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Abstract
Elderly patients are susceptible to postoperative infections with increased mortality. Analyzing with a deep learning model, 
the perioperative factors that could predict and/or contribute to postoperative infections may improve the outcome in elderly. 
This was an observational cohort study with 2014 elderly patients who had elective surgery from 28 hospitals in China from 
April to June 2014. We aimed to develop and validate deep learning-based predictive models for postoperative infections in 
the elderly. 1510 patients were randomly assigned to be training dataset for establishing deep learning-based models, and 
504 patients were used to validate the effectiveness of these models. The conventional model predicted postoperative infec-
tions was 0.728 (95% CI 0.688–0.768) with the sensitivity of 66.2% (95% CI 58.2–73.6) and specificity of 66.8% (95% CI 
64.6–68.9). The deep learning model including risk factors relevant to baseline clinical characteristics predicted postopera-
tive infections was 0.641 (95% CI 0.545–0.737), and sensitivity and specificity were 34.2% (95% CI 19.6–51.4) and 88.8% 
(95% CI 85.6–91.6), respectively. Including risk factors relevant to baseline variables and surgery, the deep learning model 
predicted postoperative infections was 0.763 (95% CI 0.681–0.844) with the sensitivity of 63.2% (95% CI 46–78.2) and 
specificity of 80.5% (95% CI 76.6–84). Our feasibility study indicated that a deep learning model including risk factors for 
the prediction of postoperative infections can be achieved in elderly. Further study is needed to assess whether this model 
can be used to guide clinical practice to improve surgical outcomes in elderly.
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Introduction

Infection is the leading cause of morbidity and mortality in 
hospitalized patients [1–4]. Owing to the aged deterioration 
of the whole body system including compromised immune 

function, elderly patients are susceptible to infection after 
surgery [5, 6]. Given the aging society globally, more and 
more elderly patients receive surgery. However, those 
patients face an increased risk of postoperative infections. 
Unfortunately, the risk prediction of postoperative infections 
in elderly is largely lacking [7, 8].

Artificial intelligence is emerging to be used for address-
ing medical challenges, for example, sepsis [9–11]. Recent 
advance in deep learning, one of the types of artificial intel-
ligence, has been shown to help the learning feature of data 
representations and improve modeling performance in dif-
ferent settings [12–15]. For example, several studies dem-
onstrated that a deep learning-based approach has achieved 
great success in predicting events in clinical practice [16, 
17]. However, the use of deep learning to detect postop-
erative infections in elderly patients is limited. The current 
study used a deep learning-based strategy to predict postop-
erative infections in elderly patients following surgery. The 
primary objective of this study was to develop and validate 
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deep learning models for predicting postoperative infections 
in elderly patients which focused on in-hospital assessment 
for infections. In addition, we sought to examine whether the 
deep learning neural network model is superior to the con-
ventional regression model in predicting the risk of develop-
ing postoperative infections using the area under the receiver 
operating characteristic curve (AUC) to calculate sensitivity 
and specificity.

Methods

Study design and population

This study was part of the International Surgical Outcomes 
Study (ISOS) project, an international observational cohort 
study of complications following elective surgery. ISOS 
was registered prospectively with an international trial reg-
istry (ISRCTN51817007) [18]. The study was approved by 
Research Ethics Committee, The First Affiliated Hospital, 
Zhejiang University School of Medicine (reference: 2014-
011), and all methods were performed in accordance with 
the relevant guidelines. The current dataset with permission 
to be reported was from elderly patients (≥ 60 years) who 
had elective surgery and at least one-night hospital stay and 
were recruited from 28 hospitals (Online Appendix 1) in 
China between April and June 2014. Patients with emer-
gency surgery, day-case surgery, or interventional radio-
therapy were excluded. Patients’ baseline characteristics 
included gender, current smoker, ASA score, comorbidities 
(coronary artery disease, heart failure, diabetes mellitus, 
metastatic cancer, cirrhosis, stroke, COPD/asthma, other), 
and blood measurements (hemoglobin, serum creatinine, 
sodium, and leucocytes) were collected. Surgery-related 
data included surgical procedures (orthopedic, gynecology, 
urology and kidney, upper gastrointestinal, lower gastroin-
testinal, hepatobiliary, vascular, breast, head and neck, plas-
tics and cutaneous, cardiac, thoracic, and other), anesthetic 
technique (general, spinal, epidural, and sedation/local), 
laparoscopic surgery, cancer surgery, and the severity of sur-
gery (minor, intermediate, and major), and surgical check-
list was harvested. Postoperative infections included urinary 
tract infection, bloodstream infection, superficial surgical 
site infection, deep surgical site infection, body cavity infec-
tion, and pneumonia. Infections were assessed according to 
the United States of America Centers for Disease Control 
(CDC) definitions of infections [19]. The detailed definitions 
of each infection are presented in Online Appendix 2 [20]. 
The diagnosis of postoperative infections was conducted 
by one study team member and verified by a second team 
member. The diagnostic accordance rate of postoperative 
infections was 95% by two study team members. Patients’ 

informed consent was exempted as all data were anonymized 
and were already recorded as part of routine clinical care.

A total of 2014 elderly patients were recruited (Fig. 1) to 
identify independent risk factors for postoperative infections 
by using the inverse probability (IP) weighting method. The 
associations derived from IP weighting of those risk factors 
and postoperative infections were used to construct the con-
ventional logistic regression predictive model. We assessed 
the predictive capability of the established conventional 
model for infections using sensitivity, specificity, negative 
predictive value (NPV), positive predictive value (PPV), and 
AUC. In addition, we split the original dataset into training 
and validation datasets with a 3:1 ratio to develop and vali-
date the deep learning model. Of those, 1510 patients were 
randomly assigned for the training dataset and establishing 
various neural-network-based predictive models for postop-
erative infections. The remaining 504 patients were used to 
assess the sensitivity, specificity, NPV, PPV, and accuracy 
of various neural network-based models. We assigned more 
patients to the training dataset to ensure a well-trained neural 
network.

Neural network analysis

In this study, deep learning is one of the machine learning 
models that use multilayered neural networks whose hierar-
chical computational design is partly inspired by a biological 
neuronal structure and was used to generate the output of 
the probability of infection complications after surgery [21]. 
The output layer consists of the response variables (Sup-
plemental Fig. 1). For each neuron, a weight is attached, 
indicating the corresponding neuron’s effect and all data past 
the neural network signals. The signals are processed first by 
integrating all incoming signals and activation functions that 

Fig. 1   Flow diagram of patients through the study. NPV negative 
predictive value, PPV positive predictive value, AUC​ area under the 
receiver operating characteristic curve (ROC)
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transform the neuron's output. For a specific neural network, 
the observed data are used to train the neural network, in 
which the neural learns the approximation of the relationship 
by iteratively adapting its parameters.

We fitted deep learning models using the training dataset 
and evaluated prediction performances using the validation 
set. Hyperparameter (e.g., weights) tuning to identify the 
optimal values for parameters that were learned during the 
training process was performed using a back-propagation 
algorithm iteratively based on the training dataset, referred 
to as candidate neural network predictive models. Then, 
we selected the optimal neural network predictive model 
in terms of the maximum AUC value among those candi-
date neural networks based on the validation dataset. We 
selected the optimal threshold with Youden’s index (i.e., 
sensitivity + specificity—1) based on the validation dataset 
in terms of a range of candidate thresholds. Based on the 
optimal threshold, we further calculated the corresponding 
sensitivity, specificity, NPV, and PPV. Finally, the model 
comparison was carried out using AUC for classification 
accuracy of the probability of patients with postoperative 
infections, in which the higher values, the better accuracy 
of the predictive model.

Statistical analysis

Data were presented as patient’s number (percentage) or 
odds ratio (OR) and 95% confidence interval (95% CI) where 
appropriate. All analyses were conducted using R software 
3.6.2, with a neuralnet package for training and establishing 
the neural network predictive models and a pROC package 
to calculate the sensitivity, specificity, NPV, PPV, AUC, and 
accuracy. Confidence intervals were calculated based on the 
bootstrap method with 2000 replicates. A statistical signifi-
cance was set at a level of P < 0.05.

Results

Independent risk factors associated 
with postoperative infections in elderly patients

Of 2014 patients, there were 12 potential risk factors asso-
ciated with postoperative infections using simple logistic 
regression (Supplemental Table 1). 11 risk factors were 
associated with postoperative infections after multivariable 
adjustment as summarized in Table 1. Male patients had an 
odds ratio (OR) for postoperative infections of 1.03 (95% CI 
1.00–1.06) compared with female patients. Using the low-
est ASA score as the reference, ASA III was independently 
associated with an increased risk of postoperative infections 
(OR 1.05; 95% CI 1.01–1.08; P = 0.015). Coronary artery 
disease had an OR for postoperative infections of 1.10 (95% 

CI 1.02–1.18; P = 0.008). Sedation/local anesthesia was 
independently associated with a reduced risk of postop-
erative infections with an OR of 0.95 (95% CI 0.92–0.99; 
P = 0.006). Laparoscopic surgery was independently associ-
ated with a decreased risk of postoperative infections (OR 
0.94; 95% CI 0.92–0.97; P < 0.001). In surgical procedures, 
independent risk factors of postoperative infections included 
urology and kidney surgery (OR 0.96; 95% CI 0.94–0.99), 
head and neck surgery (OR 0.96; 95% CI 0.94–0.99), and 
cardiac surgery (OR 1.34; 95% CI 1.17–1.53). Major surgery 
was independently associated with an increased risk of post-
operative infections with an OR of 1.08 (95% CI 1.06–1.11; 
P < 0.001), but intermediate surgery was independently 
associated with a decreased risk of postoperative infections 
with an OR of 0.97 (95% CI 0.95–0.99; P = 0.007). The for-
est plot for independent risk factors is shown in Fig. 2. In 
addition, more clinical aspects and information related to 
infections are presented in Supplemental Tables 2 and 3.

The conventional logit predictive model based 
on associations obtained from the IP weighting 
method

To investigate the conventional logit predictive model, we 
calculated the coefficients using associations of independent 

Table 1   Independent risk factors for patients with postoperative 
infections

ASA American Society of Anesthesiologists

Independent risk factors Adjusted

OR (95%CI) P

Gender (male vs. female) 1.03 (1.00, 1.06) 0.023
ASA score
 I Reference
 II 0.99 (0.96, 1.02) 0.391
 III 1.05 (1.01, 1.08) 0.015

IV 1.14 (0.95, 1.38) 0.149
Chronic comorbid disease (yes vs. no)
 Coronary artery disease 1.10 (1.02, 1.18) 0.008
 Other 1.03 (1.00, 1.05) 0.048

Surgical procedure (yes vs. no)
 Urology and kidney 0.96 (0.94, 0.99) 0.012
 Head and neck 0.96 (0.94, 0.99) 0.005
 Cardiac 1.34 (1.17, 1.53)  < 0.001
 Other 0.96 (0.94, 0.99) 0.010

Sedation/local anesthesia 0.95 (0.92,0.99) 0.006
Laparoscopic surgery 0.94 (0.92, 0.97)  < 0.001
Severity of surgery
 Minor Reference
 Intermediate 0.97 (0.95, 0.99) 0.007
 Major 1.08 (1.06, 1.11)  < 0.001
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risk factors with postoperative infections (Supplemen-
tal Table 4). The final logit predictive model is shown in 
Online Appendix 3. The receiver operating characteristic 
(ROC) curve of the conventional model is shown in Fig. 3. 
The logit predictive model had an AUC for the prediction 
of postoperative infections of 0.728 (95% CI 0.688–0.768), 
a sensitivity of 66.2% (95% CI 58.2–73.6), and a specificity 
of 66.8% (95% CI 64.6–68.9) (Table 2). Furthermore, the 
accuracy of the logit predictive model for the prediction of 
postoperative infections was 0.667 (95% CI 0.646–0.688).

Development and validation of deep learning 
neural network model

The distributions of independent risk factors among training 
dataset according to the status of postoperative infections are 
presented in Supplemental Table 5. There were unbalanced 
distributions of risk factors including gender, ASA, coro-
nary artery disease, head and neck surgery, cardiac surgery, 
sedation/local anesthesia, laparoscopic surgery, and severity 
of surgery between patients with and without postoperative 
infections in the training dataset. In addition, in the valida-
tion dataset, there were unbalanced distributions of risk fac-
tors including ASA, coronary artery disease, cardiac surgery, 
and severity of surgery between patients with and without 
postoperative infections (Supplemental Table 6).

Fig. 2   Adjusted odds ratio and 
95% confidence interval for 
independent risk factors using 
the inverse probability weight-
ing method. ASA American 
Society of Anesthesiology

Fig. 3   Comparison of predictive sensitivity and specificity of postop-
erative infections with the conventional model, neural network model 
I, and neural network model II assessed under the receiver operating 
characteristic curve (ROC)
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All identified independent risk factors in the previous 
section were divided into two categories: risk factors rel-
evant to baseline variables and risk factors relevant to the 
surgery. Based on these, deep learning predictive model I 
included risk factors related to the baseline variables, and 
deep learning predictive model II included risk factors asso-
ciated with the baseline variables and those relevant to the 
surgery. Considering there is no fixed rule for deciding how 
many hidden layers and neurons should be used in neural 
network predictive models, we explored the number of neu-
rons, ranging from one to two times of the inputs under a 
five layers model. We limited the third hidden layer only to 
include one neutron to facilitate the pooling of information.

Of those, there were a total of 132 neural networks 
using risk factors relevant to baseline variables. The AUC 
for possible structures of neural network predictive model 
I is shown in Supplemental Fig. 2. We found the optimal 
neural network predictive model with the best performance 
among those 132 possible neural networks with five layers 
with 6-11-3-1-1, including 1 input layer with 6 nodes of 
gender, ASA score (II), ASA score (III), ASA (IV), coro-
nary artery disease and other diseases, 3 hidden layers, and 
1 output layer (Supplemental Table 7). Supplemental Fig-
ure 3 shows the optimal structure of deep learning predic-
tive model I. As shown in Fig. 3, the AUC measure of the 
ROC curve obtained by deep learning model I was 0.641 
(95% CI 0.545–0.737). This predictive model had an overall 
sensitivity and specificity of 34.2% (95% CI 19.6–51.4) and 
88.8% (95% CI 85.6–91.6), respectively, for the prediction 
of postoperative infections (Table 2). The accuracy of the 
deep learning model I for the prediction of postoperative 
infections was 0.847 (95% CI 0.813–0.878).

There were 756 neural networks related to all independ-
ent risk factors. The AUC for possible structures of neu-
ral network predictive model II is shown in Supplemental 
Fig. 4. We found the optimal neural network predictive 
model with the best performance among those 765 possible 
neural networks with five layers with 14-28-24-1-1, includ-
ing 1 input layer with 14 nodes of gender, ASA score (II), 
ASA score (III), ASA score (IV), coronary artery disease, 
other diseases, urology, and kidney surgery, head and neck 
surgery, cardiac surgery, other surgery, sedation/local anes-
thesia, laparoscopic surgery, surgical severity (intermediate) 
and surgical severity (major), 3 hidden layers, and 1 output 

layer. (Supplemental Table 7). Supplemental Figure 5 shows 
the optimal structure of deep learning predictive model II. 
As shown in Fig. 3, the AUC measure of the ROC curve 
obtained by deep learning model II was 0.763 (95% CI 
0.681–0.844). This predictive model had an overall sensi-
tivity and specificity of 63.2% (95% CI 46–78.2) and 80.5% 
(95% CI 76.6–84), respectively, for the prediction of postop-
erative infections (Table 2). The accuracy of deep learning 
model II for the prediction of postoperative infections was 
0.792 (95% CI 0.754–0.826).

Discussion

In this observational cohort study, we applied a deep learn-
ing framework for the prediction of infections in elderly 
patients after surgery. We demonstrated that an artificial-
intelligence model using deep learning neural networks can 
achieve a promising prediction of postoperative infections 
in elderly patients. Predictive performance was improved 
further when the deep learning-based model was derived 
with risk factors relevant to baseline clinical characteristics/
measurements and surgery in combination. Our work indi-
cates that using deep learning may guide clinical practice 
to prevent infections following surgery in elderly although 
further work is needed to validate machine learning for it to 
be a potential and ubiquitous integral part of routine clinical 
use for elderly surgical patients.

Deep learning is the process of training a neural network 
(a large mathematical function with millions of parameters) 
to perform a given task [14]. Many hidden layers neurons 
were used to produce increasing abstracted, nonlinear rep-
resentations of the underlying data [22]. Considering the 
possible non-linear associations, an artificial neural net-
work based on multiple-layer perceptions reflects a complex 
functional relationship between risk factors and respond-
ing variables with the back-propagation algorithm, the logit 
activation function, and error function. Deep learning uses 
back-propagation to indicate how a machine should change 
its internal parameters to predict the best desired output of 
responding variables [14]. This makes artificial neural net-
works to be a valuable toolbox for prediction. Indeed, deep 
learning models have been successfully applied in health 
care to predict clinical events, disease classification, and 

Table 2   Summary of the predictive performance of these three established models

NPV negative predictive value, PPV positive predictive value, AUC​ area under receivers operating characteristic curve

Method Cutoff Sensitivity Specificity NPV PPV AUC​

Logit model 0.510 0.662 (0.582, 0.736) 0.668 (0.646, 0.689) 0.960 (0.948, 0.970) 0.142 (0.117, 0.169) 0.728 (0.688, 0.768)
Neural network: 11-3-1 0.077 0.342 (0.196, 0.514) 0.888 (0.856, 0.916) 0.943 (0.917, 0.963) 0.200 (0.111, 0.318) 0.641 (0.545, 0.737)
Neural network: 28-24-1 0.077 0.632 (0.460, 0.782) 0.805 (0.766, 0.840) 0.964 (0.940, 0.980) 0.209 (0.139, 0.294) 0.763 (0.681, 0.844)
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electronic health record data augmentation [23–27]. How-
ever, the use of deep learning to detect disease and complica-
tions in elderly patients is limited. In our study, we applied 
a deep learning approach to evaluate postoperative infec-
tions among elderly patients. Using a database of more than 
2000 patients for training and validation, we found that the 
deep learning model had a high AUC of 0.763 for predict-
ing postoperative infections among elderly patients after 
elective surgery. A fundamental finding in our study is that 
the deep learning model in predicting postoperative infec-
tions was better when compared with the standard regres-
sion model; the latter is often used as a traditional statistic 
method in building a prediction model. Recent studies have 
also demonstrated promising performance for predicting dis-
ease development using deep learning [28–30]. For example, 
a study reported a sensitivity of 96.8% at a specificity of 
59.4% for detecting referable diabetic retinopathy [31]. In 
conjunction with these studies, our results further demon-
strated that the deep learning algorithm can provide informa-
tive measures for the prediction of postoperative infections 
in elderly patients. The modeling approach reported here 
offers straightforward and computationally rapid guidance 
for clinicians to predict the likelihood of infections after 
surgery. We envision that our deep learning model can be 
used to identify high-risk elderly patients for postoperative 
infections. The findings may suggest the potential usage of 
our model to help doctors to justify interventions that may 
have a significant impact on perioperative management for 
elderly patients per se.

As elderly patients are the most frequent users of opera-
tive resources and are also the most vulnerable to postop-
erative infections, it is important for clinicians to gauge risk 
factors preoperatively [32, 33]. In this study, we identified 
11 independent risk factors associated with postoperative 
infections including gender, ASA score, chronic comorbid 
diseases, surgical procedures, sedation/local anesthesia, lap-
aroscopic surgery, and severity of surgery. More importantly, 
among the above risk factors, sedation/local anesthesia and 
laparoscopic surgery could reduce postoperative infections. 
These findings provide important evidence to clinical peri-
operative management for elderly patients. Interventions 
should be considered to tackle those risk factors to opti-
mize the patient’s conditions before surgery. Indeed, some 
of these factors are modifiable by surgeons and anesthesiolo-
gists before surgery except gender, ASA score, and chronic 
comorbid disease. For example, sedation/local anesthesia 
was independently associated with a decreased risk of post-
operative infections with an OR of 0.95 (95% CI 0.92–0.99; 
P = 0.006), suggesting anesthesiologists to select sedation or 
local anesthesia rather than general anesthesia when seda-
tion or local anesthesia can meet the requirements of the 
surgery. In addition, laparoscopic surgery was also found to 
be associated with reduced postoperative infections with an 

OR of 0.94 (95% CI 0.92–0.97; P < 0.001), suggesting when 
feasible, laparoscopic rather than laparotomy surgery should 
be chosen. Therefore, some factors that reduce the risk of 
infections highlighted in our study could be preoperatively 
modified to improve the clinical outcome in elderly patients.

The strength of this study was that it collected a rela-
tively large group of elderly patients undergoing elective 
surgery in multiple institutions. In addition, the baseline 
parameters and surgery-relevant characteristics applied in 
the deep learning model dovetail with a customary clini-
cal workflow that can be routinely collected. However, this 
study is not without limitations. Clinical uses of AI have 
aroused skepticism including the difficulty of explaining the 
complex computational steps leading to a machine-gener-
ated clinical determination [34]. Although the deep learn-
ing model performs better than the conventional regression 
model in estimating the risk of postoperative infections in 
elderly patients, further studies are needed for validation. 
First, the deep learning model was built based on elderly 
patients admitted in the year of 2014, and further research 
is needed to verify the predictive performance of this model 
nowadays. Second, only data of routine clinical variables 
were used in the present study and we expect that the pre-
dictive performance could be boosted if individual assess-
ment including the perioperative neurological status of 
elderly patients who often have delirium and/or cognitive 
impairment before and after surgery is incorporated into the 
model. Third, the present study focused on the prediction 
of infections including urinary tract infection, bloodstream 
infection, superficial and deep surgical site infection, body 
cavity infection, and pneumonia after elective surgery, which 
may not be well equipped for the specific types of infection. 
Fourth, considering the sensitivity and the specificity for 
predicting postoperative infections, our model seems to be 
relatively specific but not very sensitive. Further, study is 
needed to verify these findings and perhaps these can be 
improved by increasing the training data per se.

Conclusions

We found that an artificial intelligence with a deep learn-
ing model has considerable advantages on predicting post-
operative infections in elderly patients, indicating that the 
deep learning features are more discriminative and may 
have a better potential for predicting postoperative infec-
tions in elderly patients. Further investigation is warranted 
to improve the performance of the model and to understand 
how the model predicts postoperative infections even better.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s40520-​022-​02325-3.
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