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Abstract
This study investigated whether combining metabolomic and embryologic data with machine learning (ML) models improve 
the prediction of embryo implantation potential. In this prospective cohort study, infertile couples (n=56) undergoing day-5 
single blastocyst transfer between February 2019 and August 2021 were included. After day-5 single blastocyst transfer, 
spent culture medium (SCM) was subjected to metabolite analysis using nuclear magnetic resonance (NMR) spectroscopy. 
Derived metabolite levels and embryologic parameters between successfully implanted and failed groups were incorporated 
into ML models to explore their predictive potential regarding embryo implantation. The SCM of blastocysts that resulted in 
successful embryo implantation had significantly lower pyruvate (p<0.05) and threonine (p<0.05) levels compared to medium 
control but not compared to SCM related to embryos that failed to implant. Notably, the prediction accuracy increased 
when classical ML algorithms were combined with metabolomic and embryologic data. Specifically, the custom artificial 
neural network (ANN) model with regularized parameters for metabolomic data provided 100% accuracy, indicating the 
efficiency in predicting implantation potential. Hence, combining ML models (specifically, custom ANN) with metabolomic 
and embryologic data improves the prediction of embryo implantation potential. The approach could potentially be used to 
derive clinical benefits for patients in real-time.
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Introduction

Embryo morphology is independent of many factors that 
play crucial roles in embryo viability [1–5]. Despite its 
known limitations, assessing embryo morphology remains 

the standard approach for embryo quality assessment [6, 
7]. To overcome these limitations, new techniques such as 
time-lapse imaging, metabolomics, and preimplantation 
genetic testing for aneuploidy (PGT-A) are being evaluated 
as alternative approaches for predicting embryo implanta-
tion potential [6].
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Biomarkers derived from a metabolomics approach have 
shown contradictory results regarding predicting embryo 
viability and pregnancy outcomes [8–13]. Further, there is 
no conclusive evidence that embryo metabolomic data alone 
can significantly improve the prediction of assisted repro-
ductive technology (ART) outcomes [8, 14]. Hence, there 
is a continued search for tools that can accurately assess 
embryo implantation potential alone or in conjunction with 
other non-invasive methods.

Artificial intelligence (AI)–based models outdo human 
learning and decision-making even with limited sample sizes 
[15, 16]. In ART, AI-based analysis combined with patient 
characteristics, embryo morphokinetics, or embryo micro-
scopic image analysis has been used to predict implanta-
tion and pregnancy outcomes [17–21]. The combination of 
“omics” technology and machine learning (ML) has been 
suggested to be able to improve ART outcome prediction 
[22]. A recent study demonstrated that combining a deep 
learning model with day-3 metabolite profiles predicted blas-
tocyst development [23]. However, we believe that an accu-
rate prediction of implantation potential has a higher clinical 
value than that of blastulation. Therefore, our approach in 
this study was to explore the possibility of incorporating 
metabolomic profiles of human blastocyst spent culture 
medium (SCM) and embryologic data into ML models to 
enhance the accuracy of embryo implantation prediction in 
patients undergoing single blastocyst transfer cycles.

Materials and Methods

Patient Selection

This prospective study included 56 couples undergoing 
ART at a university infertility clinic between February 
2019 to August 2021. The study was initiated after obtain-
ing approval from the Institutional Ethics Committee (Ref. 
429/2019). Written informed consent was obtained from all 
study participants. Patients fulfilling the following criteria 
were included in this study: (i) women less than 35 years 
of age having regular menstrual cycles; (ii) no medical his-
tory of surgery or any abnormalities diagnosed related to 
reproductive organs; (iii) absence of conditions such as 
endometriosis, adenomyosis, tubal abnormalities, uterine 
myoma, and other metabolic/endocrinological diseases, 
such as hypo/hyperthyroidism or hyperprolactinemia; (iv) 
the male partners with semen characteristics above the WHO 
2010 reference range. In addition, only couples undergoing 
intracytoplasmic sperm injection followed by day-5 single 
embryo transfer were included in this study. Patient informa-
tion, including demographic characteristics and data from 
routine clinical investigations, is presented in Table 1.

Controlled Ovarian Stimulation (COS) and Oocyte 
Aspiration

An antagonist protocol was used for COS. Briefly, recombi-
nant follicle-stimulating hormone (rFSH; Gonal F®; Merck 
Biopharma), with a dose ranging from 225 to 450 IU/day 
based on age, was administered from the second day of the 
menstrual cycle, and anti-Müllerian hormone (AMH) level 
and antral follicular count (AFC) were assessed. Subse-
quently, rFSH dose adjustment (either increase or decrease) 
was conducted based on the ovarian response until the day 
before human chorionic gonadotropin (hCG) administration. 
Pituitary downregulation was achieved by administering a 
gonadotropin-releasing hormone (GnRH) antagonist (Cit-
rotide® 0.25 mg; Merck Biopharma) from day 5 of COS. 
Recombinant hCG (Ovitrelle® 250 mg; Merck Biopharma) 
was used to trigger the final oocyte maturation when at least 
four follicles reached a mean diameter of 18 mm. Oocyte 
cumulus complexes were collected via the ultrasound-guided 
transvaginal route, rinsed, and placed in ONESTEP medium 
(#V-OSM-20; Vitromed GmbH, Germany) at 37°C in 6% 
CO2 for 2–3 h until enzymatic denudation.

Fertilization and Embryo Evaluation

Intracytoplasmic sperm injection was used to fertilize mature 
(metaphase II) oocytes. Injected oocytes were then washed 
and cultured individually in a 30-μL droplet of ONESTEP 

Table 1   Patient’s demographics and clinical characteristics

Age-female (year±SEM) 32.96 ± 0.63
Age-male (year±SEM) 37.79 ± 0.71
Duration of infertility (year ±SEM) 5.89 ± 0.37
Basal FSH (mIU/mL±SEM) 6.39 ± 0.31
Basal LH (mIU/mL±SEM) 5.91 ± 0.47
Basal E2 (pg/mL±SEM) 40.82 ± 2.57
AMH (ng/mL±SEM) 3.63 ± 0.33
AFC (n±SEM) 15.86 ±1.1
Length of stimulation (days ±SEM) 9.54± 0.19
Estradiol (pg/mL±SEM) on the day of trigger 3464.27± 249.91
LH (mIU/mL±SEM) 2. 73 ± 0.32
Progesterone (ng/mL±SEM) 0.94 ± 0.11
Endometrial thickness (mm±SEM) 10.06 ±0.32
Oocyte maturation rate (%± SEM) 91.61 ± 1.40
Sperm concentration (millions/mL±SEM) 48.47 ± 5.39
Sperm total motility (%± SEM) 47.26 ± 3.23
Sperm morphology (%± SEM) 23.52 ± 2.17
Sperm DNA fragmentation index (%± SEM) 9.01 ± 0.85
Fertilization rate (%± SEM) 76.72 ± 2.91
Blastocyst rate (%± SEM) 73.77 ± 5.05
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medium overlaid with oil (#V-OIL-P100; Vitromed GmbH, 
Germany) at 37°C, 6% CO2, and 5% O2 in a MIRI® Mul-
tiroom incubator (ESCO Medical, Singapore). Fertilization 
was assessed at 16–18 h after the intracytoplasmic sperm 
injection. Embryos were evaluated on day 3 and day 5 of 
development as per the European Society of Human Repro-
duction and Embryology (ESHRE) consensus [24]. On day 
5, only one top-quality blastocyst (3, 1, 1 or 4, 1, 1) was 
selected for transfer. If the fresh transfer was not performed, 
embryos were cryopreserved by vitrification for subsequent 
transfer.

SCM samples from transferred/frozen blastocysts (n=56) 
along with medium control samples (droplets of ONESTEP 
medium without an embryo) (n=44) were carefully collected 
without oil contamination, and 25 μL of each was placed 
into a labeled sterile cryovial, snap-frozen in liquid nitro-
gen, and stored at −80°C until nuclear magnetic resonance 
(NMR) spectroscopic analysis.

NMR Sample Preparation and Analysis

A dilution solution was prepared using D2O (deuterium 
oxide), with TSP (sodium salt of 2,2,3,3 tetradeutero-
3-(trimethylsilyl propionate) as the standard reference com-
pound; 0.05 g TSP/mL D2O was diluted by a factor of 10 
using D2O. After thawing the SCM and medium control 
samples at room temperature, 25 μL was diluted with a 10 
μL dilution solution. The mixture was then transferred to 1.7-
mm NMR tubes. Thus, all the metabolites present in the sam-
ples were diluted up to 1.4 times with the dilution solution.

NMR experiments were carried out using a Bruker 800-
MHz AVANCE III NMR spectrometer (Bruker Biospin 
Ag, Fällanden, Switzerland) equipped with a 1.7-mm cryo-
probe at 298 K. One-dimensional (1D) 1H NMR spectra 
were obtained using the Carr-Purcell-Meiboom-Gill 
(CPMG) pulse sequence. A CPMG 180° pulse train for a 

duration of 12 ms was used to suppress residual protein 
signals from the media. Each spectrum was obtained using 
9615-Hz spectral width, 5-s relaxation delay, 16-k time 
domain points, 4 dummy scans, and 256 transients. The 
time domain data (free induction decay) were apodized 
with a shifted sine bell window function (SSB = 2) and 
zero-filled to 65536 points prior to Fourier transformation. 
TopSpin v3.6.2 (Bruker) was used for NMR data acquisi-
tion and processing.

A total of 100 1D 1H spectra were acquired, compris-
ing spectra related to the SCM of the embryos (n=56) 
and medium control samples (n=44). Based on the human 
metabolome database [25, 26], 13 metabolite peaks were 
identified: nine amino acid metabolites (leucine, Leu; iso-
leucine, Ile; valine, Val; methionine, Met; threonine, Thr; 
lysine, Lys; tyrosine, Tyr; histidine, His; phenylalanine, 
Phe) and four carbohydrate and metabolic intermediates 
(pyruvate, Pyr; lactate, Lac; citrate, Cit; glucose, Glc). 
Relative concentrations of the identified metabolites were 
then determined by normalizing the metabolite peak inte-
grals to the peak integral of the internal standard, TSP. 
Further region-wise integration was performed with 
“intser” in TopSpin v3.6.2; each spectrum was divided 
into 30 integral regions.

ML Model Training and Testing Procedures

A flowchart of the ML model training and testing proce-
dures is shown in Fig. 1. In order to compare the perfor-
mance of classical ML programs, several well-known ML 
algorithms were considered. Nearest neighbors, linear sup-
port vector machine (SVM), radial basis function (RBF) 
SVM, gaussian process, decision tree, random forest, neural 
net, AdaBoost, and naïve Bayes were used and then com-
pared to custom artificial neural network (ANN)–based 
binary classification models. As the above classical ML 

Fig. 1   Flowchart of the machine 
learning (ML) model training 
and testing procedures
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models have an overfitting issue, a custom ANN model 
was incorporated to provide a better prediction with weight 
regularization. The samples were randomly divided into two 
groups: the training set constituted 80% samples (which 
was used to train the models to predict embryo implanta-
tion potential) and the testing set constituted 20% samples 
(which was used to check and validate the performance of 
the models).

Input and Output Data

Prediction models were constructed using three sets of 
data: (i) SCM metabolites identified by NMR spectros-
copy; (ii) oocyte and embryologic characteristics such 
as number of matured oocytes retrieved, maturation rate, 
fertilization rate, number of nucleolar precursor bodies 
(NPBs) observed in the zygote, number of embryos pro-
gressed to day 3, blastocyst rate and quality (on day 5), 
and the grade of the embryo preferred for the transfer (on 
day 3 and day 5); and (iii) various combinations of metab-
olites and oocyte/embryologic characteristics (selecting 
metabolites based on their roles in different metabolic 
pathways). Further, each combination involved oocyte 
and embryologic characteristics along with the following 
combination of metabolites: combination 1, Glc, Pyr, and 
Lac; combination 2, Glc, Pyr, and Cit; combination 3, Phe 
and Tyr; combination 4, Pyr, Cit, Lys, and Thr; combina-
tion 5, Glc, Pyr, Thr, Met, and Ile; and combination 6, Glc, 
Pyr, Cit, Ile, Leu, and Val. The exact parameters involved 
in each dataset are given in supplementary Table 1. The 
output data comprised the implantation potential of the 
individually transferred blastocysts. The input data were 
preprocessed and transformed to the same scale. The fea-
tures involved both numeric and nonnumeric data. Non-
numeric data were converted to numeric data and then 
normalized to obtain values in a similar range.

Data Classification Using Custom ANN

The custom ANN was built using a sequential model. The 
variables were first initialized, after which layers were 
added using the dense functionality, forming the layout of 
the model. Subsequently, procedures involving a loss func-
tion, an Adam optimizer, and metrics (to assess model perfor-
mance) were conducted. Data on 56 SCM samples were used, 
with 44 (80%) being used to train the model and 12 (20%) 
being used to test it. The model was trained using the training 
data for 50 epochs. Epochs refer to the number of times that 
the custom. ANN goes through the training data. The model 
parameters are noted in Supplementary Table 2. The first 
layer consisted of 30 or 50 neurons, with a rectified linear 
unit (ReLU) as the activation function followed by a single 

neuron with a sigmoid activation function. Adam optimizer 
was used with a learning rate of 0.001 with binary cross-
entropy as the loss function. The classical ML model perfor-
mance was assessed using several metrics, including confu-
sion matrix, receiver operating characteristic (ROC) curve, 
area under the ROC curve (AUC), and accuracy, whereas 
accuracy and loss curves are employed in custom ANN for 
measuring the performance. Typically, the cross-entropy 
loss is used as loss function for binary classification prob-
lems involving ANN models in which the predicted output 
probability is compared to the actual output. The computed 
score penalizes the probability-based on the distance from 
the actual value. The logarithmic penalty yields a small value 
for a small difference and a large value for a large difference. 
The objective function involves minimizing the cross-entropy 
loss, and smaller values represent a better model. A perfect 
model has a cross-entropy loss of zero. Cross-entropy for a 
binary or two-class prediction problem is calculated as the 
mean cross-entropy across all examples. The custom ANN 
model was run with a batch size of 8 and a total number 
of 50 epochs. A similar procedure was conducted for each 
dataset (i.e., the metabolites, embryologic, and combination 
datasets).

Software

Data analysis was implemented using https://colab.research.
google.com, with TensorFlow, Keras, Sklearn, and NumPy 
library available in Python v3.7. The plots were created 
using the Matplotlib library.

Statistical Analysis

The participants’ demographic and clinical data are pre-
sented as mean ± standard error of the Mean (SEM). Sta-
tistical differences in metabolite levels between SCM and 
medium control samples were assessed by independent-
sample t tests. Statistical differences in metabolite lev-
els among SCM samples from blastocysts that resulted 
in successful embryo implantation, SCM samples from 
blastocysts that resulted in embryos that failed to implant, 
and medium control samples were assessed by repeated-
measure analysis of variance (ANOVA) followed by post 
hoc Tukey’s tests in Jamovi v1.8.1 [27]. Principal com-
ponent (PC) analysis was carried out in CRAN R v4.0 
[28], to explore metabolic differences based on 30 inte-
gral regions of 1D 1H spectra from samples in the three 
groups. A two-dimensional bi-plot visualized the first two 
PCs (PC1 and PC2), which accounted for 99.61% of the 
variability in the data. The level of significance was set 
at <0.05 throughout the study.
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Results

Patient Characteristics and Embryo Implantation 
Outcomes

This prospective study included 56 infertile couples who 
underwent a single day-5 blastocyst transfer during their 
ART cycle. Patient demographic and clinical characteristics 
are summarized in Table 1. Notably, only one top-quality 
day-5 blastocyst was used for transfer. The endometrial 
thickness in patients was 10.06 ±0.32 mm. In cases involv-
ing frozen embryo transfer cycles, patients were followed up 
until frozen embryo transfer. Implantation was considered 
successful when the beta hCG level was >100 mIU/mL on 
day 14 post embryo transfer. Out of the 56 patients, 23 had 
successful embryo implantation, and 33 had embryos that 
failed to implant. The implantation rate was 41%.

Variation in Relative Levels of Metabolites in SCM

To understand metabolite utilization by the blastocysts, 
metabolite levels were compared (i) between SCM and 
medium control samples, (ii) between SCM samples from 
successfully implanted embryos and medium control sam-
ples and between SCM samples from embryos that failed 
to implant and medium control samples, and (iii) between 
SCM samples from successfully implanted embryos and 
SCM samples from embryos that failed to implant. Sup-
plementary Fig. 1 depicts a representative 1D 1H NMR 
spectrum of ONESTEP medium with peak assignment. Sig-
nificant reductions in the pyruvate (p<0.001) and threonine 
(p<0.002) levels were observed in SCM samples relative 

to medium control samples (Table 2), indicating that the 
embryos utilized the metabolites from the culture media. 
Although similar trends were observed in other metabolites, 
the differences were not significant. Further, there was a sig-
nificant difference in the pyruvate level (relative to medium 
control) for SCM from both successfully implanted embryos 
(p<0.05) and embryos that failed to implant (p<0.001), and 
in the threonine level for SCM from successfully implanted 
embryos (p<0.05). Of note, statistical significance was not 
demonstrated in relative metabolite levels between the suc-
cessful and failed implantation groups (Fig. 2A and Table 2).

To explore the differences in the unidentified metabolites 
in the NMR profiles, each spectrum was divided into 30 inte-
gral regions. PC analysis of the 30 integral regions (based on 
100 samples from 56 patients) was used to explore the vari-
ance among the three groups. Fig. 2B shows the resulting 
two-dimensional PC bi-plot of PC1 vs PC2, with overlapping 
data points from three groups which accounted for 99.61% 
of the variability in the data. There were no identifiable 
differences in SCM metabolites (relative to medium con-
trol) between the implanted and failed embryos (Fig. 2B). 
Overall, using only SCM metabolite levels determined by 
NMR spectroscopy did not successfully discriminate among 
embryos based on their implantation potential.

Use of ML Models in Predicting Embryo 
Implantation Potential

Initially, classical ML models (nearest neighbors, linear 
SVM, RBF SVM, gaussian process, decision tree, random 
forest, neural net, AdaBoost, and naïve Bayes) alone or in 
conjunction with metabolomic data and/or embryologic 

Table 2   Comparison of the 
relative concentration of 
metabolites (normalized to 
TSP) across the study groups 
with the medium control

** p < 0.005 and *p < 0.05, vs medium control

Metabolites Relative concentration (mean± SEM)

Medium control 
(n=44)

SCM samples (n=56) Successful implanta-
tion (n=23)

Failed 
implantation 
(n=33)

Leucine 2.2 ± 0.12 2.1 ± 0.15 2.1 ± 0.26 2.0 ± 0.17
Isoleucine 1.2 ± 0.07 1.1 ± 0.07 1.1 ± 0.12 1.1 ± 0.09
Valine 1.3 ± 0.07 1.2 ± 0.07 1.2 ± 0.12 1.1 ± 0.09
Lactate 26.5 ± 1.45 24.2 ± 1.54 24.9 ± 2.62 23.7 ± 1.89
Pyruvate 0.8 ± 0.04 0.6 ± 0.04** 0.6 ± 0.06* 0.5 ± 0.05*
Citrate 3.8 ± 0.24 3.4 ± 0.23 3.4 ± 0.37 3.4 ± 0.29
Methionine 0.2 ± 0.06 0.2 ± 0.02 0.1 ± 0.01 0.2 ± 0.03
Lysine 0.8 ± 0.04 0.7 ± 0.05 0.7 ± 0.08 0.7 ± 0.06
Threonine 1.7 ± 0.10 1.2 ± 0.10** 1.2 ± 0.17* 1.3 ± 0.12
Glucose 0.4 ± 0.02 0.4 ± 0.02 0.4 ± 0.04 0.3 ± 0.03
Tyrosine 0.4 ± 0.02 0.4 ± 0.02 0.4 ± 0.04 0.4 ± 0.03
Histidine 0.2 ± 0.01 0.1 ± 0.01 0.1 ± 0.02 0.1 ± 0.01
Phenylalanine 0.4 ± 0.02 0.3 ± 0.02 0.4 ± 0.04 0.3 ± 0.03
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data were used to predict the implantation potential of the 
embryos. Naïve Bayes, AdaBoost, and decision tree per-
formed well when using the metabolite dataset and provided 
100% accuracy even with a small dataset (Table 3). Decision 
tree, random forest, neural net, AdaBoost, and naïve Bayes 
provided 100% accuracy when using the embryologic data 

collected from 56 patients (Table 3). However, when com-
bining the metabolomic and embryologic data, the predic-
tion accuracy of all the classical ML models increased, with 
accuracies of 80–100%. Notably, the combination 3 and 5 
datasets provided 100% accuracy in all ML models assessed. 
The performance of ML model was evaluated based on a 

Table 3   Accuracy of classical 
ML-based algorithms for 
different combination of 
features

Combination #1: Glc, Pyr, Lac, oocyte, and embryo parameters
# 2: Glc, Pyr, Cit, oocyte, and embryo parameters
# 3: Phe, Thy, oocyte, and embryo parameter
#4: Pyr, Cit, Lys, Thr, oocyte, and embryo parameters
#5: Glc, Pyr, Thr, Met, Iso, oocyte, and embryo parameters
#6: Glc, Pyr, Cit, Iso, Leu, Val, oocyte, and embryo parameters

Method Metabolites Embryological 
parameters

Combination of features

1 2 3 4 5 6

Nearest neighbors 0.58 0.58 0.92 1.00 1.00 1.00 1.00 1.00
Linear SVM 0.50 0.58 1.00 1.00 1.00 1.00 1.00 1.00
RBF SVM 0.66 0.50 0.83 1.00 1.00 1.00 1.00 1.00
Gaussian process 0.83 0.66 1.00 1.00 1.00 1.00 1.00 1.00
Decision tree 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Random forest 0.75 1.00 1.00 0.92 1.00 0.83 1.00 0.83
Neural net 0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AdaBoost 1.00 1.00 1.0 1.0 1.0 1.0 1.0 1.0
Naïve Bayes 1.00 1.00 1.0 1.0 1.0 1.0 1.0 1.0

Fig. 2   A Comparison of the metabolite levels in spent culture 
medium (SCM) samples from successfully implanted embryos 
(n=23) and embryos that failed to implant (n=33) relative to the lev-
els in the medium control samples (n=44). B) Principal component 

analysis (bi-plot) of the region-wise integrals of the three groups. 
Gray represents medium control, orange represents SCM from 
successfully implanted embryos, and blue represents SCM from 
embryos that failed to implant
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confusion matrix, ROC curve, and precision-recall curve 
(Fig. 3A–C). The confusion matrix provides the details of 
false positive, false negative, true positive and true negative 
values. A good classifier is expected to produce a higher true 
positive and true negative. The classical ML model such as 
random forest demonstrated poor performance when metab-
olite data was used (Fig. 3A). In addition, ROC plots the 
true positive rate against the false-positive rate. For a good 
classifier, the ROC curve stays away from a linear line. In the 
sample shown for the traditional random forest model, a poor 
ROC curve indicates the poor classification of metabolites 
data (Fig. 3B). Further, the precision-recall rate measures 
the precision versus recall. The curve shows that random 
forest has poor capability in classifying the metabolite data 
(Fig. 3B).

The custom ANN was also compared with the above 
state-of-the-art classical ML methods (nearest neighbors, 
linear SVM, RBF SVM, gaussian process, decision tree, 
random forest, neural net, AdaBoost, and naïve Bayes). 
Metabolite data from the NMR peaks (corresponding to 13 
metabolites obtained from 56 SCM samples) were used as 
input data in the custom ANN model. When tested with the 
training data of 44 and testing data of 12 with the batch size 
of 8, and number of epochs of 50, the number of neurons 
present in the first layer was 50, and second layer was 1 with 
sigmoid activated function. This model had an accuracy of 
100% even with a small dataset at lower epochs (Fig. 4A) 
and a loss of 0.0059 (Fig. 4B). Hence, custom ANN would 
provide good accuracy if a large dataset was available. Using 
the similar approach, involving custom ANN and the embry-
ologic dataset (with the training data of 44 and testing data 
of 12 with the batch size of 8, and number of epochs of 50), 
the number of neurons present in the first layer was 30 and 
second layer was 1 with sigmoid activated function produced 
an accuracy of 91.67% for the testing dataset (Fig. 4C) and 
a loss of 0.1125 (Fig. 4D). The promising results suggest 
that custom ANN is very efficient in predicting implantation 
outcomes based on metabolomic or embryologic data and 
any of the combinations assessed.

Discussion

The lack of conclusive evidence on the value of metabo-
lomic biomarkers for predicting ART outcomes prompted us 
to combine ML models with conventionally used embryo-
logical data along with NMR-identified metabolite levels. 
For the first time, this study incorporated data generated 
from SCM metabolite analysis into ML models. Interest-
ingly, the data from this study suggests that when classi-
cal ML models are used, incorporating both metabolomic 
and embryologic data significantly improves the prediction 
accuracy compared to metabolomic data alone. Further, it 

is clear from our results that custom ANN models predicted 
the embryo implantation potential with 100% accuracy when 
utilizing metabolomic features.

Fig. 3   Performance evaluation of classical ML model (random forest) 
combined with metabolite dataset. A Confusion matrix for random 
forest classifier, B receiver operating characteristic (ROC) curve, and 
C precision-recall curve
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The embryo quality and endometrial receptivity are two 
major determining factors in the embryo implantation pro-
cess. Our study included only morphologically superior 
(top-graded) blastocyst on day 5. Since endometrial thick-
ness can influence ART outcome [29, 30], we ensured that 
the endometrial thickness in our study subjects was compa-
rable between positive (9.67±0.48mm) and negative implan-
tation (10.29±0.44mm; p>0.05). In addition, women with 
adenomyosis and huge uterine myoma were excluded from 
the study as it can influence the implantation process. Thus, 
we believe that both embryo and endometrial factors that can 
influence the embryo implantation process were controlled 
in our experimental settings.

Metabolomics approaches have been shown to have the 
potential for identifying biomarkers related to embryo devel-
opment and thus improving the outcomes of ART cycles 
[31]. Several NMR-based studies have demonstrated asso-
ciations between SCM metabolites and implantation/preg-
nancy outcomes [11, 32, 33]. Specifically, metabolites such 
as pyruvate, glucose, glutamate, and amino acid turnover 
have been suggested as biomarkers of embryo development, 
implantation potential, and clinical pregnancy [11, 12, 33]. 

Conversely, other studies using NMR spectroscopy as an 
analytical tool have failed to demonstrate any associations 
between SCM metabolites and embryo implantation poten-
tial [9, 34, 35]. Although pyruvate and threonine levels were 
significantly altered in SCM from successfully implanted 
embryos relative to the medium control, we could not estab-
lish significant differences between the successful and failed 
implantation groups. This is in agreement with the recent 
reports that metabolomics approaches alone could not effi-
ciently enhance ART outcome prediction [8, 14]. Technical 
variations in SCM sampling, processing, contamination, and 
analytical complexity are known to affect the results [6, 14, 
36, 37]. The differences in the composition of the commer-
cial embryo culture media, culture conditions like oxygen 
level, culture medium volume, embryonic developmental 
stage, and the sex of the embryo can also lead to inconsisten-
cies in metabolomic-based studies [6]. Hence, there is a need 
to combine metabolomics approaches with other approaches 
to improve the predictive value.

AI-based analysis for predicting ART-related pregnancy 
outcomes is gaining in popularity. ML is a subtype of AI-
based analysis where computer-based algorithms are used 

Fig. 4   Accuracy and loss curves obtained for the custom ANN model 
with the training and testing datasets. A Accuracy curve (demon-
strating 100% accuracy for the training and testing dataset) for ANN 

model with the metabolite dataset for 50 epochs and B loss curve. 
C Accuracy curve for ANN model with embryologic dataset for 30 
epochs and D loss curve
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to understand the pattern present in a complex set of data 
and help with prediction. Several ML algorithms such as 
decision tree, random forest, SVM, and naïve Bayes classi-
fier are being used in reproductive medicine; as reviewed by 
Wang et al. [38], external validation of van Loendersloot’s 
model using clinical data alone led to 64.0% accuracy [39]; 
whereas a naïve Bayes model with embryologic data led to 
80.4% accuracy [21]. Age of the female partner, number of 
embryos formed, and serum E2 level on the day of trigger 
were identified as the best features to predict outcomes [40], 
although the overall accuracy was below 85%. Oocyte and 
embryologic characteristics such as oocyte maturity, ferti-
lization rate, number of nuclear precursor bodies (NPBs), 
embryo progression to day 3, blastocyst rate and quality (on 
day 5), and the grade of the embryo preferred for transfer 
(on day 3 and day 5) were also analyzed as these parameters 
have demonstrated as predictive factors of embryo develop-
ment and implantation potential using conventional or AI 
based analysis [40–46].

Incorporation of AI-based analysis was recently recom-
mended for improving the efficacy of embryo implantation 
potential prediction by omics-based approaches [22]. A 
recent study has incorporated proteomic profile of euploid 
blastocysts and their morphology in AI-based prediction of 
embryo implantation potential [47]. However, there are no 
studies exploring the combination of ML models and NMR-
derived metabolite data for predicting implantation poten-
tial. Recently, a deep learning model combined with Raman 
profiles generated from day-3 embryos was used to predict 
blastocyst development [23]. In line with the earlier results 
utilizing ML models for patient characteristics to predict 
embryo implantation potential [48–50], certain ML models 
(such as nearest neighbors, RBF SVM, decision tree, ran-
dom forest, and neural net) provided accuracies of 50–67% 
(moderate accuracies) when metabolomic data alone was 
used. Moreover, when using embryologic data alone, near-
est neighbors, RBF SVM, and decision tree provided accu-
racies of 50–67%. Although we observed 100% accuracy 
when combining most of the classical ML models with both 
metabolomic and embryologic data, the results could not 
be substantiated with the current small dataset, as classi-
cal ML models have an overfitting issue. Hence, a custom 
ANN model was employed to overcome this data issue with 
the regularization method. ANN models have the ability to 
model nonlinear and complex data, they can more effectively 
infer unseen data, and dropout helps to overcome the overfit-
ting issue. Classical ML models were initially used and then 
compared to the advanced ANN models, which provided 
more than 90% accuracy for both metabolomic (100%) and 
embryologic (92%) data with a small sample size. Hence, 
ANN could be used with complex data to accurately predict 
outcomes in real time. In addition, ML models should be 
tested with a large dataset.

The strength of this study is that only day-5 blastocyst 
transfer cycles were used to assess our combined approach 
to predicting embryo implantation potential. Even after 
using a high-resolution (800 MHz) NMR spectrometer 
equipped with a cryogenically cooled micro-coil (1.7 mm) 
probe to profile SCM metabolites, it was not possible to 
obtain a differential metabolite signature between success-
ful and failed implantation groups. Further, classical ML 
models have an overfitting problem, which may exaggerate 
the prediction when a small sample size is used, whereas 
ANN can overcome this issue with an added regularization 
to the loss function

Conclusion

The observations made in this study open up the possibil-
ity of integrating multiple datasets with ML models to 
improve the prediction of embryo implantation potential. 
Combining ML models (specifically ANN models) with 
metabolomic and embryologic data may improve the pre-
diction of embryo implantation potential. This approach 
should be tested in large and diverse datasets and it poten-
tially could be used to derive clinical benefits for patients 
in real time.
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