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“From molecular to clinic”: The
pivotal role of CDC42 in
pathophysiology of human
papilloma virus related
cancers and a correlated
sensitivity of afatinib

Erdong Wei1†, Jiahua Li1*†, Philipp Anand1, Lars E. French1,2,
Adam Wattad1, Benjamin Clanner-Engelshofen1

and Markus Reinholz1

1Department of Dermatology and Allergy, University Hospital, Ludwig Maximilians University of
Munich (LMU) Munich, Munich, Germany, 2Dr. Phillip Frost Department of Dermatology & Cutaneous
Surgery, Miller School of Medicine, University of Miami, Miami, United States
Background: Human papilloma virus (HPV)-related cancers are global health

challenge. Insufficient comprehension of these cancers has impeded the

development of novel therapeutic interventions. Bioinformatics empowered us

to investigate these cancers from new entry points.

Methods: DNA methylation data of cervical squamous cell carcinoma (CESC)

and anal squamous cell carcinoma (ASCC) were analyzed to identify the

significantly altered pathways. Through analyses integrated with RNA

sequencing data of genes in these pathways, genes with strongest correlation

to the TNM staging of CESC was identified and their correlations with overall

survival in patients were assessed. To find a potential promising drug, correlation

analysis of gene expression levels and compound sensitivity was performed. In

vitro experiments were conducted to validate these findings. We further

performed molecular docking experiments to explain our findings.

Results: Significantly altered pathways included immune, HPV infection,

oxidative stress, ferroptosis and necroptosis. 10 hub genes in these pathways

(PSMD11, RB1, SAE1, TAF15, TFDP1, CORO1C, JOSD1, CDC42, KPNA2 and

NUP62) were identified, in which only CDC42 high expression was statistically

significantly correlated with overall survival (Hazard Ratio: 1.6, P = 0.045). Afatinib

was then screened out to be tested. In vitro experiments exhibited that the

expression level of CDC42 was upregulated in HaCaT/A431 cells transfected with

HPV E6 and E7, and the inhibitory effect of afatinib on proliferation was enhanced

after transfection. CDC42-GTPase-effector interface-EGFR-afatinib was found

to be a stable complex with a highest ZDOCK score of 1264.017.
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Conclusion: We identified CDC42 as a pivotal gene in the pathophysiology of

HPV-related cancers. The upregulation of CDC42 could be a signal for afatinib

treatment and the mechanism in which may be an increased affinity of EGFR to

afatinib, inferred from a high stability in the quaternary complex of CDC42-

GTPase-effector interface-EGFR-afatinib.
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1 Introduction

Co-evoluted with vertebrates for more than 350 million years,

the epitheliotrophic papilloma virus (PV) has already well adapted

to the host tissue, the squamous epithelia of skin and mucosal

surfaces (1). Despites there are numerous types of human papilloma

virus (HPV) multiplying and producing progeny viruses in their

hosts, most of them do not cause any detectable pathologies, if any,

usually only minor and benign lesions (1).

But meanwhile, some types of HPV are responsible for

approximately 30% of all cancer cases caused by infectious agents

(2), including cervical squamous cell carcinoma (CESC), anal

squamous cell carcinoma (ASCC) and other types of carcinoma,

resulting in estimated 610,000 incident cancer cases and more than

250,000 deaths worldwide annually (3).

In terms of carcinogenesis, both the etiological subgroup of HPV

and the involved anatomical location are relatively restricted. Of

more than 200 types of HPV, only 15 high-risk-HPV types are

identified as causes of malignant neoplasms, most prevalently HPV-

16 and 18 (4). Also based on pathogenetic study in CESC, the

carcinogenesis induced by HPV occurs specifically in the small,

discrete cell population that localizes in the squamocolumnar

junction of the cervix (5). This similar tropism and transformation

of epithelial cells are also observed in the dentate line of anal canal (6),

where columnar epithelium gradually transitions to squamous

epithelium, suggesting a similar carcinogenetic process in ASCC

(7). This most diagnosed histological type of malignant disease in

anal canal (8), is developed from its precursor lesion — anal

intraepithelial neoplasia (AIN), similar to the relation between

CESC and cervical intraepithelial neoplasia (CIN).

Pathophysiological studies on carcinogenesis of HPV virus have

demonstrated: the integration of HPV genoemes into the

chromosomes will destabilize the genomic of the vulnerable host

cells, inducing a secondary epigenetic re-programming (9).

This process features with an overexpression of E6 and E7 genes,

which could stimulate the expression and activity of DNA

methyltransferase I (DNMT I), triggering a consequential

hypermethylation in the host cells (10, 11). Based on these

findings, it was hypothesized that, in all HPV-related cancers, the

maintaining stemness-like differentiation status in epithelial cells

relies on the hypermethylation induced by ongoing E6 and E7 (9),

which plays an important role in the progression of cancers.
02
The technological developments of both profiling methods of

DNA methylation and the computational approaches for

processing the obtained data, have empowered us to investigate

DNA methylation in different disease progressions from a global

view through massive processed data, which is hard to be achieved

even by dozens of “traditional” experiment-based studies (12).

However, most existing related bioinformatic studies in HPV-

related cancers only focused on the DNA methylation anomalies,

but ignored the downstream changes. This limits the significance of

the findings in these studies to some extent. Because without an

integrated analysis of the transcriptomic and other downstream

data, which could not only be affected by DNA methylation, but

also other intricate intracellular molecular biological processes, it is

hard to achieve a deep and global comprehension to the

pathophysiology of HPV-related cancers.

In this study, we tried to from a more comprehensive perspective

to investigate the pathophysiology of HPV-related cancers, through

muti-omic bioinformatic analyses and other methodological tools.

We started with analyses of DNA methylation data, integrating

downstream RNA sequencing (RNA-seq) data in HPV-related

cancers, aiming to identify the hub genes in the progression of

HPV-related cancers. Clinical significances of these identified hub

genes were then scrutinized by conducting survival analysis based on

The Cancer Genome Atlas (TCGA) database, through which we

sought to validate the meaning of our findings in terms of clinical

prognosis. Through the above analyses, CDC42 was identified as the

pivotal gene due to its significance in both pathophysiology and

clinical prognosis. To further extend the implications of our findings

to the treatment of HPV-related cancers, we then picked out afatinib,

a selective epidermal growth factor receptor (EGFR) inhibitor, due to

its most positive sensitivity correlation with CDC42 according to

analyses results from Cancer Therapeutics Response Portal (CTRP).

To validate these findings, we then performed in vitro experiments to

investigate EGFR, pEGFR and CDC42 expressions, together with

viabilities and proliferations in HaCaT and A431 cells transfected

with HPV 16 E6 and E7 and under interventions of afatinib at

different concentrations. In the final step, to make our

findings theoretically self-consistent, we stated a hypothesis based

on a very convincing result in Computer-Aided Molecular

Docking Experiment.

Through this “molecular to clinic” research work, with a

spectrum from molecular docking experiments, bioinformatic
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analyses in molecular biology (epigenetics and transcriptome), in

vitro experiments of cell biology (protein expression and cell

proliferation) to clilnic-associated survival analyses, we hope to

shed some new light on the disease process of HPV-related cancers,

lay the foundation for further developing of precise molecular

targeted therapy and provide aids for clinical decision making, to

better confront the challenges posed by these cancers.
2 Materials and methods

2.1 Data collection

DNA methylation data of CESC and ASCC were collected from

Gene Expression Omnibus (GEO) database GSE186859, including 121

ASCC samples, 13 adjacent AIN3 samples, 9 adjacent normal samples,

9 CESC samples, 9 CIN3 samples, 10 adjacent normal cervical samples.

Single-cell RNA-seq (scRNA-seq) data were collected from GEO

database GSE171894 and GSE176415 (GSM5364334, GSM5364335,

GSM5364336), including 2 HPV-pos. CESC samples, 2 HPV-neg.

CESC samples and 3 normal samples. Bulk RNA-seq data and paired

clinical information were obtained from TCGA-CESC project,

excluding samples with missing clinical information or histological

types other than cervical squamous cell carcinoma, and eventually 237

samples were selected for analyses.
2.2 Methylation profiling and data analysis

DNA methylation raw data were analyzed by the Chip Analysis

Methylation Pipeline (ChAMP) R package (13). ChAMP is a

comprehensive methylation analysis package, including features

of quality control, identification of Differentially Methylated

Probes (DMPs), Differentially Methylated Regions (DMRs), and

Differentially Methylated Blocks (DMBs). Probes with detection P-

value > 0.01, probes with <3 beads in at least 5% of samples per

probe and probes located in sex chromosome were filtered out via

champ.filter() function. Differentially designed 450K probes were

normalized by function champ.norm(). Champ.DMP() function

was carried out to calculate the methylation differences of p+robes.

DMPs with |logFC| > 0.2 and P-value < 0.05 were picked.
2.3 Function annotation

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

analysis was performed to annotate the picked DMPs (14). FerrDb

(15) and GeneCard (16) database were utilized for additional

annotations. Data from GeneCard with a relevance score over

median value were chosen for mapping.
2.4 Immune analysis

Different immune cell proportions of genes obtained from

DMPs were analyzed utilizing cell type identification by
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calculating relative subsets of RNA transcripts (CIBERSORT)

(17). Seurat R package was applied to identify genes related to

different immune infiltration from CIBERSORT (18). An upper

bound threshold for the percentage of mitochondrial count (5%)

was defined, and the cells above the upper bound were filtered out

(18). Data normalization was carried out after cell filtering that use

the global-scaling normalization package LogNormalize,

which divides the specific feature counts of each cell by the

overall counts of that cell, divides it by 104 and then performs a

natural log-transformation (19). The samples were then

merged into a single data set using the merge function. The

FindIntegrationAnchors function was used to find the anchors,

and the Inte-grateData function was used to integrate multiple data

sets (20). Community detection algorithm was applied for

clustering the cells, R tool FindCluster() and the parameter

“resolution = 1” for controlling the number of clusters. Non-

linear dimensional reduction technique Uniform Manifold

Approximation and Projection (UMAP) and t-distributed

stochastic neighbor embedding (t-SNE) were performed to

visualize single cell clustering in low-dimension. The cluster-

specific marker genes were obtained using the Findmarkers ()

tool in the Seurat package with default non-parametric Wilcoxon

rank sum test as well as Bonferroni correction. The characteristic

cellular marker reference was obtained from R package Celldex,

with which cells were automatically annotated by R package SingleR

(21). Plot1cell R package (22) was used to visualize and quantify the

scRNA-seq data.
2.5 Target genes with clinical prognosis
and drug selection

An RNA matrix was constructed using immune-related genes

and genes annotated with specific functions obtained from the

previous steps. The “WGCNA” package was used for the weighted

correlation network analysis (23). This network can be used to

identify highly synergistic genomes and identify candidate

biomarker genes or therapeutic targets based on genomic

endogeneity and genome-to-phenotype associations (23).

According to the TNM staging in WHO guideline for cervical

cancer (24), in our study we defined TNM IA-IIA, which is mainly

treated with surgery and has a good prognosis, as the “early group”,

and TNM IIB-IV, which requires simultaneous radiotherapy and

has a relative poor prognosis as the “advanced group”. By analyzing

the correlation between RNA matrix and grouping information

(early or advanced) in WGCNA network, gene clusters, which were

most associated with cancer progression, were identified.

Data containing information on genes and weighted gene co-

expression in the clusters were input into Cytoscape for

visualization of network. Cytoscape molecular complex detection

(MCODE) was used for finding the strongly interacting genes in the

clusters (25), by setting degree cut off = 2, node score cut off = 0.2,

K-core = 2, and maximum depth up to 100. The top 10 genes with

the strongest interaction were filtered out and defined as hub genes.

Gene Expression Profiling Interactive Analysis 2021 (GEPIA

2021), a web-based program, was used to analyze the correlation
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between the expression level of the hub genes and the overall

survival in CESC patients (26).

Cancer Therapeutics Response Portal (CTRP) V2, a data matrix

contains profiles of chemical sensitivity, was then used to analyze

the correlation between the hub gene expression levels and drug

sensitivity for filtering out potentially promising drugs (27).
2.6 Cell culture

A431 and HaCaT were purchased from American Type Culture

Collection (ATCC, Wesel, Germany). HaCaT and A431cells were

cultured in DMEM (Sigma-Aldrich, Schnelldorf, Germany) media

containing 10% Fetal Bovine Serum (FBS) (Sigma-Aldrich,

Schnelldorf, Germany) and 1% penicillin-streptomycin (Sigma-

Aldrich, Schnelldorf, Germany) at 37°C in a humidified incubator

with 5% CO2.
2.7 Cell transfection

HPV16 E6 and E7 expressing plasmid as a bacterial stab (p1321

HPV16 E6 and E7, Addgene #8641) was gifted from Prof. Peter

Howley (28). Sterile loops were used to steak bacterial stab on the

LB agar plates, grown at 37°C in a humidified incubator with 5%

CO2 overnight. Ampicillin-resistant colonies on LB agar plates were

selected and amplified in LB/ampicillin medium overnight at 37°C

in a humidified incubator with 5% CO2. Plasmid DNA was

recovered from the bacterial culture by ethanol precipitation.

Transfection of plasmid DNA from above steps was performed

with X-tremeGENE 9 DNA transfection reagent (Roche,

Mannheim, Germany). X-tremeGENE 9 DNA transfection

reagent was diluted with serum free DMEM to a concentration of

3 ml reagent/100 ml DMEM for a ratio of 3:1. Then, 1 mg of DNA

was mixed with 100 ml diluted X-tremeGENE 9 DNA transfection

reagent, and the DNA transfection reagent complex was incubated

for 20 mins at RT. In 96-well plates, 5 ml DNA transfection reagent

complex was added to each well and in 10-cm dishes, 500 ml was
added. The cells were incubated for 24 h before further analysis.

The untransfected groups were seeded and treated at the same

time and under the same conditions. The cells were cultured with

the same transfection reagent complex as the transfected group, but

without the addition of DNA.
2.8 Cell viability and proliferation assay

After 24 h transfection, cells were treated with afatinib

(SML3109, Sigma-Aldrich, Schnelldorf, Germany). HaCaT and

A431 cells were treated with different concentrations (0 mM, 0.1

mM, 1 mM, 10 mM) of afatinib for 24 h. Untransfected groups were

treated at the same time and the same conditions. cell viability and

proliferation were assessed using the Water-Soluble Tetrazolium 1

(WST-1) assay (Sigma-Aldrich, Schnelldorf, Germany). 10 µl WST-

1 reagent was added to each well in 96-well plates. After incubating

for 4 h at 37°C and 5% CO2. The absorbance of the samples at a
Frontiers in Immunology 04
wavelength of 440 nm was measured via a plate reader (Spectra MR,

Dynex Technologies, Chantilly, USA).
2.9 Western blot

HaCaT/A431 cells were seeded on 10 cm dishes and incubated

overnight, and grouping was the same as for cell viability and

proliferation assays. Extraction of proteins were performed after

cells were exposed to different concentrations (0 mM, 0.1 mM, 1 mM,

10 mM) of afatinib for 24 h. RIPA lysis and extraction buffer (89901,

Thermo Fisher Scientific, Planegg, Germany) and protease

inhibitors set (Roche, Mannheim, Germany) were used for

protein extraction.

5 ml of protein ladder (Sigma-Aldrich, Schnelldorf, Germany)

was used for determination of the molecular mass. 10 ml of cell
lysate and 2 ml 6× loading buffer (Sigma-Aldrich, Schnelldorf,

Germany) were added to each well of SDS-PAGE gel.

Electrophoresis was conducted at 80 V for 50 mins, then 120 V

until the marker proteins reached the bottom of gel.

PVDF membranes were activated by methanol for 5 mins. Filter

Paper Sandwich (Thermo Fisher Scientific, Planegg, Germany)

(sponge-filter paper-gel-membrane-filter paper-sponge) was

mounted in the transfer tank and air bubbles were removed. It

was transferred with 200 mA for 90 mins on ice. Membranes were

blotted with 5% skim milk in for 2 h at RT. Then, the primary

antibody was applied against CDC42 (HPA069590, 1:2000, Sigma-

Aldrich, Schnelldorf, Germany), EGFR (AMAB90816, 1:1000, 1 µg/

ml, Sigma-Aldrich, Schnelldorf, Germany), pEGFR (07-819, 1:750,

Sigma-Aldrich, Schnelldorf, Germany) and GAPDH (#2118,

1:1000, Cell Signaling Technology, USA) for overnight at 4 °C.

Secondary antibodies were incubated with the membranes at room

temperature for 1 h. Lastly, the protein bands were captured using

ChemiDoc Imaging Systems (Bio-Rad Laboratories GmbH,

Feldkirchen, Germany). ImageJ were used for analysis of western

blot data (29).
2.10 Molecular docking

Autodock Vina, a silico protein-ligand docking program, was

used to examine the binding affinities and mechanisms

of interaction between the drug candidate and their targets

(30, 31). The molecular structure of afatinib (PubChem

10184653) was obtained from PubChem Compound (https://

pubchem.ncbi.nlm.nih.gov/) (32). The 3D coordinates of CDC42

(PDB ID, 1AJE; Resolution: NA) (33) and EGFR (PDB ID, 6VH4;

Resolution: 2.80 Å) (34) were downloaded from the PDB (http://

www.rcsb.org/). All protein and molecular data were converted into

PDBQT format for docking analysis, with all water molecules

removed and polar hydrogen atoms applied. The grid box was

positioned in the middle to allow for unrestricted molecular

mobility and to cover the domain of each protein.

Rigid protein-protein docking (ZDOCK) was performed

between CDC42 and EGFR to study the relationships (35). The

PDB format of the protein structural domains were the obtained
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from the same database, The 3D coordinates of CDC42-GTPase-

effector (PDB ID,5UPL; Resolution: 3.00 Å) interface (36) and

EGFR-afatinib (PDB ID,4G5J; Resolution: 2.80 Å) (37) were

downloaded from PDB. The ZDOCK module was run to identify

the docking sites and calculate the ZDOCK scores.
2.11 Statistical analysis

The error bars in cell proliferation assays are presented as mean

± standard error, and statistical analyses for cell proliferation assays

were performed using GraphPad Prism® 5 (GraphPad Software,

San Diego, CA, USA). Statistical analysis for DNA methylation,

bulk RNA-seq data and scRNA-seq data was performed using R

Statistical Software, the usage and setting of all the analysis could be

found in reference of R packages (v4.2.1; R Core Team 2022).
3 Results

3.1 Methylation analysis

There were 390,065 probes that passed quality control for all

subsequent analyses. Principal component analysis (PCA) was

performed to compare b-values for all samples (Figure 1A). As

shown in Figure 1A, no intersection between normal anal group and
Frontiers in Immunology 05
normal cervical group were observed, which was significantly

different from that between AIN3, ASCC and CESC group, in

which large proportions of intersections were observed, indicating a

significant similarity of methylated sites in the disease process of

AIN3, ASCC, CESC, compared to that between normal cervical and

anal tissues. This similarity could also be observed in the heatmap of

correlation matrix (Figure 1B), in which sample clusters of AIN3,

ASCC or CESC could not be distinguished. Similarly, CESC samples

were mixed with ASCC samples in the visualization of sample

similarity based on the top 1000 most variable probes

(Supplementary Figure 1). It could be recognized there were a

large number of DMPs overlapped between AIN3, ASCC and CESC

samples, while CIN3 samples were similar to normal cervical

samples. Hence, we tried to analyze and compare the roles of

genes between ASCC and CESC group due to the observed

similarity in DMPs, which suggested similar epigenetic

modifications in these two HPV-related cancers, while CIN3 and

AIN3 group were excluded in this step.

As shown in Figure 1E, a total of 44,137 (11.31%) in 390,065

probes exhibited differing levels of methylation between CESC and

normal cervical group and 11,440 (2.9%) probes showed differing

levels of methylation between ASCC and normal anal group. In

CESC group, compared to normal cervical group, 25300(57.4%)

probes were hypermethylated while 18,837 (42.6%) probes were

hypomethylated. In ASCC group, compared to normal anal group,

9726 (85.0%) probes were hypermethylated while 1714 (15.0%)
D

E

A B

C

FIGURE 1

Overview of DNA methylation data. (A) Individuals plot of PCA, samples were represented as follows: red, AIN3. Brown, ASCC. Green, CESC. Blue
cross, CIN3. Blue square, Normal cervical. Purple, Normal anal. (B) Heatmap of Top 200 DMPs, samples were represented as: Purple, AIN3. Red,
ASCC. Blue, CESC. Green, CIN3. Light blue normal anal. Brown, normal cervical. (C) Proportion of the feature of CpG-islands, orange represented
for hypermethylated probes, blue represented for hypomethylated probes. (D) The overlapped DMPs between CESC and ASCC, X axis represented
for different chromosome, Y axis represented for number of DMPs, black bar represented for hypomethylated DMPs, white bar represented for
hypermethylated DMPs. (E) Quantities of overlapped DMPs.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1118458
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wei et al. 10.3389/fimmu.2023.1118458
probes were hypomethylated. Among these thousands of DMPs,

there were only 2, that hypermethylated in CESC but

hypomethylated in ASCC and only 1, that hypermethylated in

ASCC but hypomethylated in CESC, indicating a very limited

heterogeneity of DNA methylation in these 2 HPV-related

cancers. As the final result in this step, 7633 hypermethylated

DMPs and 1024 hypomethylated DMPs in both tumors were

picked out for further analyses.

These DMPs varied among genomic locations, mainly enriched

in open sea regions (Figure 1C). Besides, the distributions of both

hypermethylated DMPs and hypomethylated DMPs were mostly

enriched in Chromosome 1 (Figure 1D).
3.2 Function annotation

We next performed KEGG analysis on the 7633 hyper

methylated DMPs and 1024 hypomethylated DMPs. Figure 2A

showed the regulatory orientations of DMPs in the genes and the

functions of these genes. Red bars represented genes with

hypermethylated DMPs (P < 0.05) and blue bars represented

genes with hypomethylated DMPs (P < 0.05). Most of these genes

were associated with carcinogenesis and immune. In addition, HPV

infection pathway (173/3314), oxidative stress (15/3314),

ferroptosis (17/3314) and necroptosis (48/3314) were also

enriched. Existing evidences showed that oxidative stress,

ferroptosis and necroptosis processes are closely related to HPV

infection and could occur in immune cells and epithelial cells (38–

40). Hence, we supposed these enrichments in our study could be a

result of HPV infection and subsequential HPV-induced
Frontiers in Immunology 06
carcinogenesis. Therefore, genes annotated with these functions

were also chosen for further analyses.

Considering that KEGG is a relatively broad mapping database,

there might be omissions in details. For example, only markers of

genes are compared in the mapping of ferroptosis, without any

inducer, promoter and driver included. After further annotation,

264 genes were identified as oxidative stress-associated, 23 genes

were ferroptosis-associated and 65 genes were necroptosis-

associated. CIBERSORT enrichment analysis for genes with

overlapped methylations (Figure 2B) showed immune cell

proportions mainly different in T-reg cells, CD4+ T cells, CD8+

T cells, dendritic cells and monocytes (Figure 2C). This result

derived from CESC data due to the current absence of RNA-seq

data and clinic data in ASCC.
3.3 Immune analysis

Immune differences were obtained from CIBERSORT analysis.

However, the alterations of immune markers were associated with

large-scale genetic alterations in immune infiltrations. In order to

have a more precise understanding of immune alterations, we

further obtained differential immune infiltration information by

analyzing genes in DMPs via CIBERSORT. Then genes regarding

these immune alterations were identified from scRNA-seq data.

To analyze the immune identities and functions of the cells, we

first clustered and visualized the cells based on the scRNA-seq data.

CESC scRNA-seq were divided into 21 clusters according to the

Seurat FindCluster() function, the UMAP and tSNE algorithm from

the Seurat R package (Figure 3A). 10,959 marker genes were
A B

C

FIGURE 2

Function annotations and difference in immune infiltration of DMPs. (A) KEGG analysis of the DMPs, red bars represented the genes with
hypermethylated DMPs, blue bars represented the genes with hypomethylated DMPs. (B) Immune infiltration base on the gene with DMPs, each
column represented one sample, different color represented different proportions of immune cell type. (C) Immune cell types with significant
differences in the enrichment of genes for DMPs. (*P < 0.05, **P < 0.01).
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obtained from 21 clusters based on the Findmarker() function. Top

3 marker genes of each cluster were used for heatmap visualization.

The different abundances of marker gene expression were used for

further analysis (Figure 3B). Reference data of cellular markers were

obtained from Celldex, with which SingleR could annotate clusters

automatically (Figure 3C). Clusters with cell type annotation as T-

reg cells (Cluster 4, marker: FOXP3), CD4+ T cells (Clusters 5, 7, 18,

marker: IL7R), CD8+ T cells (Cluster 2, marker: CD8A), dendritic

cells (Cluster 11, 13, 16, marker: LYZ) and monocytes (Cluster 8, 17,

marker: CXCL6) were selected as targets.
3.4 Target genes with clinical prognosis
and drug selection

According to the selected target clusters in the previous step,

7722 immune-associated genes were obtained from scRNA-seq

data, Together with genes in HPV infection pathway, oxidative

stress-associated genes, ferroptosis-associated genes and

necroptosis-associated genes, a new matrix including expression

profiling data and clinical data was built.

The development of the WGCNA scale-free co-expression

network allowed the identification of the correlations between

genetic characteristics and clinical features. Co-expression

network was constructed using the new matrix. We used

pickSoftThreshold function to select soft threshold power b = 6

which ensured a scale-free network (Figure 4A). Then, 14 distinct

gene modules were generated based on hierarchical clustering

dendrogram (Figure 4B). Previously defined clinical features

“Early group” and “Advanced group” were input. Pink module (r

= -0.13, P = 0.04), purple module (r = -0.14, P = 0.04), salmon

module (r = -0.13, P = 0.04), blue module (r = -0.13, P = 0.05) and

grey module (r = -0.14, P = 0.03) showed significant correlations

with the progression of cancer (Figure 4C). In order to assess the

probable biological function of these modules, correlations between
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gene significance (GS) and module membership (MM) were

evaluated. These correlations were shown in the form of scatter

plots (Figures 4D, E), in which the modules had demonstrated a

significant association between GS and MM, indicating that the

genes in those modules are not only co-expressed but also positively

linked to clinical features. To ensure the integrity of these results, all

modules associated with clinical features were included in the study

rather than just the most significant ones.

Cytoscape plugin MCODE was performed to find the highly

interconnected regions in the network of all the nodes and edges. A

node with more interconnected neighbors could achieve a higher score.

In the highest region detected byMCODE, the 10 highest scoring genes

were selected as hub genes (Figure 5A) (Supplementary Table 1),

including PSMD11, RB1, SAE1, TAF15, TFDP1, CORO1C, JOSD1,

CDC42, KPNA2 and NUP62. Next, the correlations between

expressions of these gene and survival in CESC patients were

analyzed via GEPIA2021 online tool (Figures 5C–L). The results

showed all the hub genes manifesting correlations with cancer

progression to some extent. However, only the correlation in CDC42

was statistically significant with the survival of CESC patients (Hazard

Ratio: 1.6, P = 0.045), which implied patients with higher expression

level of CDC42 had worse prognosis. Hence, we picked CDC42 as the

target for downstream studies due to its significance in both

pathophysiological and clinical levels. All the connections of CDC42

were listed in network (Figure 5B), green diamonds represented genes

associated with ferroptosis, purple ellipses represented genes clustered

in immune cell clusters of scRNA, orange rectangles represented genes

related to necroptosis, and yellow triangles represented genes annotated

with oxidative stress.

Before investigating the potential role of CDC42 in therapeutic

development, it was necessary to understand the alteration of CDC42

during HPV infection and carcinogenesis. There were 3 DMPs in

CDC42, cg08608952, cg13962372 and cg23019935. Volcano plots

showed the different DNAmethylation of CDC42 between CESC and

normal cervical group (Figure 6A), CESC and CIN3 group
A B

C

FIGURE 3

Clusters, marker genes and annotations of CESC scRNA-seq data. (A) The dimension reduction of CESC scRNA-seq. Visualization of separate
clusters based on UAMP and tSNE. (B) Heatmap of the most significant marker genes, each cluster showed top 3 marker genes. (C) Clusters
annotated by immune cell markers.
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(Figure 6B). Compared to the normal cervical group,

hypermethylation of these 3 DMPs was significant in CESC group,

while slightly in CIN3 (Figure 6C). In the RNA profiling, the

expression of CDC42 was higher in CESC than normal cervical

group (Figure 6D). This result could also be observed from scRNA-

seq data. Compared to normal samples, CDC42 was upregulated in

CESC samples (Figure 6E), implying that the upregulation of CDC42

may be driven by carcinogenesis. To figure out the impact of HPV

infection on CDC42, quantifies of CDC42 were performed between

HPV-pos CESC, HPV-neg CESC and normal group (Figure 6F). In

the CESC scRNA-seq data, CDC42 was grouped in cluster 1

(Dendritic cells), cluster 3 (Dendritic cells) and cluster 7 (CD4+ T

cells). Violin plots showed the expression of CDC42 in dendritic cells

and CD4+ T cells between 3 groups. Compared with CESC, CDC42

expression was lower in normal tissues. Whereas in comparison

among CESC samples, the expression was higher in the HPV-pos

group than in the HPV-neg group, though not significantly. Hence,

we considered the upregulation of CDC42 was not only caused by

carcinogenesis, but also HPV infection.

As of now, through bioinformatic analyses, we had partly

understood the underlying driving factors of CDC42 upregulation

in HPV-related cancer and its impact on the prognosis of CESC

patients, but the potential contribution of these findings to clinical

therapeutic development remained unclear. A correlation analysis

between CDC42 expression level and chemical compound

sensitivities was performed via CTRP database. The result

explained that the expression of CDC42 was significantly and

positively correlated with 14 chemical compounds, among which

EGFR inhibitor afatinib was the most significant one (Figure 6G).

To validate these findings in the analyses above, we performed in
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vitro experiments to assess the alterations of cell proliferation, cell

viability and protein expression.
3.5 Cell viability and proliferation

WST-1 assays were carried out on HaCaT/A431 cells with or

without HPV16 E6 and E7 transfection in the presence of various

concentrations (0 mM, 0.1 mM, 1 mM, and 10 mM) of afatinib in order

to assess the changes in the viability and proliferation of cells. In each

group, the spectrophotometric readings of cells without exposure to

afatinib were used as the relative reference standard in the figure

(100%) (Figures 7A, C). Similarly, to compare cell proliferations

between HaCaT/A431 cells with or without HPV transfection, the

spectrophotometric readings of cells without transfection and exposure

to afatinib were set as relative reference standard (100%) (Figures 7B,

D). Cell proliferations of HaCaT and A431 were increased after

transfected with HPV16 E6 and E7 (P < 0.05) (Figures 7B, D). In

HaCaT cells, afatinib was unable to reach the half-maximal inhibitory

concentration (IC50) at 10 mM, while in HaCaT cells transfected with

HPV had a lower IC50 at 1 to 10 mM (Figure 7A). Similar results could

be observed in A431 cells. In A431 cells without transfection, IC50 of

afatinib was between 1-10 mM and a lower IC50 was observed after

transfected with HPV16 E6 and E7 (Figure 7C).
3.6 Western blot

Cell proliferation and cell viability assays confirmed that

transfection with HPV16 E6 and E7 can make cells more
D
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FIGURE 4

WGCNA analysis of the correlation between gene modules and clinical features. (A) The mean connectivity and scale-free topology index for each
power value between 1 to 20. Investigation of the mean connectivity (degree, Y axis) for different soft-thresholding powers (X axis). (B) Dendrogram
of genes in new matrix (Associated to ferroptosis, necroptosis, oxidative stress, HPV infection pathway, T-reg cells, CD4+ T cells, CD8+ T cells,
dendritic cells and monocytes) clustered based on a dissimilarity measure (1-TOM). Densely linked, highly co-expressed genes are grouped together
on the dendrogram’s branches. (C) Correlations of modules and clinical feature. Each row corresponded to a module, The number in the upper left
corner represents the correlation, and the number in the lower right corner represents the P-value. (D) Scatter plot of module membership (MM) vs.
gene significance (GS) in blue modules. MM presents the correlation between gene expression and each module eigengene. GS represents the
association between gene expression and each trait. In both modules, GS and MM have a high correlation. (E) Scatter plot of module membership
(MM) vs. gene significance (GS) in grey modules.
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sensitive to afatinib. However, the alterations in protein-level in this

process remained unclear. A431 and HaCaT cells were treated as

described above. Protein expressions were measured after

intervention of afatinib for 24 h (sc. 48 h after transfection,

Supplementary Figure 2A). Transfection with HPV16 E6 and E7

enhanced the effect of afatinib. Quantitative analysis through Image

J showed that, compared to group without HPV transfection, lower

expression of pEGFR in the HPV transfected group at the same

afatinib concentration could be observed, accompanied by an

upregulation of CDC42 (Supplementary Figure 2B). This result

should be interpreted as a general trend but not a precise

quantification. Because we did not expect a clear mechanistic

interpretation only through Western Blot and without further

experiments. We aimed only to observe the trend, so no replicate

experiments were performed and the results were thus not

statistically significant. For this reason, WB results are placed in

the supplementary material.
Frontiers in Immunology 09
3.7 Molecular docking

Afatinib acts as a targeted inhibitor of EGFR but has a high

positive sensitivity correlation with CDC42 expression. We initially

hypothesized that CDC42 also has a high affinity with afatinib and

therefore performed molecular docking analysis. Using Autodock

Vina, the binding poses and interactions of afatinib with CDC42

and EGFR were acquired. Binding energy was calculated for each

interaction (Figures 8A, B). Results showed that afatinib bound to

CDC42 and EGFR through via apparent hydrogen bonds and

strong electrostatic interactions. Furthermore, afatinib successfully

occupied the hydrophobic pockets of CDC42 and EGFR

(Figures 8C, D).

Binding energy <-7.0 kcal/mol indicates strong binding activity

of ligand to receptor. There are 9 binding models of afatinib to

EGFR and all the binding models had low binding energy (-9.186

kcal/mol, -9.063 kcal/mol, -8.639 kcal/mol, -8.601 kcal/mol, -8.365
D
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FIGURE 5

Identification of hub genes. (A) Top 10 MCODE scoring genes were highlighted in the co-expression network. (B) Hub gene CDC42 with its highly
co-expressed neighbors. Green diamonds represented genes associated with ferroptosis, purple ellipses represented genes clustered in immune cell
clusters of scRNA, orange rectangles represented genes related to necroptosis, and yellow triangles represented genes annotated with oxidative
stress. (C) KM curves (Kaplan–Meier estimator) showed the correlation between CESC overall survival and CDC42 expression. (D) KM curves showed
the correlation between CESC overall survival and CORO1C expression. (E) KM curves showed the correlation between CESC overall survival and
JOSD1expression. (F) KM curves showed the correlation between CESC overall survival and KPNA2 expression. (G) KM curves showed the correlation
between CESC overall survival and NUP62 expression. (H) KM curves showed the correlation between CESC overall survival and PSMD11 expression.
(I) KM curves showed the correlation between CESC overall survival and RB1 expression. (J) KM curves showed the correlation between CESC
overall survival and SAE1 expression. (K) KM curves showed the correlation between CESC overall survival and TAF15 expression. (L) KM curves
showed the correlation between CESC overall survival and TFDP1 expression.
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kcal/mol, -8.296 kcal/mol, -8.216 kcal/mol, -8.148 kcal/mol and

-8.027 kcal/mol), indicating a highly stable binding between EGFR

and afatinib. The only binding models of afatinib to CDC42 had a

low binding energy of -81.793 kcal/mol, which means the affinity of

CDC42 to afatinib even higher than EGFR. The process of ligand

binding to proteins is very complex. In addition to the binding

energy, the evaluation of affinity also requires the formation of two

hydrogen bonds with hinge when the small molecule binds to the

protein. In Figures 8A–G, the dashed line represents interaction

force, and amino acids involved in the interaction are shown in a

ball-and-stick model, in which afatinib could be found to have an

intensive interaction with CDC42.

The affinities of afatinib to both CDC42 and EGFR were

confirmed. However, it is still unclear how CDC42 acts on EGFR

after binding to afatinib. We tried to simulate and calculate the

CDC42-afatinib-EGFR interactions, but no interaction could be

found. In the PDB database, we found that CDC42 could be bound

by extended GTPase-effector interface. Hence, we tried to construct

the complex of CDC42-GTPase-effector interface-EGFR-afatinib.

ZDOCK provides docking of protein structures, and the higher the
Frontiers in Immunology 10
ZDOCK score, the stronger the docking. The top 10 best ZDOCK

score of CDC42-GTPase-effector interface-EGFR-afatinib were

1264.017, 1255.494, 1219.203, 1187.345, 1156.167, 1155.194,

1154.395, 1144.608, 1134.683 and 1114.190. As shown in figure

(Figure 8E), CDC42 could form hydrogen bond links with amino

acid sites such as GLU 171, ASN167, LEU165, VAL 168, PHE 169

and LYS 166-GTPase-effector interface GLU1005, ARG 489, LEU

475. GTPase-effector interface formed hydrogen bond links with

amino acid sites such as GLN303, ASN996-PRO 975, ALA 972

EGFR (Figure 8F). EGFR binds to afatinib through amino acids

such as ASN 808, HIS 988, PRO 848 forming hydrogen bonds and

strong interactions (Figure 8G).

Comprehensive analysis revealed that CDC42- GTPase-effector

interface-EGFR-afatinib formed a stable docking model.
4 Discussion

Despite the global rollout of HPV vaccines, HPV-related

cancers still cause huge health crisis especially in developing
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FIGURE 6

DNA Methylation, RNA expression, scRNA expression and chemical compounds sensitivity of CDC42. (A) Volcano plot of the DMPs between CESC
and normal samples. Red plot corresponded to hypermethylated probe, green plot corresponded to hypomethylated probes. (B) Volcano plot of the
DMPs between CESC and CIN3 samples. (C) b value of CDC42 DMPs (cg08608952, cg13962372 and cg23019935) in different groups. (D) RNA
expression of CDC42 in CESC and normal samples. (E) Colors single cells on a dimensional reduction plot according to the expression of CDC42.
(F) Quantifies of CDC42 in CD4+ T cells and dendritic cells between CESC and normal samples, HPV-pos. CESC and HPV-neg. CESC. (G) Correlation
analysis of CDC42 expression level and chemical compounds sensitives, afatinib showed the significantly and positively correlation. *P<0.05,
**P<0.01, ***P<0.001, ****P<0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1118458
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wei et al. 10.3389/fimmu.2023.1118458
countries. Cervical cancer (80% histological type is CESC) remains

the 4th most common malignancy in women and one of the leading

causes of death in women diagnosed with cancers (41). The overall

ASCC incidence increased 2.7% and incidence-based mortality

increased 1.9% annually from 2001 to 2015 (42), and the 5-year

survival rate of patients with metastases is only 32% (43). In terms

of molecular targeted treatments, as commented in an article, the

very limited number of clinical trials for CESC showed

“encouraging but limited” effects on survival of patients (44). This

is partially restricted by our understanding to the pathophysiology

in HPV-related cancers. Phosphatidylinositide 3-kinases (PI3K)

pathway is the most investigated pathway in CESC, but it has

been proven difficult to design molecular targeted therapies based

on this pathway (41). For metastatic ASCC, up to now, the only

molecular targeted drug entering the clinical trial is cetuximab,

coincidentally, also an EGFR blockade. But the combination of

cetuximab with conventional chemoradiation showed severe

adverse effects, resulting in trials closures (45, 46). For HPV-

related cancers, novel molecular targeted drugs with promising

efficacy and safety are still waited to be developed. In our previous

study (47), we have found a resemblance of the prognostic effect of

hub genes in CESC and head and neck squamous cell carcinoma
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(HNSCC), suggesting similar intracellular alterations in the HPV-

related cancers, which we aimed to further investigate in this study.

Through these studies, we hope to facilitate the development of

novel molecular targeted drugs for HPV-related cancers.

The development of novel molecular targeted drugs relies on

comprehension of pathophysiology in cancers. Despite considerable

technological advances in the detection and analysis of DNA

methylation, which allowed us to study the pathophysiology of

HPV-related cancers from a new entry point, existing relevant

studies have mostly focused only on epigenetic modifications but

ignored the alterations in other levels, such as transcription. This

limited the strength of findings, because some significant findings

derived from DNA methylation data could have no similar

significance in the level of transcription or protein expression.

Aiming to make our findings more significant, we conducted

analyses based on integrated multi-omic data. Based on the analyses

of DMPs from DNA methylation data in ASCC and CESC, we

confirmed a high consistency of epigenetic modifications in these

two HPV-related cancers (Figure 1). Through function annotations

(Figure 2) of aberrant methylated gene, we identified the

significantly altered pathways (immune, HPV infection, oxidative

stress, ferroptosis and necroptosis) in HPV-related cancers. In
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FIGURE 7

In vitro validation of CDC42 function. (A) WST-1 cell viability assay of HaCaT cell, 0 mM afatinib groups were set as 100%. (B) WST-1 cell proliferation
test of HaCaT cells transfected with HPV E6 and E7, untransfected and untreated HaCaT cells groups were set as 100%. (C) WST-1 cell viability assay
of A431 cell, 0 mM afatinib groups were set as 100%. (D) WST-1 cell proliferation test of A431 cells transfected with HPV E6 and E7, untransfected
and untreated A431 cells groups were set as 100%. *P<0.05, **P<0.01.
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terms of immune cell infiltration, CESC tumor tissue showed

obvious immunosuppression, specifically manifested as a

significant increase in T-reg cells and a significant decrease in

activated dendritic cells (Figure 2C). Integrating with RNA-seq

data in these pathways, we then analyzed the correlations of genes

in these pathways with TNM staging of CESC through WGCNA

scale-free co-expression network (Figure 4). In this step, 10 hub

genes (PSMD11, RB1, SAE1, TAF15, TFDP1, CORO1C, JOSD1,

CDC42, KPNA2 and NUP62) were identified, in which only the

expression level of CDC42 was statistically significant in the

correlation with overall survival in CESC patients (Figure 5). In

the next step, we tried to further investigated the role of CDC42 in

the pathophysiology of HPV-related cancer, including investigating

the DMPs of CDC42 (Figure 6C), the difference of CDC42

expression in tumor and normal tissue (Figure 6D), in HPV-pos

and HPV-neg samples (Figures 6E, F), respectively. In this step, we

observed an upregulation of CDC42 in the CESC and HPV-pos

CESC group. Based on the findings above, with various methods

and from several aspects, we observed a significance of CDC42 in

the pathophysiology of HPV-related cancers. Taking this as a
Frontiers in Immunology 12
starting point, next we tried to explore the potential implication

of CDC42 in the design of molecular targeted therapy. Afatinib was

picked up in this step due to its most significant positive correlation

in sensitivity with the expression level of CDC42 (Figure 6G). In

vitro experiments have been performed to validate these findings.

Based on the results of Western blot, an upregulated expression of

CDC42 was observed in A431 cells compared with HaCaT cells and

in cells transfected with HPV E6 and E7 compared with those

without HPV transfection (Figure 7E). Based on the results of WST-

1 assays, the inhibitory effect of afatinib on proliferation and

viability of A431 cells was confirmed, especially enhanced in cells

transfected with HPV E6 and E7 (Figures 7A–D). Out of curiosity in

the exact molecular interaction mechanism of CDC42 and afatinib,

we further performed molecular docking experiments, through

which an extremely stable CDC42-GTPase-effector interface-

EGFR-afatinib complex was found (Figure 8), Inspired by this

finding, we hypothesized that through this complex, CDC42

could increase the affinity of EGFR to afatinib, leading to a

positive correlation of the expression level of CDC42 with the

sensitivity of afatinib.
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FIGURE 8

Molecular docking and rigid protein–protein docking. (A) Binding mode of afatinib to CDC42. CDC42 was set as ball-and-stick model with gaussian
volume. The amino acids involved in the interaction are shown in a ball-and-stick model, the amino acids did not involve in the interaction were
showed as cartoon. (B) Binding mode of afatinib to EGFR. (C) The Molecule of the Month feature used cartoon illustrations to demonstrate the
overlay of the crystal structures of afatinib and CDC42. (D) The Molecule of the Month feature used cartoon illustrations to demonstrate the overlay
of the crystal structures of afatinib and EGFR. (E) CDC42 formed hydrogen bonds with the extended GTPase-effector interface amino acid sites. (F)
Extended GTPase-effector interface formed hydrogen bonds with EGFR amino acid sites. (G) Binding mode of afatinib to CDC42- Extended GTPase-
effector interface -EGFR.
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CDC42 is a member of the small GTPase family and plays a role

in epithelial to mesenchymal transition, angiogenesis, cell cycle

progression, oncogenic transformation, migration/invasion and

tumor growth (48). Similar to the results of bioinformatic

analyses in our study, based on immunohistochemistry of 162

CESC samples, Ma et al. had observed an up-regulated expression

of CDC42 in protein level and a correlated progression in clinical

stage (49). In the subsequent study, the same research group had

reported a significantly higher expression of CDC42 in HeLa cells

than control cells and an increased migration ability of HeLa cells

after being transfected with CDC42 plasmids, which may be derived

from an improved pseudopodia formation (50). The finding of high

CDC42 expression in CESC-derived HeLa cells is consistent with

our findings in HPV-transfected skin squamous cell carcinoma-

derived A431 cells, indicating a commonality of CDC42 alteration

in HPV-related cancers [HPV18 transcript in HeLa cells discovered

by Prof. Hausen in 1985 had made HeLa cells not only the first

immortal human cell line, but also the first HPV-related cancers cell

line (51)].

Unfortunately, in spite of being involved in multiple important

processes in cancer progression, CDC42 is hard to be targeted with

a specific inhibitor, due to its high homology within the other Rho

family GTPases and in the wider Ras superfamily (52). However, in

accordance with our findings, many studies have demonstrated the

associations between CDC42 and EGFR, which could be considered

as an alternative pathway of action. A study reported CDC42 bound

with coatomer protein complex (gCOP) could induce the

accumulation of EGFR in cells. In addition, an overexpression of

CDC42 could also inhibit the degradation of EGFR, inducing an

increased level of EGFR, which could lead to cancer

progression (48).

Afatinib is mainly used to treat cases of non-small cell lung

cancer (NSCLC) that harbor mutations in the EGFR (53). But in

HPV-related cancers its role was seldom investigated and the

clinical evidence is very limited. A case report showed, after

administrated with afatinib as a single agent for 1 month, an

EGFR-amplified metastatic CESC patient achieved a partial

response (PR), with a significant lesion shrinkage observed (54).

In our study, we supposed and verified that the CDC42

upregulation can be considered as a signal for afatinib treatment

in HPV-related cancers. Further efforts should be made including

conducting validation in in vivo models.

There are also limitations in our study. Although we had

identified the 3 DMPs in CDC42 (cg08608952, cg13962372 and

cg23019935), we could not clearly interpret their roles in the

regulation of transcription of CDC42. Moreover, due to the lack

of relevant suitable data in other HPV-related cancers, such as

HNSCC, the findings in our study are specific to ASCC or CESC,

and further validation is needed in other HPV-related cancers.

In conclusion, we have identified CDC42 as a pivotal gene in the

pathophysiology of HPV-related cancers. The upregulation of

CDC42 could be a signal for afatinib treatment and the

mechanism in which is probably an increased affinity of EGFR to

afatinib, inferred from a great stability in the complex of CDC42-

GTPase-effector interface-EGFR-afatinib. Through these findings,
Frontiers in Immunology 13
we hope to provided new insights into the disease mechanism of

HPV-related cancers and lay the foundation for afatinib as a

potential promising molecularly targeted drug for these cancers.
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