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Why is Intradialytic Hypotension
the Commonest Complication of Outpatient
Dialysis Treatments?
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Intradialytic hypotension (IDH) is the most frequent complication of hemodialysis (HD) treatments with a

frequency of 10% to 12% for patients with chronic kidney disease attending for outpatient treatments and

is associated with both temporary ischemic stress to vital organs, including the heart and brain, and

increased patient mortality. Although there have been many different definitions of IDH over the years, an

absolute nadir systolic blood pressure (SBP) has the strongest association with patient outcomes. The

unifying pathophysiology is one of reduced effective blood volume, resulting in lower plasma tonicity, and

if this cannot be adequately compensated for by activation of neurohumeral systems, then arteriolar tone

and blood pressure fall. The risk factors for developing IDH are numerous, ranging from patient-related

factors, including age and comorbidity with reduced cardiac reserve, to patient compliance with dietary

and lifestyle advice, to reactions with the extracorporeal circuit and medications, choice of dialysate

composition and temperature, setting of postdialysis target weight, ultrafiltration rate, and profiling. Ad-

vances in dialysis machine technology by providing real time estimates of the effective circulating volume

and adjusting dialysate composition to maintain vascular tonicity are being developed, but currently

require more sophisticated biofeedback loops to be clinically effective in preventing IDH. While awaiting

advances in artificial intelligence, the clinician continues to rely on patient education to limit interdialytic

weight gains, frequent assessment of the postdialysis target weight, adjusting dialysate composition and

temperature, introducing convective therapies to increase thermal losses, and altering dialysis session

duration and frequency to reduce ultrafiltration rate requirements.
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H
ypotension is the most commonly reported
complication of routine outpatient HD treat-

ments.1 The incidence of IDH has been reported to
range from 0.5% to 40% of all treatments, although
more recent studies have suggested a prevalence of
approximately 11%.2 In part, this variation is because
of the numerous definitions of IDH that have been
used, ranging from symptomatic hypotension
requiring active management to symptomatic or
asymptomatic absolute or percentage fall in SBP, or
mean arterial blood pressure, or an absolute nadir SBP.
In 2005 the National Kidney Foundation Kidney Disease
Outcomes Quality Initiative guidelines in 2005 defined
IDH as either a decrease in SBP $20mm Hg or mean
arterial blood pressure$10mm Hg in conjunction with
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symptoms of hypotension.3 This was followed by the
European Best Practice Guidelines, which defined IDH
as a decrease in SBP $20mm Hg in combination with
associated clinical and nursing interventions.4 Other
national and clinical guideline groups essentially
adopted similar definitions based on the Kidney
Foundation Kidney Disease Outcomes Quality Initiative
or European Best Practice Guidelines definitions,
with some variations including a fall in SBP
of $30mm Hg.5,6 Studies investigating the association
between IDH and mortality reported that a nadir SBP
had a stronger association with mortality, with a nadir
of <100mm Hg for patients starting dialysis with a
SBP $160mm Hg, and <90 mm Hg for those with a
predialysis SBP of <160 mm Hg.6

Physiological Response to Hypovolemia
Venous Return

Most HD patients gain weight between dialysis ses-
sions, and as such fluid removal and returning patients
to a postdialysis target weight is a key objective of the
dialysis treatment. Because veins can distend more than
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the arteries, approximately 70% of the blood volume is
normally distributed in the venous system. Increased
resistance to the vessels supplying a compliant vascular
bed reduces inflow and distending pressure, resulting
in a passive recoil of the venous bed and translocation
of blood pooled in the venous bed back into the central
circulation, thereby increasing right atrial filling pres-
sure (DeJager-Krogh effect).7

Increased sympathetic drive and elevated plasma
catecholamines predominantly increase cardiac venous
return by reducing venous capacitance in the
splanchnic and cutaneous circulations. Although the
capacity of other vascular beds, such as muscle and
kidney are also reduced, these only have a minor effect
in supporting the central circulation. Studies in HD
patients have demonstrated initial pooling of radio-
labeled red blood cells in the splanchnic circulation,
and when ultrafiltration was applied, these transferred
to the systemic circulation, and bioimpedance mea-
surements demonstrated a preferential initial move-
ment of extracellular fluid to the splanchnic
circulation.8,9 Similarly, intravital microscopy and
doppler studies have demonstrated a reduction in skin
and mucosal blood flow during HD in response to ul-
trafiltration.10-13

Cardiovascular Response

The cardiovascular response to hypovolemia includes
changes in heart rate, contractility, and peripheral
vascular resistance. Heart rate initially increases, how-
ever, it reduces toward baseline as other compensatory
mechanisms get activated. However, in severe cases of
refractory hypovolemia the heart rate may slow because
of the Bezold-Jarisch reflex. Although heart rate is
thought to have only a relatively minor effect on the
response to hypovolemia,13 many HD patients have
diastolic dysfunction, estimated between 50% to 75%,
and are therefore more vulnerable to a reduction in
cardiac venous return if they cannot increase their heart
rate response.14,15 Similarly, increased contractility by
increasing cardiac output could potentially provide
some degree of compensation for hypovolemia. How-
ever, magnetic resonance imaging studies conducted
during HD have noted a reduction in myocardial blood
flow by approximately 13% during the first 30 minutes
when minimal fluid has been removed.16 Other magnetic
resonance imaging studies have reported a 25% reduc-
tion in myocardial blood flow at the end of a dialysis
session following 2.5 liter fluid removal, with both a
reduction in ventricular volumes and left ventricular
muscle mass, because of removal of intracardiac muscle
water.16,17 Echocardiography studies have observed
that these changes in myocardial blood flow can induce
stress related segmental left ventricular dysfunction.18
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Echocardiographic studies have suggested that
approximately 6% of incident HD patients may have an
ejection fraction of <25%.15 However, correcting vol-
ume overload often leads to an improvement in left
ventricular function;19 even so, many dialysis patients
have left ventricular hypertrophy20 because of chronic
volume overload and hypertension.20-22

Thus, the response to hypovolemia for HD patients
with normal cardiac function or diastolic dysfunction is
predominantly dependent on sustaining venous return.
However, patients with left ventricular dysfunction
will be at greater risk of decompensation if cardiac
return cannot be maintained.

Autonomic Response

Hypovolemia triggers cardiopulmonary receptors in
atria and main pulmonary veins, and the baroreceptors
in the aortic arch and carotid sinuses, resulting in
neurohumeral activation of the sympathetic nervous
system, followed by nonosmotic vasopressin and renin
release. This leads to reduced blood flow to the skin
and skeletal muscles, redistribution of blood from
venous capacitance vessels with increased peripheral
vascular resistance, and increased heart rate and
contractility, designed to preserve blood flow for vital
organs. Circulating catecholamines and aldosterone
then increase with progressive hypovolemia.

There has been debate as to whether uremia per se
causes autonomic dysfunction, because autonomic
dysfunction increases with age, and comorbidities
including diabetes, hypertension, and heart failure.
Studies in HD patients have reported variable findings
with some observing deterioration in autonomic func-
tion over time, whereas others noted improvement.23

Many HD patients have some degree of autonomic
impairment, and greater autonomic dysfunction is
associated with increased mortality.23 Sympathetic
nervous system activity is increased in patients with
chronic kidney disease,24 and this had generated a
hypothesis that chronic overstimulation results in a
down regulation of the sympathetic nervous system
response.25 Although reports vary, majority have
noted an increase in plasma catecholamines in keeping
with chronic overactivation.23,26

Renin seems to have little effect in the acute
response to hypovolemia in HD patients. Similarly,
although vasopressin levels are increased, consequent
on the increased plasma osmolality of HD patients,
vasopressin levels do not rise during HD in response to
hypotension27 because vasopressin is cleared.28

Hypotension During HD Sessions
Ultrafiltration and IDH

Most HD patients gain weight between dialysis ses-
sions, and the fluid gained needs to be removed during
Kidney International Reports (2023) 8, 405–418



Figure 1. Blood pressure is a measure of arterial tone, which re-
flects internal outward pressure on vessel wall by the circulating
volume, plasma tonicity (Hct, total protein-protein and sodium) and
vascular smooth muscle tone (sodium content vascular smooth
muscle, balance of local vasoconstrictors (ET1) and vasodilators NO,
PDG) and sympathetic nerve activity. ET1, endothelin; Hct, hema-
torcrit; Na, sodium; NO, nitric oxide; PDG, prostanoids.

Figure 2. Relative blood volume patterns Linear flat line in a patient
who is substantially volume overloaded and no change with ultra-
filtration (Green line). Patient with stable downward trend so plasma
refill is being compensated during ultrafiltration (Brown line). Initial
fall in relative blood volume because of reaction with dialyzer, and
then stabilization (Black line). Patient decompensating as sudden
steep fall in relative blood volume, as plasma refill does not keep
pace with ultrafiltration (Purple line).
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HD to return the patient to their post-HD target
weight, because persistent volume overload increases
left ventricular hypertrophy and reduces survival.29

Fluid is removed during passage through the dialyzer
by applying a transmembrane pressure to generate an
ultrafiltrate. Most fluid gained between dialysis ses-
sions is intracellular and extracellular, with only a
modest increase in plasma volume.30 If the rate of fluid
removal from plasma volume exceeds the rate at which
fluid can be mobilized from the intracellular compart-
ment and extracellular extravascular volume, termed
plasma refill rate, plasma volume will be reduced and
the patient becomes hypotensive unless compensated
for by neurohumeral responses. Blood pressure is a
measure of vascular tone. Tonicity in the vessel wall
depends upon the internal pressure from the blood
volume and viscosity, and the tone in the media of the
arterial wall (Figure 1). Hematocrit has the greatest ef-
fect on blood rheology, followed by protein and then
sodium concentration. This effect of anemia on vascular
changes has been shown by studies demonstrating
increasing orthostatic hypotension with greater
severity of anemia in patients with chronic kidney
disease.31 Similarly, observational reports have high-
lighted that hypoalbuminemia is a risk factor for IDH.32

Studies in HD patients have shown that vasopressin
levels, a potent constrictor of the splanchnic circula-
tion, do not increase in response to ultrafiltration
during HD.33,34 Similarly, catecholamines, dopamine,
norepinephrine, or epinephrine do not increase during
HD.33,35 Over time, more older patients and those with
diabetes and other comorbidities are now treated by
HD, thereby increasing the number of patients with
potentially impaired autonomic responses to hypoten-
sion (Table 1).
Kidney International Reports (2023) 8, 405–418
Determining Target Weight and Ultrafiltration

One of the differences between adult and pediatric
practice is the number of children with sodium-losing
nephropathies. Therefore, many children may have
minimal interdialytic weight gains, and IDH is much
more common in pediatric HD units.36 Similarly, adult
patients attending for dialysis with minimal extracel-
lular water overload are more likely to suffer IDH,37

and report more intradialytic symptoms.38,39 There-
fore, it is important to determine and regularly review
target weight for patients. Most dialysis centers use
clinical assessment aided by laboratory and other in-
vestigations (Table 2).40 Although serial measurements
of brain natriuretic peptides, cancer antigen 125,
inferior vena cava diameter, lung ultrasound comets,
and extracellular water by bioimpedance provide
important information as to whether volume overload
is increasing or decreasing, they have not been shown
to reduce the risk of IDH.41-46 Advances in dialysis
machine technology have led to the integration of
relative blood volume (RBV) monitoring or adding
measurements of venous oxygenation.47 RBV moni-
toring measures hematocrit or blood density of blood
density entering the dialyzer, on the basis that
contraction of the plasma volume leads to an increase in
hematocrit and density. Although multicenter trials of
RBV did not show that this technology reduced IDH,48

they did not have nurses continuously monitoring the
trends. Several patterns of RBV monitoring have been
described (Figure 1) as follows: no change in RBV when
patients are very volume overloaded; a gradual fall
with ultrafiltration, suggesting that plasma refill is
compensating for ultrafiltration losses, an initial fall at
the start of HD; and a steep decline suggesting that the
407



Table 1. Patient factors which potentially increase the risk of
intradialytic hypotension
Risk factors Pathology At risk groups

Normal plasma
volume

Pulmonary hypertension Chronic lung disease

High flow A-V shunt

Pericardial effusion Cardiac tamponade

Right ventricular dysfunction Inferior myocardial infarction

Heart failure with preserved
ejection fraction

Diastolic dysfunction

Cardiac conduction defect Complete heart block

Infiltrative cardiomyopathy Amyloid

Reduced plasma
volume

Hemorrhage Acute blood loss

Diarrhea Gastroenteritis

Vomiting Gastric outflow obstruction

Sodium losing nephropathy Posterior urethral valves

Reduced effective
plasma volume

Systemic sepsis Bacterial infection

Liver failure Acute on chronic liver failure

Anemia Chronic kidney disease

Hypoalbuminemia Malnutrition & sepsis

Cardiac afterload Heart failure with reduced
ejection fraction

Ischemic heat disease

Cardiomyopathy

Valvular heart disease Aortic stenosis

Autonomic
dysfunction

Age Elderly

Endocrine/metabolic Diabetes

Thyroid disease

Porphyria

Autoimmune Systemic lupus erythematosus

Sjogrens syndrome

Coeliac disease

Infiltrative Amyloid

Neurologic Parkinson’s disease

Life style Alcohol

Malignancy Paraneoplastic

Bortezomib

Doxorubicin

Sympathetic denervation Cardiac transplant

Artificial heart

Medications Atenolol/metoprolol/
propranolol/timolol

Methyl dopa

Alpha blockers

A-V, arterio-venous.
Predominantly because of reduced cardiac reserve to repond to a reduction in cardiac
filling pressures and autonomic dysfunction AV shunt.

Table 2. Postdialysis target weight needs to be regularly assessed
because an inappropriately low target increases the risk of
intradialytic hypotension
Assessment Volume overload Volume depleted

History [Dietary salt intake YAppetite

[Dyspnea Diarrhea/vomiting

Examination No postural hypotension Postural hypotension

[Blood pressure YBlood pressure

[Weight trend YWeight trend

[Neck veins YNeck veins

[Peripheral edema No edema

Laboratory Low albumin [Albumin

[Natriuretic peptides YNatriuretic peptides

[Serum CA125 Normal serum CA125

Imaging chest X ray [CTR Normal/YCTR

Septal lines

Kerley B lines

Lung ultrasound >10 B lines <5 B lines

Abdominal ultrasound <50% collapse IVC >50% IVC collapse

Bioimpedance [ECW/ICW YECW/ICW

Dialysis session RBV Flat line Rapid decline

Dialysis session VO2 Stable O2 saturation YO2 saturation

CA125, cancer antigen 125; CTR, cardio-thoracic ratio; ECW, extracellular water, ICW,
intracellular water; RBV, relative blood volume; VO2, venous oxygen saturation.
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ultrafiltration rate exceeds the plasma refill rate.49,50 As
patients approach their target weight, pulses of ultra-
filtration lead to increasingly steeper slopes, and longer
recovery50 (Figure 2). However, there are several con-
founders to consider with RBV monitoring, including
setting the starting point and the Fahraeus effect,
because hematocrit varies in different organ circula-
tions so that changes in RBV may lag behind real time
changes in the circulating volume. Attempts to add
biofeedback control to respond to changes in RBV
monitoring have not yet been successful in preventing
408
IDH.51 There is no absolute critical threshold that
predicts IDH, and not only is there marked variation in
patient responses to ultrafiltration, but also different
responses within the same patient during different
dialysis sessions.52 Central venous oxygen saturation
can be measured in patients dialyzing with catheters,53

and as with RBV monitoring there is a heterogenous
patient response to ultrafiltration, with an overall trend
for a fall in oxygenation in patients with IDH.54

However, studies using RBV monitoring did show
that different prescriptions of ultrafiltration were
associated with different risks of IDH. A linear constant
fluid removal rate reduced the risk of IDH compared
with intermittent periods of ultrafiltration, and the
pattern with the least risk of IDH was one starting a
little higher than the linear pattern and then slowly
decreasing over the course of the dialysis session.55

Multiple observational studies have reported an
association between high ultrafiltration rates >10 to
>13ml/h/kg, mortality, and increased IDH.56,57

Therefore, ultrafiltration by removing excess fluid im-
proves cardiac performance and venous oxygen satu-
ration in HD patients,53,58 whereas excessive
ultrafiltration rates risk myocardial and other organ
ischemia.18 In addition, excessive fluid removal can
lead to postdialysis thirst, with increased interdialytic
weight gains, thereby setting up a vicious cycle. Such
patients require appropriate dietary advice, and if
possible, longer or more frequent of more frequent
dialysis sessions to control volume overload. Because
weight naturally varies, applying a “soft” target
Kidney International Reports (2023) 8, 405–418



Figure 3. Negative electrical charges in priming fluids (chloride in 0.9% saline, citate in stored blood) and heparin combine with negatively
charged dialyzer membrane (negative zeta potential) combine to increase bradykinin and nitric oxide generation by inflammatory cells.
angiotensin converting enzyme inhibitor reduces bradykinin breakdown to inactive peptides. ACEI, angiotensin converting enzyme inhibitor.
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weight, so that the target weight does not have to be
achieved with every session, particularly after the
longer interdialytic interval allows the development of
a protocol which is less likely to cause patients to have
greater interdialytic weight gains.59
Hypotension Unrelated to Ultrafiltration
Anaphylactoid Reactions

The extracorporeal circuit consists of plastic tubing
and the dialyzer. Plastics are formed from a basic
polymer to which other compounds are added, and the
capillary fibers are assembled in a dialyzer casing that
contains additional organic compounds. As blood flows
through the extracorporeal circuit, the circuit has to be
sterilized and anticoagulants administered to prevent
clotting. Therefore, patients may develop profound
hypotension within the first few minutes of starting
dialysis because of an anaphylactoid reaction to some of
these compounds. In the 1980s, a number of serious
anaphylactoid reactions were reported because of the
use of ethylene oxide (EtO) as a sterilant for dialyzers.
EtO formed a complex with albumin resulting in the
formation of IgG antibodies to the EtO-albumin com-
plex.60 Today, very few dialyzers are sterilized with
EtO, but some blood lines may still be sterilized with
EtO.

If dialyzers and tubing are not thoroughly rinsed
before connection, a series of potentially toxic hydro-
carbons and halocarbons can be released from the dia-
lyzer and tubing set and be detected in the exhaled
breath of HD patients.61 Hypotensive anaphylactoid
reactions were reported from several countries when
patients were dialyzed with polysulfone and poly-
ethersulfone dialyzers from different manufacturers.62-64

Some patients demonstrated histamine release from mast
cells, reacting to polyvinylpyrrolidone, and others to
substances released on rinsing the dialyzers.62,64 Some of
the most severe hypotensive anaphylactoid reactions,
Kidney International Reports (2023) 8, 405–418
sometimes fatal, have been due to anticoagulants. These
include heparin-induced thrombocytopenia with anti-
bodies generated against heparin-platelet factor 4 com-
plexes,65 and reactions to the serine protease inhibitor
nafamostat maleate.66 Heparin contaminated with
chondroitin sulfate, termed over-sulfated heparin, was
also reported to cause severe hypotension.67,68 Other
reactions causing early onset hypotension have been
reported with the use of acetate containing bicarbonate
dialysate during both HD and hemodiafiltration (HDF),69

and topical preparations of chlorhexidine used to cleanse
the skin around central venous access catheters.70

Inflammatory Reactions to the Extracorporeal Circuit

During the 1980s and 1990s, a variety of polymers were
used in the manufacture of capillary dialyzers. One of
the main differences in polymer composition was the
surface charge, or zeta potential. Reports of severe
hypotension soon after starting HD appeared in the
pediatric literature. Because the volume of the extra-
corporeal circuit is relatively larger than that of an
infant or small child, circuits were typically primed
with whole blood. Blood is anticoagulated with
approximately 40 mmol/l of citrate, which is quite
negatively charged, and the amount of negative charge
is increased with storage and cold temperature. The
combination of negative charges from blood, saline,
and heparin coupled with a negatively charged dia-
lyzer membrane could potentially increase bradykinin
and nitric oxide generation in the circuit, resulting in
profound vasodilation and hypotension (Figure 3).71,72

This response was also dependent on patient factors
in terms of activation of the acute inflammatory system,
which is more common in patients with sepsis and liver
failure.73,74 In addition, because nitric oxide can be
scavenged by hemoglobin, anemic patients are at
greater risk of IDH with these reactions.75

Even with the modern day dialyzer, leukocytes,
monocytes, platelets, and complement are activated in
409
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the extracorporeal circuit, with initial leukocyte
sequestration in the lung,76 and increased alveolar
capillary permeability.77 As such, a substantial number
of patients have an initial fall in RBV and blood pres-
sure during the first 30 minutes of dialysis, at a time
when there has been minimal ultrafiltration
(Figure 1).78 Nitric oxide is generated by the activation
of inflammatory cells, and although there is some
clearance during dialysis, the rate of change supports
ongoing production,33 and some studies have reported
greater nitric oxide production in those patients with
IDH.79

Dialysate Composition and Temperature

Historically, acetate was used for the buffer base for
dialysate solutions, and acetate accumulation was
linked to hypotension, particularly for patients
with impaired cardiac function.80 Current bicarbonate
dialysates contain a small amount of acetate (3�4
mmol/l), but even some studies have shown an early
reduction in vascular tone, measured with aortic pulse
wave velocity, in patients using a standard bicarbonate
dialysate.81 Acetate-free biofiltration is a form of dial-
ysis available in Europe, which uses no acetate, and
observational studies have reported less IDH with
acetate-free biofiltration compared with standard
dialysis with a standard bicarbonate and low acetate
dialysate.82,83 Acetate free dialysates are now becoming
available for HD, replacing 3 mmol/l acetate with
1 mmol/l of citrate, and preliminary studies have re-
ported a reduction in IDH with the acetate-free citrate
dialysate.84

Sodium is important in maintaining plasma tonicity
and vascular refilling. Single or dual center studies
have demonstrated that using a high dialysate sodium
leads to increased interdialytic weight gains and hy-
pertension but less IDH, whereas a lower dialysate
sodium reduces interdialytic weight gains, but in-
creases IDH.85 The effects of dialysate sodium are also
affected by patient factors, and meta-analysis
particularly of multicenter studies failed to demon-
strate an overall effect of different dialysate sodium
concentrations.86,87 However, a number of studies
have reported that the prescribed dialysate sodium
and delivered sodium may differ, in which case this
may have been a confounder in the results from the
multicenter studies.88,89

During the first hour of HD, plasma urea concen-
trations and osmolality rapidly fall. To modify this fall
in plasma tonicity, centers used a varying dialysate
sodium, starting with a higher dialysate sodium and
ending with a lower sodium,90 with reports that this
practice reduced the incidence of IDH in the short
term.91 Other studies have shown a marginal reduction
410
in the fall of SBP during the first hour of dialysis when
starting with a higher dialysate sodium, which was
associated with a greater vasopressin response.33

However, as patients consume different amounts of
sodium and have different interdialytic weight
gains, this has led to the concept of an individual
osmostat.92,93 Individualizing the dialysate sodium
concentration according to the plasma sodium, so that
delivering an iso-natric dialysate has been reported to
reduce the incidence of IDH, but this technology re-
quires further refinement and clinical testing.94

Plasma potassium declines rapidly during the early
phase of dialysis, predominantly by diffusion and
then plateaus. Choosing a lower dialysate potassium to
maximize potassium removal potentially risks
inducing hypokalemic intradialytic and postdialytic
arrhythmias.95 Although the rapid change of intra-
cellular and extracellular potassium concentrations
may potentially alter cardiac conduction, this may be
exacerbated when using a lower dialysate magnesium
and high bicarbonate.47 However, there are no studies
demonstrating an effect of dialysate potassium con-
centration and the prevalence of IDH.96

Following the introduction of active forms of
Vitamin D3, the concentration of calcium in dialysates
has been reduced from 1.75 mmol/l to much lower
concentrations because of concerns over calciphylaxis.
One major US dialysis provider reduced dialysate cal-
cium to 1.0 and 1.125 mmol/L and observed an
increased prevalence of IDH.97 Other studies reported a
reduction in IDH when calcium dialysate was increased
from 1.25 to 1.5 mmol/l.98 The differences in IDH with
different calcium dialysate concentrations are typically
reported during the latter phase of the dialysis session,
when volume has been lost because of ultrafiltration.
Though calcium can affect nerve transmission and
muscle contraction, several short term interventional
studies have reported that a reduction in dialysate
calcium, from 1.75 to 1.5 mmol/l, or comparison be-
tween 1.75 to 1.25 mmol/l and 1.37 versus 1.12 mmol/l,
led to a reduction in vascular stiffness, as measured by
pulse wave velocity.99-101 However, longer term
observational studies did not demonstrate a difference
in the change in PWV over time.102 Most centers use a
fixed dialysate calcium, but dialysate calcium profiling
starting with a lower dialysate calcium of 1.25 mmol/l
and then increasing to 1.75 mmol/l,was reported to
cause less IDH than when dialyzing with 1.5 mmol/l.103

This is most likely because of calcium induced
vasoconstriction.

Traditionally, dialysates have had a low magnesium
concentration to prevent magnesium accumulation in
dialysis patients.104 Magnesium has an important role
in generating cardiac myocyte action potentials and
Kidney International Reports (2023) 8, 405–418
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muscle contraction.105 Observational reports noted an
association between the fall in intradialytic magnesium
and an increased incidence of IDH.106 Prospective
studies demonstrated that IDH was reduced following
an increase in dialysate from 0.25 to 0.75 mmol/l when
combined with a calcium dialysate of 1.35 mmol/l.107

Whereas another study investigating the effects of
different dialysate magnesium and calcium concentra-
tions reported that the combination with fewest epi-
sodes of IDH was one of magnesium 0.75 mmol/l and
calcium 1.25 mmol/l.106 Other studies have observed
lower postdialysis serum magnesium when using ace-
tate compared with bicarbonate dialysates,107 and also
with Citrasate (bicarbonate with citrate and acetate)
(Health Tec Medical Ltd).108 However, studies using
citrate as an anticoagulant have not shown any
reduction in IHD.109

Despite warming the dialysate, there are thermal
losses as blood flows through the extracorporeal cir-
cuit, which leads to a reduction in blood flow to the
skin microvasculature and redistribution to the larger
venous capacitance vessels.110,111 This leads to an in-
crease in the central core temperature and coupled with
additional thermal energy gain from the inflammatory
reaction with the extracorporeal circuit. If the rise is
too great, this will cause reflex vasodilatation and
increased blood flow to the skin.110 Reports of the ef-
fects of thermal energy losses and IDH date back some
40 years.112,113 Since then, there have been many
studies confirming these early reports, such that a
meta-analysis of 26 randomized controlled trials,
including 484 patients, reported that reducing the
dialysate temperature significantly reduces the rate of
IDH by 70% and increased intradialytic mean arterial
blood pressure by 12 mm Hg.114 Although, another
systematic review of 25 randomized controlled trials,
including 712 patients, concluded that the preven-
tion of IDH by cooled dialysate temperature was less
certain, confounded by differences in study design
and potential bias.115 A fixed reduction of dialysate
temperature reduced IDH (rate ratio 0.52, 95% con-
fidence interval 0.34–0.80), but potentially increased
patient discomfort (rate ratio 8.31, 95% confidence
interval 1.86–37.12) although the studies reporting
were rated low as to certainty of evidence reported,
and larger studies have not demonstrated an effect of
dialysate temperature and self-reported symp-
toms.116,117 Thus, both international and national
clinical guideline committees have recommended the
use of cooled dialysate to prevent episodes of IDH.4,5

However, the practice of cooling dialysate varies
between centers from simply reducing the dialysate
temperature to a fixed lower temperature, or indi-
vidualizing the temperature to 0.5 to 1.0

�
C below
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the patient’s core temperature, or using dialysis
machine technology to deliver isothermic (no change
in temperature), or thermoneutral (no increase in
thermal energy), or a prescribed negative thermal
energy target.118 One study has demonstrated an
advantage for isothermic compared with thermoneu-
tral HD.119 However, cooled dialysate has a greater
protective effect on IDH than increased dialysate
sodium concentrations.120

HD Modes

IDH became an increasingly recognized problem as HD
provision expanded. In the late 1970s, dialysis ma-
chines did not have the accurate volumetric pumps of
today, and studies reported greater cardiovascular
stability with isolated ultrafiltration compared with HD
with ultrafiltration.121 The greater number of IDH with
HD was variously ascribed to the use of acetate dialy-
sate and fall in osmolality with changes in vessel
tonicity. However, the advantage for ultrafiltration was
primarily because of starting before HD, when patients
were most volume overloaded and to experience
greater peripheral vasoconstriction and venous tone to
better support cardiac filling pressures, with a smaller
rise in core temperature.122 Because ultrafiltration is a
convective process, studies of hemofiltration similarly
reported less IDH compared with comparable high-flux
HD sessions.123 Initially, this was thought to be due to
the removal of a cardio-depressant factor, or because of
differences in sodium balance, if a higher dialysate
sodium was used as the replacement fluid for convec-
tive volume losses.124 Similarly, HDF, in particular,
high-volume postdilutional HDF was observed to cause
fewer IDH episodes than high-flux HD.125 However, a
series of interventional studies demonstrated that the
reduction in IDH was related to the greater thermal
losses with postdilutional HDF, and predilutional HDF,
so that when HD treatments used cooled dialysate and
thermal losses were comparable, blood pressure profiles
were not different between modes.112,126,127 In-vitro
studies demonstrated that cooled dialysates reduced
endothelial nitric oxide production.128

Unusual Causes of Hypotension Unrelated to

Ultrafiltration

Although ultrasound techniques have noted micro-
embolic signals in the extracorporeal circuit that may
derive from clots or gas embolies, it is very unusual for
a sufficiently sized air embolus not to be detected and
allowed to pass into the patient causing hypotension
and cardiac arrest. Most fatal reports relate to central
venous access catheters when tubing has not been
adequately clamped, thereby allowing air entry and
then faulty or silenced machine alarms, which have
often been over-ridden.129 Clot emboli from venous
411



Figure 4. Increased interdialytic weight gains driven by dietary sodium increase ultrafiltration requirements, and the risk of intradialytic hy-
potension is then potentially increased by patient comorbidities, and inappropriately low postdialysis target weight, but risk could be modified
by adjusting dialysate composition and increasing thermal losses and altering dialysis session time and frequency of treatments.

REVIEW A Davenport: Dialysis Hypotension
catheters may occasionally be large enough to cause
pleuritic pain and hypotension. Some years ago, di-
alyzers were tested for potential blood leaks in the
capillary fibers with liquid perfluorocarbons. If these
compounds were not fully removed during steriliza-
tion, they would transform to a gas at body tempera-
ture as warm blood flowed through the dialyzer, and
result in a gas embolus.130

In extreme cases, exsanguination can occur during
dialysis. The blood pump will automatically stop the
dialysis machine alarm, if there is a disconnection with
the arterial access. Whereas the dialysis blood pump
will continue to pump blood, the machine would
not alarm if there is disconnection or faulty venous
needle or catheter connection, resulting in rapid
exsanguination.131

Blood Pressure Targets and Medications

HD patients are at increased risk of stroke, and in
the general population, stroke risk is associated
with increased SBP.132 In an attempt to reduce
stroke risk guideline targets for predialysis and
postdialysis blood pressure control were introduced,
but IDH rates were far greater for those dialysis
centers with higher achievement of blood pressure
targets.133 Further studies demonstrated that pre-HD
and post-HD sessional measurements of blood pres-
sure do not accurately reflect interdialytic blood
412
pressures,134 and so peridialytic targets were
discontinued.

There is a debate about antihypertensive medications
for HD patients, with reports showing no advantage for
angiotensin converting enzyme inhibitors or angiotensin
receptor blockers, and a possible cardioprotective effect
with b-blockers.135 However, some drugs are cleared by
HD, including water soluble b-blockers and some of the
angiotensin converting enzyme inhibitors. Carvedilol is
not cleared by dialysis,136 and carvedilol has been re-
ported to improve outcomes for HD patients with heart
failure.137 However, an observational study compared
carvedilol with metoprolol, which is cleared during
dialysis,136 and reported a greater number of IDH epi-
sodes with carvedilol.138 This would suggest that car-
vedilol potentially reduces any increase in heart rate to
compensate for volume shifts. Although logical not to
administer potent vasodilatory antihypertensive medi-
cations before a HD session, there are few reports and
the PanThames review did not demonstrate a difference
in IDH between those centers which advised patients
not to take antihypertensive medications and those
which did, although IDH was more frequent in those
prescribed antihypertensives.133

Eating and Exercise During Dialysis Sessions

HD patients are at increased risk of sarcopenia,139 and
unlike fat, there is no body protein store. Many
Kidney International Reports (2023) 8, 405–418
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patients spend time traveling to and from dialysis
centers, and as such the “dialysis” day can be a long
one, and postdialysis recovery times are variable, so
patients may consume less food on the day of dial-
ysis.140 There is a risk of peridialysis hypoglycemia,
whether food is offered or not.141,142 However,
providing patients with a large meal to eat during the
HD session potentially risks IDH, because blood is
diverted to the gut.143,144 Not all studies have demon-
strated an increase in IDH,145 and many centers
continue to provide patients with hot food and sand-
wiches, especially with the increasing number of di-
abetics. If however, patients develop IDH while eating
during dialysis, then cold food could be provided after
the session has been completed.146

Most reports on exercise during dialysis have used
cycling or bands, and exercise that started during the
early phase of dialysis before significant ultrafiltration
has occurred, but only when patients have been car-
diovascularly stable and for only a short duration.
Coupled with patient selection, it is currently unclear
as to whether exercise has a neutral or beneficial effect
on IDH.147-149
Conclusion

Despite numerous advances in dialysis practice, IDH
remains the most common complication associated with
dialysis sessions. IDH leads to episodes of transitory
organ ischemia, and repetitive episodes lead to per-
manent organ damage. Although most episodes of IDH
occur during the latter phase of the dialysis session
with increasing ultrafiltration volumes (Figure 4),
increased patient mortality is associated with IDH both
during the early and later phases of the dialysis
session.56,57,150

Different clinical guideline groups and researchers
have used different definitions of IDH and this has
hampered research and advances in the prevention and
treatment of IDH by the lack of a unifying definition,
although the strongest association with mortality ap-
pears to be the nadir SBP.

The fundamental pathogenesis of IDH is a reduction
in vascular tone, primarily because of a fall in the
effective circulating volume without an effective
compensatory neurohumeral response. The etiology is
wide ranging from patient-related factors to the
extracorporeal circuit and dialysis prescription.

Until artificial intelligence biofeedback systems
can be developed to institute changes during dialysis,
the clinician is reliant on patient compliance to limit
interdialytic weight gains, reviewing postdialysis
target weight, achieving isothermic or negative
thermal energy losses, and adjusting dialysis session
Kidney International Reports (2023) 8, 405–418
times and frequency to reduce ultrafiltration rate
requirements.
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