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Approximately 50%-55% of high-grade serous ovarian carci-
noma (HGSOC) patients have MYC oncogenic pathway activa-
tion. Because MYC is not directly targetable, we have analyzed
molecular pathways enriched in MYC-high HGSOC tumors
to identify potential therapeutic targets. Here, we report
that MYC-high HGSOC tumors show enrichment in genes
controlled by NRF2, an antioxidant signaling pathway, along
with increased thioredoxin redox activity. Treatment of MYC-
high HGSOC tumors cells with US Food and Drug Administra-
tion (FDA)-approved thioredoxin reductase 1 (TrxR1) inhibitor
auranofin resulted in significant growth suppression and
apoptosis in MYC-high HGSOC cells in vitro and also signifi-
cantly reduced tumor growth in an MYC-high HGSOC pa-
tient-derived tumor xenograft. We found that auranofin
treatment inhibited glycolysis in MYC-high cells via oxida-
tion-induced GAPDH inhibition. Interestingly, in response to
auranofin-induced glycolysis inhibition, MYC-high HGSOC
cells switched to glutamine metabolism for survival. Depletion
of glutamine with either glutamine starvation or glutaminase
(GLS1) inhibitor CB-839 exerted synergistic anti-tumor activity
with auranofin in HGSOC cells and OVCAR-8 cell line xeno-
graft. These findings suggest that applying a combined therapy
of GLS1 inhibitor and TrxR1 inhibitor could effectively treat
MYC-high HGSOC patients.

INTRODUCTION

Epithelial ovarian cancer (OC) is the fifth most common cause of
female cancer death worldwide and is the most lethal gynecological
malignancy.' Most epithelial OCs are of the serous subtype. Further-
more, an overwhelming majority (90%) of serous ovarian carcinomas
(SOCs) are high grade (HGSOC), contributing to high lethality for
this subtype of OC.” Large-scale genomic data have demonstrated
that HGSOC tumors are characterized by extensive copy number
changes, and 50% of HGSOC patients have MYC amplification or
pathway activation.” Despite the high incidence of MYC amplifica-
tion in HGSOC:s and in other solid tumors, MYC remains un-drug-
gable because therapies targeting MYC have been unsuccessful in
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clinical trials. Hence an alternate therapeutic strategy is to identify
MYC-regulated druggable signaling pathways, which can be inhibited
using small molecule inhibitors.

MYC is a transcription factor that drives cancer progression by regu-
lating genes involved in a plethora of biological processes, including
metabolic processes such as glycolysis* and glutaminase metabolism,”
and genes involved in maintaining intracellular redox homeostasis,
such as NRF2-driven antioxidant pathways.” Increased intracellular
oxidative stress is one of the hallmarks of cancer.”* Although increased
oxidative stress can be detrimental to cancer cells, MY C-active tumors
survive such high oxidative stress as a result of increased NRF2-medi-
ated antioxidant genes that protect tumor cells against increased
oxidative stress. One of the key antioxidant systems transcriptionally
regulated by NRF2 is the thioredoxin system. The expression of the
components of the thioredoxin system, including thioredoxin and
thioredoxin reductase 1 (TrxR1), is upregulated in multiple human can-
cers.” " The thioredoxin system regulates the function of multiple
signaling pathways involved in tumorigenesis by modulating the oxida-
tion-reduction status. Pharmacological inhibition of TrxR1 using a
gold-based anti-inflammatory drug US Food and Drug Administration
(FDA) approved against rheumatoid arthritis, auranofin, has shown
anti-cancer activity in multiple cancers.”'*'*"'* Auranofin is currently
in clinical trials for potential repurposing against cancer. However,
cellular response to auranofin varies considerably; it is important to
identify factors that influence anti-cancer effects of auranofin. Because
MYC-high tumors cells have enrichment of NRF2 and its associated
glycolysis gene signature, auranofin may represent an attractive drug
candidate for MYC-high tumors.
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Glucose and glutamine are two major extracellular carbon sources
responsible for fueling increased energy demand of tumor cells. On
inhibition of one major cellular metabolic pathway, cancer cells often
switch to an alternate metabolic pathway to fuel increased energy de-
mand for survival.'>'® Glutamine is the most abundant non-essential
amino acid present in the blood plasma and also in proliferating can-
cer cells.'” Once taken up by tumor cells, glutamine is converted into
glutamate catalyzed by glutaminase 1 (GLS1) enzyme.'® Glutamate
and downstream metabolites feed into the tricarboxylic acid (TCA)
cycle and generate macromolecules for nucleotide biosynthesis.'”*’
Multiple tumor types have shown dependency on the glutamine
pathway via upregulation of GLS1. Pharmacological or genetic sup-
pression of GLS1 exerts anti-tumor activity across a variety of cancers,
including lymphoma, glioma, leukemia, triple-negative breast cancer,
melanoma, non-small cell lung cancer, and renal cancer.'®*'>°
Several pharmacological inhibitors for GLS1 have been developed
in recent years, including CB-839.””** MYC upregulates transcription
of glutamine pathway genes in OCs, and pharmacological inhibition
of GLSI using CB-839 exerted significant anti-tumor activity in OC
models.” Because MYC regulates two major contributors to cellular
metabolism, glycolysis and the glutamine pathway, co-inhibition of
these two metabolic processes may be a promising therapeutic
approach in MYC-high OCs.

In this study, we showed that MYC-high HGSOC tumors have enriched
NRF2 gene signature and increased thioredoxin redox activity. Blocking
thioredoxin activity through an FDA-approved inhibitor, auranofin,
selectively suppressed the growth of MYC-high HGSOC cells via glycol-
ysis inhibition, which in turn activates glutamine metabolism. Com-
bined inhibition of glutamine metabolism using CB-839 with auranofin
exerted synergistic anti-cancer activity in MYC-high HGSOC:s.

RESULTS

Auranofin inhibits cell proliferation and induces apoptosis in
MYC-high HGSOC cells

The MYC pathway is activated in 50%-55% of HGSOC tumors;*”**
however, it remains undruggable to date because no specific drug is
available to directly target MYC. An alternate strategy to target
MYC-high tumor is to disrupt cellular pathways on which MYC-
high tumors are dependent for survival.”’>' To identify potentially
targetable pathways, we first performed gene set enrichment analysis
(GSEA) using Hallmarks gene sets and gene sets representing poten-
tial regulation by transcription factors in MYC-high and MYC-low

OC patients using The Cancer Genome Atlas (TCGA). We found
an enrichment of multiple gene signatures, including known MYC
targets E2F-target genes, FOXM1-target genes, cell cycle, and cell pro-
liferation (Table S1). Interestingly, we also found an enrichment of
NRF2-driven gene signature in MYC-high HGSOC patients
compared with MYC-low patients (Figure S1A). NRF2 is a master
regulator of antioxidant genes and plays a crucial role in protecting
tumor cells against elevated oxidative stress.”> The thioredoxin sys-
tem is one of the major cellular antioxidant systems and is transcrip-
tionally regulated by NRF2.”> We therefore initially analyzed the
expression pattern of MYC and TrxR1 protein levels, as well as
TrxR1 redox activity, in a panel of HGSOC cell lines (Figure 1A)
and patient-derived HGSOC tumors cells (Figure 1B). Notably,
high-MYC-expressing lines exhibited significantly higher basal reac-
tive oxygen species (ROS) levels (Figure S1B). Interestingly, high
MYC protein levels correlated with high TrxR1 protein levels (Fig-
ure S1C) and increased TrxR1 redox activity (Figure 1C) in cell lines
and patient-derived HGSOC tumor cells. To further confirm whether
MYC contributes to the regulation of TrxR1 expression in HGSOC
cells, we depleted MYC expression in PEO1 cells using MYC-specific
small interfering RNAs (siRNAs) and found that MYC knockdown
markedly reduced TrxR1 protein levels in PEO1 cells (Figure S1D).
Taken together, HGSOC tumors are dependent on the thioredoxin
system to overcome MYC-induced oxidative stress.

We next examined the effect of TrxR1 inhibition on cell growth using an
FDA-approved TrxR1 inhibitor, auranofin,”* on a panel of established
HGSOC cell lines and patient-derived HGSOC cells expressing varying
levels of MYC protein (Figures 1A and 1B). MYC-high cell lines,
including OVCAR-8 and PEOI, were most sensitive to auranofin
(IC50 < 1 uM) compared with MYC-low cell lines (IC50 > 2.5 pM)
(Figures 1D and S2A). Similarly, patient-derived tumor cells
with high MYC protein levels, including DF149, DF86, DF106, and
DF68, were most sensitive to auranofin (IC50 < 1 pM) compared
with the MYC-low lines DF181, DF101, and DF20 (IC50 > 3.5 uM)
(Figures 1D and S2A). Furthermore, our Spearman correlation analysis
revealed that auranofin IC50 strongly correlates with TrxR1 redox activ-
ity (Figure 1E) and MYC protein levels (Figure 1F) in HGSOC cell lines
and patient-derived tumor cells. Because TrxR1 is a selenoprotein, and
cell culture media are often deficient in selenium,*>*® we confirmed that
auranofin inhibited the growth of MYC/TrxR1-high HGSOC cells at the
similar IC50 concentrations (<1 uM) in media supplemented with sele-
nium (Figure S2B). Additionally, we also observed that auranofin

Figure 1. Auranofin inhibits cell proliferation and induces apoptosis in MYC-high HGSOC cells

(A and B) MYC and TrxR1 protein levels were analyzed in a panel of established HGSOC cell lines (A) and patient-derived HGSOC tumor cells (B) using western blot. (C)
Thioredoxin reductase 1 (TrxR1) redox activity was analyzed in MYC-low (blue) and MYC-high (red) patient-derived HGSOC tumor cells and in established HGSOC cell lines.
Unpaired Student’s t test, n = 3 (mean + SEM). (D) The IC50 values of auranofin in each HGSOC cell line and patient-derived tumor cell line are shown. One-way ANOVA
followed by Tukey’s post-test, n = 3 (mean + SEM). (E) Spearman correlation analysis between auranofin IC50 values and TrxR1 redox activity in established HGSOC cell lines
and patient-derived tumor cells. (F) Spearman correlation analysis between auranofin IC50 values and MYC protein levels in established HGSOC cell lines and patient-derived
tumor cells. (G) OVCAR-4 and PEO4 cells were transfected with either pcDNA vector (blue) or pcDNA-MYC plasmid (red) for 24 h. After 24-h transfection, cells were treated
with auranofin (0-5 uM) for 6 days, and cell proliferation was analyzed. One-way ANOVA followed by Tukey’s post-test, n = 3 (mean + SEM). (H) LP28 (MYC-low) and GO297
(MYC-high) HGSOC PDX tumor growth following vehicle or auranofin administration (10 mg/kg, Monday-Friday, i.p.) after 2-week treatment. The weight of individual PDX
tumors and their mean tumor size is presented. Unpaired Student’s t test, n = 6 mice/group (mean + SEM).
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treatment (1 and 2.5 pM) resulted in PARPI and caspase-3 cleavage,
classical markers for apoptosis, in MYC-high lines (OVCAR-8, PEO1,
and DF149), but not in MYC-low lines (OVCAR-4 and PEO4) (Fig-
ure S2C), suggesting that high-MYC expression sensitizes HGSOC cells
to auranofin-induced cell death. Consistent with this, overexpression of
MYC in MYC-low OVCAR-4 and PEO4 cells significantly increased
TrxR1 redox activity (Figure S2D) and sensitized them to auranofin-
induced growth inhibition (Figure 1G). The IC50 value of auranofin
shifted from 5.1 pM in parental OVCAR-4 to 1.9 pM in MYC-overex-
pressing OVCAR-4 cells and from 4.5 uM in parental PEO4 cells to
1.7 uM in MY C-overexpressing PEO4 cells (Figure 1G). These data sug-
gest that MYC-high HGSOC cells have strong survival dependency on
TrxR1 activity compared with MYC-low HGSOCs, and hence MYC/
TrxR1-high HGSOC cells have increased sensitivity to auranofin.

Auranofin has been shown to have other targets in addition to TrxR1 by
which it induces apoptosis in cancer cells. To decipher whether aurano-
fin exerts its growth-inhibitory effect in MYC/TrxR1-high HGSOC cells
via TrxR1, we depleted TrxR1 expression using TrxR1-specific siRNAs
in OVCAR-8 and PEOI cells and compared anticancer activity of aur-
anofin (0-2.5 uM) in control or TrxR1-depleted OVCAR-8 and PEO1
cells. Interestingly, TrxR1 depletion significantly rescued OVCAR-8
and PEO1 cells from auranofin-induced cell death, suggesting that aur-
anofin exerts its anti-cancer effect via TrxR1 inhibition (Figure S3A).
Furthermore, we also examined whether MYC/TrxR1-high HGSOC
cells are more sensitive to a specific TrxR1 inhibitor, TRi-1,""**
compared with MYC/TrxR1-low HGSOC cells. MYC/TrxR1-high cell
lines, including OVCAR-8, PEO1, and OVCAR-3, were more sensitive
to TRi-1 (IC50 < 2.5-5 pM) compared with MYC-low cell lines
(IC50 > 10 uM) (Figure S3B). Similar results were observed in cells
growing in a media supplemented with selenium (Figure S3C).

Next, we tested in vivo anticancer activity of auranofin using an MYC-
high (GO297) and MYC-low (LP28) HGSOC patient-derived tumor
xenograft (PDX) by engrafting tumors cells into NRG mice followed
by treatment with vehicle or auranofin after detection of palpable tu-
mors, and we measured tumor nodules and tumor weight at the
endpoint of the experiment. Our data showed that auranofin treat-
ment significantly reduced tumor weight in GO297 PDX compared
with vehicle-treated tumors (Figure 1H). However, auranofin had
negligible anti-tumor activity in MYC-low LP28 HGSOC PDXs
(Figure 1H), suggesting that auranofin exerts significant anti-cancer
activity in MYC-high HGSOC:s in vivo.

The redox proteome identifies multiple pathways altered by
auranofin in MYC-high HGSOC cells

Auranofin-induced TrxR1 inhibition is known to increase intracel-
lular oxidative stress levels in cancer cells,”*’ which may alter the
redox status of multiple key signaling proteins or pathways, including
NF-kB and AP-1."" To interrogate the molecular mechanism under-
lying auranofin sensitivity in MYC-high HGSOC cells, we generated
simultaneous expression and cysteine redox-proteome profile of
MYC-high OVCAR-8 cells treated with DMSO or 2.5 uM auranofin
for 8 h followed by sequential iodoTMT labeling.*' As such, redox
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measurements, including oxidized proteins and reduced proteins,
were normalized to total protein abundance. Cysteine redox prote-
ome allows the mapping of oxidation or reduction state of proteins
containing redox-sensitive cysteine residues.”” Within 8 h of treat-
ment, we observed an increase in the oxidation level of multiple pep-
tides (Figure 2A) in response to auranofin compared with the DMSO
control samples. In total, 5,353 iodoTMT-containing peptides were
quantified, of which 5,276 peptides corresponding to 2,054 unique
proteins considered for the experimental analysis after contaminants
were removed. We identified 290 oxidized proteins and 175 reduced
proteins after 8-h auranofin treatment (absolute fold change > 2,
adjusted p < 0.05) (Figure 2B; Table S2). We found TrxR1 to be signif-
icantly oxidized on auranofin treatment, serving as an internal
positive control (Figure 2B).

To further understand the cellular pathways perturbed by auranofin-
induced oxidation, we performed Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis using the DAVID Functional
Annotation tool.**** The analysis indicated that components of
spliceosome, proteasome, ribosome, RNA transport, focal adhesion,
glycolysis/gluconeogenesis, protein processing in endoplasmic reticu-
lum (ER), and DNA repair were significantly oxidized (Figure 2C).
Because MYC regulates glycolysis to fuel cancer cells for survival,*
we next examined the oxidation state of glycolysis proteins on aura-
nofin treatment. Interestingly, we found that multiple components of
glycolysis proteins were significantly oxidized (Figures 2B and 2E),
including GAPDH (oxidation ratio [OD] of 2.8; p = 0.0003) being
the primary target, followed by PGAM1 (OD of 2.7; p = 0.0003),
PGK1 (OD of 2.6; p = 0.0017), TPI1 (OD of 2.5; p = 0.0012),
ALDH7A1 (OD of 1.95 p = 0.0003), and ALDOA (OD of 1.8;
p = 0.0017) (Figure 2D).

Auranofin inhibits glycolysis in MYC-high HGSOC cells

Because MYC-high HGSOC cells are more sensitive to auranofin and
auranofin inhibits the glycolysis pathway in these cells (Figure 2), we
examined the enrichment of glycolysis-regulated genes in MYC-high
and -low HGSOCs using the TCGA dataset. We found that MYC-
high HGSOCs have enrichment in a glycolysis gene signature (Fig-
ure 3A), suggesting that these tumors rely on glycolysis to fuel their
energy demand for survival and growth. We then validated these find-
ings by measuring cellular glucose uptake in HGSOC lines. Both
MYC-high-expressing OVCAR-8 and PEO1 cells have higher glucose
uptake compared with MYC-low-expressing OVCAR-4 and PEO4
cells (Figure 3B), suggesting that MYC-high HGSOC cells consume
high glucose to fuel the glycolytic pathway for survival.

Because GADPH is a key rate-limiting enzyme in glycolysis and is
oxidized in response to auranofin treatment (Figures 2 and 3C), we
first measured GAPDH enzymatic activity in MYC-high OVCAR-8
and MYC-low OVCAR-4 cells after auranofin treatment (2.5 uM,
24 h). Auranofin significantly inhibited GAPDH enzymatic activity
in OVCAR-8 cells, but an opposite trend was observed in OVCAR-
4 cells (Figure 3D). Lactate is the end-product metabolite of the
glycolysis pathway (Figure 3C), and hence is the functional readout
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to measure glycolysis in cells. Although intracellular glucose uptake
and levels did not change significantly on auranofin treatment in
these cells (Figure S4A), we found a significant reduction in extracel-
lular lactate concentration in MYC-high cells, whereas no negligible
effect was seen in MYC-low cells (Figure 3E). Likewise, targeted cen-
tral carbon metabolomics analysis of MYC-high OVCAR-8 cells re-
vealed increased intracellular concentrations of glycolytic metabolites
upstream of GAPDH and decreased intracellular concentration of a
glycolytic metabolite downstream of GAPDH, pyruvic acid, as a likely
consequence of auranofin-induced GAPDH inhibition in OVCAR-8
cells (Figure 3F; Table S3). In contrast, no significant change in intra-
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Figure 2. The redox proteome of MYC-high HGSOC
cells after auranofin treatment

OVCAR-8 cells were treated with auranofin (2.5 pM) for 8 h.
Auranofin-induced global cellular redox alterations were
analyzed by cysteine redox proteomics using iodoTMT la-
beling. (A) The oxidation level of peptides is plotted as
oxidation ratio on auranofin treatment relative to the mean
oxidation ratio on DMSO treatment. (B) Volcano plot
showing the proteins that were either oxidized (in red) or
reduced (in blue) in response to auranofin treatment
compared with DMSO control (Log2Fold change). (C) Top
oxidized proteins were analyzed with Functional
Annotation Clustering tool in DAVID. Top enriched
biological pathways with minimal redundancy (p < 0.05)
are shown (n = 3). (D) Oxidation of cysteine residues on
active sites of glycolysis proteins, including GAPDH,
PGK1, PGAM1, and TPI1. (E) Oxidation of glycolysis
proteins, including GAPDH1, PGK1, PGAM1, TPI,
ALDH7A1, and ALDOA, is shown. Student's t test
(0 < 0.05) (mean + SD).
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cellular concentrations of metabolites upstream
or downstream of GAPDH, except glycerol
3-phosphate, was observed in MYC-low PEO4
cells (Figure S4B; Table S3). Taken together,
our results suggest that auranofin inhibits the
glycolysis pathway in MYC-high HGSOC cells
via GAPDH inhibition.

Auranofin increases glutamine metabolism

in MYC-high HGSOC cells

To sustain survival, cancer cells can switch to
alternate metabolic pathways in response to
inhibition of a particular metabolic process.
Although auranofin reduced tumor growth in
MYC-high GO297 HGSOC PDXs in vivo, it
failed to completely regress tumor growth
(Figure 1F). We hypothesized that the residual
cells may have switched to an alternate metabolic
pathway for survival in response to auranofin
treatment. Other than glycolysis, the glutamine

metabolism is another key metabolic pathway
1.20

ALDOA

essential for cancer cell survival.” Glutamine is
a nonessential amino acid but can be transported into cells through
many transporters, and MYC-high cells have been shown to have
conditional dependency on exogenous sources of glutamine in addi-
tion to glycolysis.”>™*” The glutaminase pathway takes up glutamine
from the microenvironment and converts it to glutamate through
the enzymatic activity of the glutaminase GLS1, which will then
feed into the TCA cycle. MYC transcriptionally regulates the key
components of the glutaminase metabolic pathway.*®

Next, we investigated whether MYC-high HGSOC cells could

completely switch to glutamine metabolism for survival in response
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to auranofin-induced glycolysis inhibition. We first analyzed the
expression of GLSI1 protein, a crucial regulator of glutamine catabo-
lism, and observed an increased GLS1 protein level on auranofin
treatment in MYC-high cells (OVCARS, PEO1, DF149) but negligible
change in MYC-low cells (OVCAR4 and PE04) (Figure 4A), suggest-
ing that MYC-high HGSOC cells may switch to glutamine meta-
bolism on auranofin treatment. We next measured the amount of
glutamine and glutamate in cell culture media on auranofin treatment
(2.5 uM, 24 h) in MYC-high and -low HGSOC lines. Auranofin
significantly reduced glutamine levels (Figure 4B) and increased
glutamate levels (Figure 4C) in the media of MYC-high HGSOC cells.
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glutamate cysteine ligase and GSH synthase.*®
Intracellular glutamate is exported out of the cells
through the amino acid transport system x. coupled to the influx of
extracellular cystine, which serves as a precursor for GSH synthesis.*’
We, therefore, measured intracellular GSH levels in auranofin-treated
cells. Auranofin significantly increased in intracellular GSH levels in
both MYC-high OVCAR-8 and PEO1 cells, but not in MYC-low
OVCAR-4 and PEO4 cells (Figure 4F). Similarly, auranofin treatment
also increased intracellular GSH levels in patient-derived MYC-high
DF149 cells ex vivo (Figure 4G).

Auranofin increases intracellular ROS levels,” and increased ROS is
known to upregulate GLS1 and glutamine metabolism.”® We next
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sought to determine whether auranofin would increase glutamine
metabolism in a ROS-dependent manner. We found that pre-treat-
ment of HGSOC cells with ROS scavenger N-acetyl-cysteine (NAC)
abolished auranofin-induced GLS1 upregulation in OVCAR-8 cells
(Figure S5A), abolished auranofin-induced reduction in glutamine
levels in culture media, and also reversed auranofin-induced increase
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[blue] and PEO1 [red]) and two MYC-low (OVCAR-4
[purple] and PEO4 [green)) cells were treated with DMSO
or auranofin (2.5 uM) for 24 h. The amount of glutamine
(B) and glutamate (C) in the media of each treated
and untreated line were analyzed. Two-way ANOVA
followed by Sidak’s post-test (p < 0.05, n = 3, mean +
SD). (D and E) MYC-high patient-derived HGSOC tumor
cells DF149 were treated either with DMSO or auranofin
(2.5 puM) for 24 h. The amount of glutamine (D) and
glutamate (E) in the media of each treated and untreated
line were analyzed. One-way ANOVA followed by Tukey’s
post-test (p < 0.05, n = 3, mean + SD). (F and G)
OVCAR-8, PEO1, OVCAR-4, PEO 4 (F), and DF149
(G) cells were treated with or without auranofin for 24 h,
and intracellular glutathione (GSH) levels were then
analyzed. Two-way ANOVA for cell lines and one-way
ANOVA for DF149 cells (p < 0.05, n = 3, mean + SD).

== OVCAR-4

in glutamate levels in culture media (Figures S5B
and S5C). Moreover, NAC pre-treatment also
reversed the auranofin-induced increase in the
intracellular GSH levels in both MYC-high
OVCAR-8 and PEOL1 cells (Figure S5D). Hence
our data indicated that auranofin increases
cellular glutamine metabolism in a redox-depen-
dent manner. Overall, our data suggest that
MYC-high HGSOC cells switch to glutamine
metabolism for survival in response to aurano-
fin-induced glycolysis inhibition.

Auranofin exerts synergistic anti-cancer
activity with glutaminase inhibitor CB-839 or
glutamine starvation

Because auranofin treatment increases glutamine
metabolism in MYC-high HGSOC cells, we hy-
pothesized that inhibition of the glutamine
metabolism using a specific glutaminase (GLS1)
inhibitor, CB-839,”* may sensitize MYC-high
HGSOC cells to auranofin-mediated cell killing.
To test this notion, we pre-treated MYC-high
and -low HGSOC cell lines and patient-derived
tumor cells with the glutaminase inhibitor CB-
839 (100 nM) for 6 h followed by treatment
with auranofin (0-1 pM) for a further 72 h. Interestingly, a synergistic
cell growth inhibition (combination index < 1) was observed with
combined CB-839-auranofin treatment in both MYC-high HGSOC
cell lines (OVCAR-8 and PEO1) and patient-derived tumor cells
(DF149 and DF68), but not in MYC-low HGSOC cells (Figures 5A,
5B, and S6A). This corresponds with a near-complete elimination
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of colony-forming capacity on CB-839-auranofin combination treat-
ment in MYC-high HGSOC cells, but not in MYC-low HGSOC cells
(Figure 5C). Additionally, we also observed that auranofin and CB-
839 combination treatment sensitized MYC-high cells to caspase-3-
dependent apoptosis as assessed by cleavage of caspase-3 and its
substrate, PARP1 (Figure 5D), while either auranofin or CB-839 alone
showed minimal induction of cell death. Next, we assessed the syner-
gistic anti-cancer activity of TrxR1 inhibition and CB-839 using more
a specific TrxR1 inhibitor, TRi-1. Similar to auranofin, TRi-1 exerted
synergistic anti-cancer activity with CB-839 in MYC-high OVCAR-8
and PEOL1 cells, but not in MYC-low OVCAR-4 and PEO4 HGSOC
cells (Figure S6B). We also observed that TRi-1 and CB-839 combina-
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further 72 h. MYC overexpression significantly
sensitized both OVCAR-4 and PEO4 cells to
auranofin and CB-839 combination therapy
compared with pcDNA vector-transfected control cells (Figure 5E).
Taken together, our data strongly suggest that auranofin exerts syner-
gistic anti-cancer activity with glutamine pathway inhibitor CB-839
in MYC-high HGSOC cells.

To further confirm the role of glutamine metabolism on conferring
resistance to auranofin treatment, we depleted glutamine from cell
culture media for 16 h followed by auranofin treatment for a further
72 h. As a positive control, we also supplemented glutamine-free
media with 4 mM L-glutamine and treated the cells with auranofin
for 72 h. Interestingly, glutamine starvation significantly sensi-
tized MYC-high OVCAR-8 and PEOL1 cells to auranofin treatment
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(Figure 6A), but not MYC-low OVCAR-4 and PEO4 cells (Figure S7).
Notably, the clonogenic potential of MYC-high OVCAR-8 cells was
markedly abolished on combined glutamine starvation with aurano-
fin treatment (Figure 6B). We observed that glutamine depletion itself
partly reduced proliferation of MYC-high OVCAR-8 cells, but not the
proliferation of MYC-high PEO1 cells (data not shown). Taken
together, our data indicated that glutamine metabolism plays a crucial
role in making cells resistant to auranofin treatment, and that the cells
switch to glutamine metabolism for survival when auranofin inhibits
glycolysis in MYC-high HGSOC cells.

T T
40 60 80 effect on tumor growth. However, auranofin

monotherapy partially reduced tumor burden
in mice. Interestingly, although not statistically
significant because of variation in tumor growth
in each treatment group, auranofin and CB-839 combination therapy
completely regressed the tumor in three of five mice and partially
reduced tumor burden in two of five mice (Figure 6C). We have
then followed these mice for the Kaplan-Meier survival analysis
for 70 days. The median survival was observed to be 21 days in
vehicle-treated mice, 25 days in CB-839-treated mice, and 40 days
in auranofin-treated mice. Although auranofin treatment partially
reduced tumor burden in mice, tumors regrew rapidly on treatment
withdrawal, resulting in shorter survival. Interestingly, all mice
from the auranofin and CB-839 combination treatment group were
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disease free and alive to the end of an experiment, and combination
treatment has prolonged the survival of mice to 70 days (log rank
p < 0.05; Figure 6D). Hence our data indicated that auranofin and
CB-839 combination therapy exerts significant anti-cancer activity
and prolonged the survival of tumor-bearing mice in vivo.

DISCUSSION

In this study, we aimed to identify a novel effective therapeutic strategy
against MYC-high HGSOCs, which are usually detected with wide-
spread dissemination at the time of presentation and resulting in poor
overall prognosis. Although MYC represents an attractive drug target
because of its role in tumorigenesis, including in HGSOC, drugs directly
targeting MYC have failed in clinical trials. Here, we discovered an up-
regulated thioredoxin system as a new target in MYC-driven HGSOCs.
MYC-high tumors are known to have an increased level of ROS and
might therefore have increased survival dependency on antioxidant de-
fense systems. The thioredoxin system, a crucial redox regulator, is
involved in regulating a number of redox-sensitive factors and key
rate-limiting enzymes required for various cellular processes.*’ In this
study, we identified increased expression of TrxR1 as a potential thera-
peutic vulnerability in MYC-high HGSOCs, which can be exploited
using the FDA-approved TrxR1 inhibitor auranofin. Auranofin is a
gold-based compound that inhibits TrxR1 redox activity, is FDA
approved for rheumatoid arthritis patients, and has received increasing
attention as a potential anticancer drug.”’">> We demonstrate that
auranofin selectively inhibits growth and induces apoptosis in MYC-
high HGSOC cells compared with MYC-low HGSOC cells both
in vitro and in vivo.

Auranofin is a redox-modulating molecule; several studies have used
redox proteomics to map the effect of auranofin-induced oxidative
stress on various signaling molecules.*>>> Auranofin inhibits TrxR1
redox activity via irreversible binding to selenocysteine residue present
in the C-terminal domain. Auranofin inhibits AKT signaling by
oxidizing Cys60 and Cys77, which is required for AKT recruitment
onto plasma membrane.” Auranofin, along with more specific TrxR1
inhibitors, TRi-1 and TRi-2, has been profiled using redox proteomic,
and a number of proteins belonging to glycolysis, TCA cycle, carbon
metabolism, ribosome biogenesis, and spliceosome were oxidized.*”
Similarly, auranofin has been shown to change expression and oxida-
tion of similar key signaling pathways, including oxidative phosphory-
lation and glycolysis in OC cell line A2780.>* Using the redox proteomic
approach, we mapped the effect of auranofin on oxidation status of pro-
teins in MYC-high HGSOC cells. We demonstrated that auranofin
oxidized several key proteins belonging to various cellular processes,
including spliceosome, proteasome, ribosome biogenesis, RNA trans-
port, glycolysis, and mismatch repair. In contrast with previous study
in A2780 OC cells where auranofin was shown to predominantly
oxidize proteins belonging to the oxidative phosphorylation pathway,
we observed no defects in the oxidative phosphorylation pathway, but
only observed oxidation of a number of glycolysis proteins. This could
be explained based on the fact that A2780 cells are not high-grade serous
0Cs.”> MYC transcriptionally regulates multiple metabolism pathways,
including glycolysis.” Our redox proteomics data revealed that aurano-
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fin oxidizes several key glycolysis rate-limiting enzymes, including
GAPDH. Auranofin oxidizes surface-exposed Cys247 present in the
catalytic active sites in GAPDH, oxidative modification of which results
in its impaired catalytic and glycolytic activity.”® In line with this study,
we demonstrated that auranofin inhibits GAPDH enzyme activity, re-
duces intracellular lactate and pyruvate concentrations, and increases
intracellular concentrations of glycolysis metabolites upstream of
GAPDH in MYC-high HGSOC cells. Our findings demonstrated a
novel mechanism underlying anti-cancer activity of auranofin by inhib-
iting glycolysis in a redox-dependent manner in MYC-high HGSOC
cells.

Tumor cells often undergo metabolic rewiring on inhibition of one
key cellular metabolic pathway and switch to an alternate metabolic
pathway to fulfill their high-energy demand. In addition to regulating
glycolysis pathway genes, MYC also transcriptionally regulates gluta-
mine pathway genes, and inhibition of the glutamine pathway has
shown synthetic lethality in MYC-high OCs.>*° In this study, we
demonstrated that auranofin-induced glycolysis inhibition leads to
upregulation of glutamine metabolism only in MYC-high HGSOC
cells and not in MYC-low HGSOC cells. These findings suggested a
potential role of glutamine metabolism as a resistance mechanism
to auranofin in MYC-high HGSOC cells. This hypothesis could be
well explained by generating auranofin-resistant HGSOC cells and
examining glutamine metabolism status in resistant cells compared
with parental HGSOC cells. We also observed increased intracellular
levels of reduced GSH in MYC-high HGSOC cells on auranofin treat-
ment, which was due to an increased glutamine metabolism. Such up-
regulation of GSH, another major cellular antioxidant system, may
protect HGSOC cells from increased oxidative stress in response to
auranofin-induced ROS. Inhibition of the thioredoxin system has
been shown to induce the GSH system, and co-inhibition on both
thioredoxin and the GSH system synergistically kills tumor cells.””
However, the exact mechanism by which these two systems crosstalk
is unknown. Our findings in this study provide a novel mechanistic
insight on crosstalk between thioredoxin and the GSH system.
Increased glutamine metabolism in response to auranofin-induced
thioredoxin inhibition generates glutamate that can be exchanged
for cystine via SLC7A11, and this cystine then serves as a precursor
for GSH synthesis.

We discovered that dual targeting of TrxR1 using auranofin and a
glutaminase inhibitor, CB-839, to inhibit glutamine metabolism pro-
duces a synergistic and selective anticancer effect on MYC-high
HGSOC cells in vitro. CB-839 has shown promising anti-tumor
activity in multiple human cancer models via glutamine metabolism
inhibition.”***>* The reason underlying the different sensitivity of
MYC-high and MYC-low to auranofin and to the auranofin/CB-
839 combination could be multifactorial. Of note, the NRF2 gene
signature, a key transcriptional regulator of oxidative stress response,
is constitutively upregulated in MYC-high tumors. The sustained in-
duction of NRF2-target genes, including TrxR1, to counteract high
endogenous ROS in MYC-high HGSOCs could explain cellular de-
pendency on TrxRl and thus sensitivity to auranofin and
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auranofin/CB-839 combination through a further increase in ROS
levels. A clinically relevant observation made in our study is that aur-
anofin selectively inhibits glycolysis in MYC-high HGSOCs and con-
ditions these cells to increase reliance on glutamine metabolism for
maintaining cellular energy demand and redox homeostasis. Support-
ing this view, co-inhibition of GLS1 and TrxR1 compromised gluta-
mine metabolism and redox homeostasis in favor of increased oxida-
tive stress and cell death in MYC-high HGSOC cells.

Both auranofin and CB-839 are individually being tested in multiple
phase I/1I clinical trials on advanced solid cancers and hematological
malignancies. Auranofin is an FDA-approved drug; its safety profile in
humans is readily available, and CB-839 has been well tolerated in pa-
tients with minimal toxicities (ClinicalTrials.gov: NCT02861300).
Our study provides a strong rationale for translating auranofin and
CB-839 combination therapy in MYC-high HGSOC patients. Future
studies are also needed to evaluate other tumors with MYC pathway
activation in which a synergistic anti-cancer effect can be observed.
Importantly, our study characterized TrxR1 as a biomarker, demon-
strating auranofin and CB-839 synergistic activity only in MYC-
high tumors can identify patients who are most likely to benefit
from auranofin-CB-839 combination treatment. However, for clinical
translation of our findings, it is necessary to identify robust markers to
stratify patients into MYC-high and MYC-low groups to reflect the
biological effect of auranofin and CB-839 combination therapy.
Further studies are required to identify such biomarkers to help iden-
tify the MYC-high patients who are likely to respond to auranofin and
CB-839 combination therapy.

MATERIALS AND METHODS

Cell lines and reagents

HGSOC cell lines, including OVCAR-8, OVCAR-4, OVCAR-3, and
OAW42, were kindly provided by Dr. Elaine Sanij (St. Vincent’s
Hospital). HGSOC cell lines, including PEO1, PEO4, SKOV3, and
JAM, were from American Type Culture Collection (ATCC; Mana-
ssas, VA, USA). Cell lines were cultured in RPMI 1640 media contain-
ing 10% fetal bovine serum (FBS) (Gibco). All cell lines were tested for
Mycoplasma infection and authenticated using short tandem repeat
(STR) profiling by scientific services at QIMR Berghofer Medical
Research Institute. Auranofin was purchased from Cayman Chemicals
(catalog number [Cat #]: 15316). CB-839 was purchased from Selleck
Chemicals (Cat #: S7655). Sodium selenite was purchased from Sigma
(Cat #: S5261).

Patient-derived tumor cells/PDXs

Ascites-derived HGSOC PDX models, including DF20, DF68, DF86,
DF101, DF106, DF149, and DF181, were obtained from the Dana-
Farber Cancer Institute, USA.°” All of these PDXs were expanded
and passaged into 6-week-old female NRG (NOD/RAG1/27'7/
IL2Ry ") mice and banked for future use for in vivo and ex vivo
Ascites-derived HGSOC patient-derived tumor cells
described above were cultured and maintained in RPMI 1640 me-
dium containing 10% FBS for short-term culture, at 37°C with 5%
CO2 for ex vivo experiments.

studies.

TCGA dataset analysis

Gene expression data for the TCGA-OV dataset were downloaded us-
ing the Genomic Data Commons (GDC) portal (https://portal.gdc.
cancer.gov/, accessed on January 21, 2021). Primary tumor samples
were used for the analysis. The entire sample set was divided into
two groups, High MYC (187 samples) and Low MYC (187 samples)
groups, using the median MYC normalized expression (FPKM count)
value as cutoff. Differential gene expression analysis was performed
between the two groups using the R package edgeR.’ The genes
were ranked using the formula —logl0 (p value)*sign [fold change
(FC)]. The GSEA pre-ranked analysis was performed on the ranked
genes using the GSEA software (v.4.1.0) and MSigDB.****

Redox proteomics

Sample preparation

Sample preparation for redox proteomics was carried out as described
previously.*"”” In brief, OVCAR-8 cells were treated with 2.5 uM aur-
anofin for 8 h, and cells were trypsinized and counted. An equal num-
ber of control and auranofin-treated OVCAR-8 (2 x 10°) cells were
lysed in 2% SDS containing 50 mM tri-ethyl ammonium bicarbonate
(TEABC) and sonication. Approximately 300 pg of protein from
each condition was alkylated with 100 mM iodoacetamide (IAA) at
room temperature for 40 min in the dark. Excess IAA was removed
by buffer exchange with HEPES-EDTA-Sucrose (HES) buffer
using 30-kDa molecular mass cutoff filters. Protein concentrations
were estimated using the bicinchoninic acid assay and adjusted to
1 pg/pL. To each 100-pg sample, 1 pL 0.5 M Tris(2-carboxyethyl)
phosphine hydrochloride (TCEP) was added and reduced at 50°C
for 1 h. ITodoTMT labeling was then carried out, and excess labels
were quenched by adding dithiothreitol to a final concentration of
20 mM and incubating for 15 min at 37°C in the dark. Equal amounts
of each labeled sample were combined, and acetone was precipitated
overnight. The protein pellet was resuspended in 50 mM triethyl
ammonium bicarbonate buffer and digested with LysC for 2 h at
30°C. Trypsin (Promega) was added to the protein-LysC mixture at
the ratio of 1:20 (enzyme: protein), and digestion was continued over-
night at 37°C. The iodoTMT-labeled peptides were fractionated using
high pH reverse-phase liquid chromatography® and concatenated
into six fractions. The fractions were dried, desalted, and stored at
—80°C until liquid chromatography-tandem mass spectrometry
(LC-MS/MS) analysis. For total proteome analysis, an aliquot of
protein lysate from each sample was reduced, alkylated, and digested.
The reduction, alkylation, and enzymatic digestion conditions were
identical to the iodoTMT experiment.

Mass spectrometry data acquisition

LC-MS/MS for iodoTMT and the total proteome samples were per-
formed using a nanoAcquity UHPLC (Waters, Milford, MA, USA)
system connected to a Orbitrap Fusion Tribrid mass spectrometer
(Thermo-Fisher Scientific, Waltham, MA, USA). Peptides were re-
constituted in 0.1% formic acid and were loaded onto an Acquity
UPLC M-Class V/M symmetry trap column (Waters) at 5 uL/min
before resolving with the analytical column (Acquity UPLC
M-Class Peptide BEH C18 nanoAcquity column; Waters) over a
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run time of 120 min. Separation of peptides was performed at 300 nL/
min using a linear ACN gradient of buffer A (0.1% formic acid in wa-
ter) and buffer B (0.1% formic acid in ACN). The column compart-
ment was held at 45°C for the entire analysis.

Mass spectra were collected in data-dependent acquisition (DDA)
mode. Both MS1 and HCD-MS?2 spectra were collected in the Orbi-
trap. MS1 scan parameters were scan range of 350-1800 m/z,
60,000 resolution, maximum (max) injection time of 22 ms, and
Automatic Gain Control (AGC) target 1e6. Dynamic exclusion pa-
rameters were set as follows: exclude isotope true, duration 30 s
and using the peptide monoisotopic peak determination mode,
charge states of 2-6 were included. Peptides were fragmented using
stepped collision energy of 25, 30 and 35. MS2 spectra were collected
at a resolution of 15K with an AGC target of 5e4, maximum ion in-
jection time (IT) of 40 ms.

Mass spectrometry data processing

Raw data obtained from LC-MS/MS were searched against the
UniProt human protein database using Sequest HT through Prote-
ome Discoverer (Version 2.2) (Thermo Scientific, Bremen, Ger-
many). Precursor and fragment mass tolerance were set to 10 ppm
and 0.05 Da, respectively. For iodoTMT data, iodoTMT and carbami-
domethylation of cysteine were set as variable modifications along
with oxidation of methionine. For total proteome data, carbamido-
methylation of cysteine was set as a fixed modification. A false discov-
ery rate (FDR) threshold of 1% was used to filter peptide spectrum
matches (PSMs). FDR was calculated using a decoy search. A
Student’s t test was utilized, and an adjusted p value of 0.05 and
fold-change threshold of 2 were used to determine differentially
oxidized peptides.

Central carbon targeted metabolomics

The intracellular levels of central carbon metabolites were measured
by Metabolomics Australia as described previously.”® OVCAR-8 and
PEO4 cells were treated with 2.5 pM auranofin for 24 h. The intracel-
lular metabolites were extracted in 2 mL 50% acetonitrile and trans-
ferred to 2-mL Eppendorf tubes. Samples were then vortexed for 30 s
and incubated on ice for 10 min to cool down. This step was repeated
three times, and samples were then centrifuged for 5 min at 5,000 x g.
The supernatant-containing metabolites were then transferred to a
clean 2-mL microcentrifuge tube and stored at —80°C. These samples
were then freeze dried overnight and resuspended in 100 pL of water
with 10 uM AZT as internal standard. These samples were then trans-
ferred to high-performance liquid chromatography (HPLC) glass
inserts for analysis. Central carbon metabolites were analyzed by
LC-MS/MS using a scheduled multiple reaction monitoring method
as described previously.®®

In vivo xenografts

All experiments were approved by the QIMR Berghofer Medical
Research Institute Animal Ethics Committee and the University of
Queensland Animal Ethics Committee. Patient tumors for generation
of PDX models in mice were obtained with informed consent under a
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protocol approved by the Mater Health Services Human Research
Ethics Committee and the University of Queensland Human
Research Ethics Committee. For both GO297 and LP28 HGSOC
PDXs, tumor slurry was injected into the i.p. cavity of 6-week-old
female NSG mice. Once tumors became palpable in the peritoneal
cavity, mice were randomized into two groups (six mice per group)
and treated with vehicle control or auranofin (10 mg/kg, Monday-
Friday) via i.p. injections for 2 weeks. At the end of the 2-week period,
mice were euthanized, tumors were harvested, and tumor weights
were recorded.

For OVCAR-8 xenograft, 2 x 10° luciferase-tagged OVCAR-8 cells
were engrafted into the ip. cavity of 6-week-old female BALB/c
Nude mice. Tumor growth was monitored 7 days after engraftment
using Xenogen IVIS Bioluminescence imaging. Once tumors were es-
tablished, mice were randomized into four groups (five mice per
group): (1) vehicle, (2) CB-839 alone (half maximum-tolerated dose
[MTD] 100 mg/kg, daily, oral gavage), (3) auranofin alone (half-
MTD, 5 mg/kg, i.p., Monday-Friday), and (4) combination. Mice
were treated for 2 weeks. Tumor growth was monitored by biolumi-
nescence imaging at the end of 2 weeks of treatment. The survival
analysis was performed using the Kaplan-Meier survival analysis.

Statistical analysis

All values are presented as mean + SEM or mean + SD. Data were
analyzed using GraphPad Prism 6 (GraphPad Software, CA, USA).
Statistical significance was determined by one-way ANOVA followed
by Tukey’s post-test and two-way ANOVA followed by Sidak’s post-
test. All data are expressed as mean values + SEM or mean + SD.
Where applicable, statistical significance is denoted by *p < 0.05,
**p < 0.01, **p < 0.001, and ***p < 0.0001.
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