3 pathways under ischemia conditions.
3.5. PNGL improves the SIRT1/2/3-MnSOD/PGC-1a pathway
mediated by the NAMPT in vivo

Then our experiment focused on the PGC-1a [32], MnSOD and
NADPH [33e35], the important downstreams of the NAMPT-SIRT1/
2/3 pathway, which could regulate transcriptional activity of the
targeted antioxidant and cell cycle genes, including the UCP2,
PECPK, PGC-1a, MnSOD, and catalse genes [33e35].

As shown in Fig. 5A-B, the protein levels of PGC-1a and MnSOD
were significantly reduced in the MCAO/R model rats (Fig. 5 A,
p < 0.05 and p < 0.01, respectively, Fig. 5 B, p < 0.01 and p < 0.01,
respectively). Compared to the MCAO/R group, treatment with
PNGL increased the expression levels of PGC-1a and MnSOD in
hippocampus (Fig. 5 A, p < 0.01 and p < 0.05), and upregulated the
levels of PGC-1a and MnSOD in cortex (Fig. 5 B, p > 0.05 and
p < 0.05). Moreover, PNGL showed no significant upregulation of
the PGC-1a and MnSOD in the non-ischemia brains.

The ELISA results showed that the MCAO/R decreased the levels
of the sirtuins, MnSOD, and NADPH in ischemic hippocampus
(Fig. 5 B, p < 0.05, p<0.01 and p>0.05). In ischemic hippocampus,
treatment of PNGL (73, 146, 292mg/kg) improved the levels of sir-
tuins and MnSOD with dose-dependence (Fig. 5 C, p < 0.05,
p < 0.01), and the NADPH level did not showed significant in-
creases. Similarly, in ischemic cortex regions, the decreases of sir-
tuins, MnSOD, and NADPH levels were abrogated by PNGL
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treatment in a dose-dependent manner (Fig. 5 C, p < 0.01, p < 0.01,
p < 0.05); and PNGL (73, 146mg/kg) raised the levels of the sirtuins
and NADPH proteins without significance. In additions, NBP group
showed significant changes in the levels of sirtuins in hippocampus
and cotex.
Fig. 1. Effects of PNGL on neuronal pathological changes, Nissl’s body loss and oxidative
in hippocampus CA1, CA3, and cortex regions from ischaemic brains, obtained by the Digita
staining performed in hippocampus CA1, CA3 regions, and cortex regions from ischaemic bra
specific assay kits (n ¼ 6-10 in each group). Mean values ± SEM; *p < 0.05, **p < 0.01 ver
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These findings suggest that PNGL may upregulate the PGC-1a
and MnSOD expression, and improve the protein levels of sirtuins
and SOD2, and regulate the NAD-NADPH process in the ischemic
hippocampus and cortex.
stress indicators in MCAO/R rats. (A) Representative images of H/E staining performed
l Whole Slide Scanning System (Leica, Aperio CS2). (B) Representative images of Nissl
ins. (C) (D) (E) (F) the MDA, NO, SOD and GSH concentrations, determined by ELISA and
sus MCAO/R group; #p < 0.05, ##p < 0.01, versus sham group. Scale bar, 200 mm.



Fig. 2. Effects of PNGL on mitochondrial structure and energetic metabolism in MCAO/R rats. (A) Representative images of mitochondrial structure performed in cortex,
measured by TEM (HITACHI, HT7700). (B) the total antioxidant capacity (T-AOC) in MCAO/R model rats, determined by a ELISA and specific assay kit (n ¼ 6-10 in each group). (C) (F)
(D) (G) the ATP concentrations and ATPase activities in hippocampus and cortex regions, determined by ELISA and specific assay kits (n ¼ 7-10 in each group). (E) these results
indicated PNGL may inhibit the ischemia-induced mitochondrial oxidative injury (MOJ) and thus improve the energy metabolism in vivo (TAC, Tricarboxylic acid cycle). Mean
values ± SEM; *p < 0.05, **p < 0.01 versus MCAO/R group; #p < 0.05, ##p < 0.01, versus sham group.
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4. Discussion

In the previous work, we found that PNGL attenuated the brain
swelling, and reduced the infarct volume and BBB disruption in
MCAO/R rats [22,36]. PNGL might exert the neuroprotective effects
via suppression of apoptosis [22,36]. But the mechanisms of PNGL
are not completely interpreted. Thus, in the present study, the
mechanisms of PNGL against I/R injury were further investigated.
The results demonstrate that PNGL significantly inhibits the
neurological morphological damages, decreases neuronal density
loss in rats subjected to MCAO/R (Fig. 1). Therefore, PNGL is a
promising agent for preventing and treating ischemic stroke.

Once ischemic stroke occurs, the critical reduction of regional
cerebral blood flow may lead to mitochondrial dysfunctions within
minutes after ischemia [10,11]. Maintaining the mitochondrial
function is critical in promoting neuron survival and neurological
improvement [10,11]. The TEM images and detection data showed
that treatment with PNGL (73, 146, 292 mg/kg) remarkably
204
alleviated mitochondrial structure injury caused by CIRI (Fig. 2),
and markedly increased ATP and ATPase levels in vivo (Fig. 2),
suggesting that the neuroprotection of PNGL may be tightly asso-
ciated with inhibiting mitochondrial injury and improving meta-
bolism of energy.

NAD plays an important role in energy balance and cellular
redox reactions in ischemic stroke [13,37,38]. Under the hypoxia-
ischemia conditions, NADH gets oxidized in the cytoplasm
through the reduction of pyruvate to lactate, which leads to the
mitochondria dysfunction that the NAD þ level is reduced [12e15],
ETC is obviously blocked, and the ATP synthesis was inhibited
[10,18,39]. And thus the absence of mitochondrial NAD þ pool
further causes excessive production of ROS [11,37,38,40], which
results in the aggravated mitochondria impairment, depletion of
ATP production, depolarization of mitochondrial membrane po-
tential, and its induced neuronal injury [11,41]. Our study found
that the MCAO/R operation significantly decreased the
NAD þ levels (Fig. 3), inhibited oxidation resistance (Fig. 1, T-AOC,



Fig. 3. Effects of PNGL on Nampt expresssition and NAD þ levels in the ischemic brains. (A) Representative images of Nampt (red) with DAPI (blue) staining in rat ischemic
brains after MCAO/R injury, measured by the immunofluorescence assay; scale bar, 200mm. (B) The enlarged images of Nampt (Red) and the beta-III tublin(Green) with DAPI (Blue)
staining in rat ischemic cortex regions, measured by the immunofluorescence assay, scale bar, 10mm. (C) The statistical data of Nampt fluorescence value, analyzed by using the
Image J 2.44 softwae. (D) (E) The NAD and NADH concentrations in hippocampus and cortex in MCAO/R rat brains, determined by ELISA and specific assay kits. (n ¼ 5-8 in each
group). Mean values ± SEM; *p < 0.05, **p < 0.01 versus MCAO/R group; #p < 0.05, ##p < 0.01, versus sham group.
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SOD, GSH-Px), and increased the MDA and NO levles (Fig. 1) in vivo,
and induced the NAD þ insufficiency, which was consistent with
the previous reports. After further treatment of PNGL for the model
rats, PNGL reversed these alterations of NADþ and mitochondria
impairment caused by IR. All of these indicate that PNGL may exert
mitochondria protective effects via the maintenance of mitochon-
drial NAD þ pool and the inhibition of oxidative injury.
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Intracellular NAMPT is able to convert nicotinamide into to NAD
[42e44], which exerts important roles in energy metabolism and
cellular biological functions. NAMPT have a comparable effect on
neuronal protection and suppression of apoptosis-inducing factor
translocation [15]. The in vivo experiments demonstrated that the
intracellular NAMPT level was induced by ischemia along with the
NAD þ decrease (Fig. 3AeC, Fig. 4AeC), which was in accordance
with the related previous researches. In contrast, PNGL treatment



Fig. 4. Effects of PNGL on the Nampt-NAD-SIRT1/2/3 signaling pathways in the ischemic brain. (A-B) The protein bands of Nampt and SIRT1/2/3 in the ischaemic brain sections
examined by the western blot analysis. (CeF) the relative expression levels of Nampt, Sirt1, Sirt2 and Sirt3 proteins, respectively, quantified and analyzed by using Gel-Pro analyzer
software. Mean values ± SEM (n ¼ 3); p < 0.05, **p < 0.01, versus MCAO/R group; #p < 0.05, ##p < 0.01 versus sham-operated group.
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markedly improved the intracellular level in the MCAO/R rats
(Fig. 3AeC, Fig. 4AeC). These results show that PNGL may regulate
the NAMPT-NAD þ pathway against mitochondria dysfunctions
and I/R injury.

Sirtuins are an evolutionarily conserved family of NAD þ -
dependent lysine deacylases and ADP ribosylases; the sirtuin
family proteins consists of seven members (SIRT1-7) in mammals
[17,38,45]. SIRT1, SIRT2, and SIRT3 show the highest deacetylase
activity, and the SIRT1/2/3 mainly exerts great neuroprotective ef-
fects in cerebral ischemia [34,46,47]. As an NAD þ -dependent
deacetylase, SIRT1, SIRT2, and SIRT3 specifically promote mito-
chondrial functions [48], energy metabolism [48e50], and
oxidizing reactions [35,48]. Our further researches suggested the
MCAO/R model remarkably reduced the expression levels of SIRT1/
2/3 (Fig. 4D-F), which was consistent with those reported results.
Meanwhile, our further researches suggested PNGL upregulated
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these expression levels (Fig. 4D-F). Hence, SIRT1/2/3 may be
involved in the regulation of PNGL.

It is reported that both SIRT1 and SIRT2 are major regulators of
cellular anti-oxidative and anti-apoptotic responses [49,51,52]; and
similar to SIRT1/2, NRF2 plays an important role in promoting
mitochondrial biogenesis and regulating mitochondrial function
[44]. Then the transcriptional activity of the NRF2-HO1 pathway is
improved, which in turn, induces the increase of antioxidant genes
expression (SOD and catalase), the decrease of ROS production, and
the upregulation of mitochondrial superoxide dismutase (MnSOD)
expression [52e54]. Consistent with the current reports, this study
showed that the SIRT1/2 downregulation increased ROS produc-
tion, reduced the activities of antioxidant proteins and factors (SOD,
CAT, MnSOD), and thus caused oxidative stress and mitochondria
injury in the MCAO/R rats. However, PNGL significantly improved
the expression of antioxidant proteins in vivo (Fig. 5). These results
suggested that the protective effects of PNGL might be related to



Fig. 5. Effects of PNGL on the downstream SIRT1/2/3-MnSOD/PGC-1a signaling pathway mediated by the target Nampt in the ischemic brains. (A) The protein bands and
relative expression levels of the PGC-1a and MnSOD in hippocampus, respectively, examined by western blot analysis and analyzed by using the Gel-Pro analyzer software. (B) The
protein bands and relative expression levels of the PGC-1a and MnSOD in cortex. (C) the sirtuins, SOD2, and NADPH concentrations and levels in the ischemic hippocampus regions,
detected by the ELISA assay kits. (D) the sirtuins, SOD2, and NADPH concentrations and levels in the ischemic cortex regions, detected by the ELISA assay kits Mean values ± SEM
(n ¼ 3); p < 0.05, **p < 0.01, versus MCAO/R group; #p < 0.05, ##p < 0.01 versus sham-operated group.
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the NAMPT-NAD þ pathway and its related downstream SIRT1/2-
MnSOD pathways.

In additions, some related study demonstrates that SIRT1 is not
the only mediator of NAMPT tomaintainmitochondrial NADþ pool
[33]. Sirt3 is the primary mitochondria-targeted deacetylase, and
has been shown to bind to and deacetylate several metabolic and
respiratory enzymes that regulate mROS generation and mito-
chondrial functions [34,46,55]. Mitochondrial Sirt3 induces fork-
head box O3 (FoxO3a) translocation to the nucleus and augments
FoxO3a-dependent antioxidant defense systems [52e54] through
upregulation of PGC-1a [33e35] and SOD2 [33,48]. In addition, they
suppress ROS production and protect cells from mROS-induced
oxidative damages. Our data indicated that pretreatment with
PNGL obviously increased the PGC-1a and SOD2 levels in the
MCAO/R-operated rats (Fig. 4), resulting in the inhibition of mito-
chondrial oxidizing injury, improvement of energy metabolism,
and maintenance of mitochondrial functions.
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This study suggests that PNGL has greatly neuroprotective ef-
fects, exerts anti-oxidative and mitochondria-protective effects,
improves the energy metabolism, and thus inhibits neuronal
apoptosis and necrosis. The underlying mechanisms may be
involved in the NAMPT-SIRT1/2/3-MnSOD/PGC-1a signaling path-
ways. All of these results provide the strong scientific basis and
guidances for the current onging clinical tests of PNGL as a new
agent for treating CIS [22], which may contribute to confirming its
effect characteristics, intensity and different stages of CIS; and it
also further shows the promising perspercives of targeting NAMPT
and mitochondrial protection as a therapeutic strategy against
stroke. And these results give us a hint that PNGL may play a vital
role by protectingmitochondria and promoting neurogenesis in the
post-ischemia injury and recovery. Nonetheless, the related
mechanisms of PNGL have not been confirmed by in vitro ischemic
models. Therefore, further investigations is needed to deeply
elucidate the mechanisms.
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