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Marine microorganisms, especially marine fungi, 
have historically proven their value as a prolific source 
for structurally novel and pharmacologically active sec‐
ondary metabolites (Deshmukh et al., 2018; Carroll 
et al., 2022). The corals constitute a dominant part of 
reefs with the highest biodiversity, and harbor highly 
diverse and abundant microbial symbionts in their tis‐
sue, skeleton, and mucus layer, with species-specific 
core members that are spatially partitioned across 
coral microhabitats (Wang WQ et al., 2022). The coral-
associated fungi were very recently found to be vital 
producers of structurally diverse compounds, terpenes, 
alkaloids, peptides, aromatics, lactones, and steroids. 
They demonstrate a wide range of bioactivity such as 
anticancer, antimicrobial, and antifouling activity (Chen 
et al., 2022). The genetically powerful genus Emeri‐
cella (Ascomycota), which has marine and terrestrial 
sources, includes over 30 species and is distributed 
worldwide. It is considered a rich source of diverse sec‐
ondary metabolites with antimicrobial activity or cyto‐
toxicity (Alburae et al., 2020). Notably, Emericella 
nidulans, the sexual state of a classic biosynthetic 
strain Aspergillus nidulans, was recently reported as 
an important source of highly methylated polyketides 
(Li et al., 2019) and isoindolone-containing meroter‐
penoids (Zhou et al., 2016) with unusual skeletons.

The Beibu Gulf is a semi-enclosed gulf in the north‐
west of the South China Sea, and harbors tremendous 

underexplored biodiversity in terms of both marine 
organisms and microorganisms; these are rich in diver‐
sified secondary metabolites (Huang et al., 2022). In 
continuation of our efforts to discover interesting lead 
compounds from Beibu Gulf coral-derived marine 
fungi, a plethora of structurally novel secondary meta‑
bolites with remarkable biological activity have been 
recently obtained, including anti-tumor ascochlorins 
(Guo et al., 2021; Luo et al., 2021) and cytochalasans 
(Luo et al., 2020), anti-osteoclastogenic chlorinated 
polyketides (Zhang et al., 2022), phenolic derivatives 
(Lu et al., 2022), and cyclopiazonic acid alkaloids 
(Wang JM et al., 2022). In this study, a fungus Emeri‐
cella nidulans GXIMD 02509 endemic to Weizhou 
coral reefs attracted our attention owing to the intri‑
guing high-performance liquid chromatography (HPLC)-
ultraviolet (UV) profiles of its extract. Subsequent 
chemical investigation led to the isolation of nine di‐
verse aromatic polyketides, an epipolythiodioxopiper‐
azine alkaloid, and a farnesylated phthalide derivative 
(Fig. 1). Several of these compounds showed cyto‐
toxicity against three human cancer-cell lines (786-O, 
SW1990, and SW480). Here, the process of isolation 
and structural determination, as well as the cytotoxicity 
results, are described in detail.

Compound 1 was isolated as a bright-yellow solid 
and was deduced with the molecular formula C21H22O6 
based on the high resolution-electrospray ionization-
mass spectroscopy (HR-ESI-MS) data [M+H] + ion 
peak at m/z 371.1499 (calcd for C21H23O6, 371.1495). 
The UV spectrum revealed the presence of benzene 
chromophores with absorption bands at 203, 255, and 
320 nm. The 1H nuclear magnetic resonance (NMR) 
(Table 1) and heteronuclear single quantum coherence 
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(HSQC) data for 1 displayed a series of signals, includ‐
ing: two hydroxyl groups attributable to 1-OH (δH 
10.93, s) and 7-OH (δH 11.38, s); one aldehyde group, 
H-11 (δH 9.98, s); four aromatic or olefinic protons, H-3 
(δH 7.12, d, J=8.5 Hz), H-4 (δH 6.12, d, J=8.5 Hz), 
H-5 (δH 7.16, s), and H-2' (δH 5.25, t, J=7.0 Hz); one 
methylene, H-1' (δH 3.28, d, J=7.0 Hz); three singlet 
methyls, 6-Me (δH 2.24, s), H3-4' (δH 1.72, s), and H3-5' 
(δH 2.24, s); and one methoxyl, 4a-OMe (δH 4.03, s). 
Aside from these ten corresponding hydrogen-bearing 
carbons, ten aromatic or olefinic (four oxygenated) car‐
bons and a carbonyl (δC 198.3) remained in the 13C 
NMR spectrum.

This information revealed that structurally, 1 
was closely related to arugosin H, which was also 
obtained from the marine-derived fungus Emericella 
nidulans var. acristata (Kralj et al., 2006). The main 
difference was the appearance of a methoxyl group 
(δH/C 4.03/53.2) at C-4a (δC 170.5) in 1 instead of the 
hydroxyl group that appears in arugosin H. This deduc‐
tion was verified by the heteronuclear multiple bond 
correlation (HMBC) correlation from 4a-OCH3 to C-4a 
(Fig. 2). Based on these findings, we determined that 
the structure of 1 was a methyl derivative of arugosin 

H, and accordingly assigned it a trival name: 4a-O-
methoxyarugosin H (Figs. S1–S9). Compound 1 was 
probably an artifact produced during the isolation pro‐
cedure when methanol was used as the main solvent 
(Capon, 2020).

We were able to pinpoint known compounds by 
comparing the physicochemical data of known com‐
pounds 2–11 (supplementary information) with data 
from the literature. We identified pre-shamixanthone (2) 
(Wu et al., 2015a), cycloisoemericellin (3) (Kawahara 
et al., 1988), sterigmatocystin (4) (Zhu and Lin, 2007), 
dihydrosterigmatocystin (5) (Zhu and Lin, 2007), dehy‐
dromicroperfuranone (6) (Kralj et al., 2006; Roux et al., 
2020), varioxiranol I (7) (Wu et al., 2015b), arugosin 
G (8) (Kralj et al., 2006), arugosin C (9) (Kawahara 
et al., 1988; El-Kashef et al., 2021), emestrin J (10) 
(Li et al., 2016), and farnesylemefuranone D (11) (Chi 
et al., 2020). Interestingly, emestrin J (10) harbors with 
an uncommon disulfide moiety, which was biosynthe‐
sized by a peptide cyclization pathway along with 
additional ring-expansion and macrocyclization (Li 
et al., 2016).

During the course of our search for anti-tumor 
lead compounds from marine natural products (Zhou 

Fig. 1  Chemical structures of compounds 1‒11.
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et al., 2019; Luo et al., 2021), all obtained compounds 
were evaluated for cytotoxicity against three human 
cancer cell lines, i.e., 786-O (human renal carcinoma 
cell), SW1990 (human pancreatic cancer cell), and 
SW480 (human colorectal cancer cell), along with the 
normal human liver cell line LO2 (Table 2). Among 
them, compounds 1−5, 7, and 10 showed inhibitory 
activity against these cell lines, with the half maximal 
inhibitory concentration (IC50) values ranging from 
4.3 to 33.4 μmol/L. Notably, emestrin J (10) exhibited 
the strongest activity against these cancer cell lines, 

especially for 786-O (4.3 μmol/L), and was at least 
as potent as the positive control, cisplatin. Interest‐
ingly, two xanthone derivatives (4 and 5) displayed 
antiproliferative activity, with IC50 values of 18.3 and 
24.7 μmol/L against 786-O, and 19.6 and >40 μmol/L 
against SW1990 cells, respectively. This revealed that 
the Δ16 double bond in 4 probably promoted cytotoxic 
activity.

To further evaluate the potential anti-tumor activ‐
ity of 10, we next investigated its activity against 786-O 
cells in cell colony and scratch wound assays. Consis‐
tent with the above-mentioned antiproliferative activ‐
ity, compound 10 significantly reduced cell colony 
formation of 786-O cells at concentrations of 0.5 and 
1.0 μmol/L (Figs. 3a and 3b). Also, compared with the 
vehicle group, compound 10 significantly suppressed 
migration of 786-O cells in a time- and dose‐dependent 
manner (Figs. 3c and 3d). To explore whether the anti‐
proliferative activity of 10 was related to apoptosis, 
we further evaluated the compound for its effect on 
cell apoptosis and cell-cycle arrest in 786-O cells. The 
results were analyzed by flow cytometry and showed 
that the total apoptotic cells (early and late) induced 
by 10 at 24 h rose by 21.4% (2 μmol/L) and 29.5% 
(4 μmol/L), suggesting that 10 induced 786-O cell apop‐
tosis in a dose-dependent manner (Figs. 4a and 4b). 
Meanwhile, the cell-cycle distribution results revealed 
that 10 primarily blocked the cell cycle during the 
G2/M phase, resulting in an inability of cells to prolifer‑
ate (Figs. 4c and 4d). Therefore, it was clear that 10 
could suppress the proliferation, colony formation, and 

Table 2  Cytotoxicity of compounds 1−11

Compound

1
2
3
4
5
6
7
8
9

10
11

Cisplatin

IC50 (μmol/L)
786-O

–
–
–

18.3±1.9
24.7±1.8

–
33.4±1.8

–
–

4.3±0.7
–

2.5±0.6

SW1990
–

33.2±5.1
24.7±2.2
19.6±2.8

–
–

30.4±5.1
–
–

14.1±1.8
–

33.8±4.7

SW480
32.6±1.2

–
30.2±4.8

–
–
–

27.2±6.5
–
–

4.9±0.3
–

26.7±4.6

LO2
–
–
–
–
–
–
–
–
–

11.1±2.4
–

5.2±0.6

All data shown above are mean±SD of three independent experiments. 
IC50: half maximal inhibitory concentration; SD: standard deviation. 
“‒”: >40 μmol/L.

Fig. 2  Key 1H-1H COSY, HMBC, and NOESY correlations 
of 4a-O-methoxyarugosin H (1). COSY: correlation spectros‐
copy; HMBC: heteronuclear multiple bond correlation; 
NOESY: nuclear overhauser effect spectroscopy.

Table 1  1H (500 MHz) and 13C (125 MHz) NMR spectroscopic 

data for 4a-O-methoxyarugosin H (1) (CDCl3)

Position

1
2
3
4
4a
4a-OMe
5
6
6-Me
7
8
8a
9
9a
10a
11 
1'
2'
3'
4'
5'
1-OH
7-OH

δC, type

160.4, C
125.2, C
134.9, CH
105.5, CH
170.5, C
53.2, CH3

128.0, CH
139.8, C
15.2, CH3

154.8, C
113.7, C
125.3, C
198.3, C
103.5, C
140.2, C
194.1, CH
27.8, CH2

121.5, CH
133.7, C
25.9, CH3

17.9, CH3

δH (J (Hz))

7.12, d (8.5)
6.12, d (8.5)

4.03, s
7.16, s

2.24, s

9.98, s
3.28, d (7.0)
5.25, t (7.0)

1.72, s
2.24, s
10.93, s
11.38, s

HMBC

1, 1'
2, 4a, 9a

4a
6, 6-Me, 7, 10a

5, 6, 7

7, 8, 8a
1, 2, 3, 2', 3'
2, 1', 4', 5'

2', 3', 5'
2', 3', 4'
1, 2, 9a
6, 7, 8

NMR: nuclear magnetic resonance; HMBC: heteronuclear multiple 
bond correlation.
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Fig. 4  Effects of emestrin J (10) on cell apoptosis and cell-cycle arrest in 786-O cells. Emestrin J (10) induced apoptosis 
of 786-O cells (a, b) and arrested the cell cycle (c, d) in the G2/M phase. 786-O cells were treated with vehicle (DMSO, 
Cont) or 10 (2 and 4 μmol/L) for 24 h, as indicated. All data shown above are mean±SD of three independent experiments. 
** P<0.01, *** P<0.001 vs. Cont. DMSO: dimethylsulfoxide; Cont: control; SD: standard deviation; FITC: fluorescein 
isothiocyanate; PI: propidium iodide; PI-A: PI-area.

Fig. 3  Suppressive effects of emestrin J (10) on colony formation and migration of 786-O cells in vitro. Representative 
wells (a) and quantitative results (b) of the colony-formation assay. Representative images (c) and quantitative results (d) 
of the scratch wound assay. 786-O cells were treated with vehicle (DMSO, Cont) or 10, as indicated. All data shown above 
are mean±SD of three independent experiments. ** P<0.01, *** P<0.001 vs. Cont. DMSO: dimethylsulfoxide; Cont: control; 
SD: standard deviation.
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migration of 786-O cells, and induce apoptosis, acting 
as a potential anti-tumor compound.

In conclusion, nine aromatic polyketides, includ‐
ing a new one, 4a-O-methoxyarugosin H (1), along with 
an epipolythiodioxopiperazine alkaloid, emestrin J (10), 
and a farnesylated phthalide derivative, were obtained 
from the Beibu Gulf coral-associated fungus Emeri‐
cella nidulans GXIMD 02509. We determined their 
structures by spectral data analysis, as well as com‐
parison with reported data. Several of the compounds 
exhibit cytotoxicity against three human cancer cell 
lines, 786-O, SW1990, and SW480. The most potent 
one, emestrin J (10), has an uncommon disulfide bond 
and suppresses proliferation, colony formation, and 
migration of 786-O cells, as well as inducing apopto‐
sis. Our findings provide a basis for further develop‐
ment and utilization of emestrin derivatives as sources 
of potential anti-tumor chemotherapy agents.

Materials and methods
Detailed methods are provided in the electronic supple‐

mentary materials of this paper.
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