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Abstract
Exposure to fine particulate matter  (PM2.5) is associated with adverse health effects, including mortality, even at low concen-
trations. Rail conveyance of coal, accounting for one-third of American rail freight tonnage, is a source of  PM2.5. However, 
there are limited studies of its contribution to  PM2.5, especially in urban settings where residents experience higher exposure 
and vulnerability to air pollution. We developed a novel artificial intelligence-driven monitoring system to quantify average 
and maximum  PM2.5 concentrations of full and empty (unloaded) coal trains compared to freight and passenger trains. The 
monitor was close to the train tracks in Richmond, California, a city with a racially diverse population of 115,000 and high 
rates of asthma and heart disease. We used multiple linear regression models controlling for diurnal patterns and meteorol-
ogy. The results indicate coal trains add on average 8.32 µg/m3 (95% CI = 6.37, 10.28; p < 0.01) to ambient  PM2.5, while 
sensitivity analysis produced midpoints ranging from 5 to 12 µg/m3. Coal trains contributed 2 to 3 µg/m3 more of  PM2.5 than 
freight trains, and 7 µg/m3 more under calm wind conditions, suggesting our study underestimates emissions and subse-
quent concentrations of coal train dust. Empty coal cars tended to add 2 µg/m3. Regarding peak concentrations of  PM2.5, our 
models suggest an increase of 17.4 µg/m3 (95% CI = 6.2, 28.5; p < 0.01) from coal trains, about 3 µg/m3 more than freight 
trains. Given rail shipment of coal occurs globally, including in populous areas, it is likely to have adverse effects on health 
and environmental justice.
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Introduction

Myriad large epidemiological studies definitively estab-
lish that exposure to fine particulate matter (particles less 
than 2.5 microns in diameter or  PM2.5) is associated with a 
wide range of adverse health effects. Exposure to  PM2.5 has 
been linked to premature mortality, cardiovascular, cerebro-
vascular, and respiratory diseases, other chronic diseases, 
adverse birth outcomes, and cognitive and developmental 
impairments (WHO 2021, U.S. EPA 2019). These effects 
occur even at concentrations lower than current regulatory 
standards (Brunekreef et al. 2021).While most studies of 
PM2.5 have examined daily or multi-year exposures, there 
is evidence of health effects from exposures of as short as 

one hour (Liu et al. 2021; Peters et al. 2001; Wu et al. 2020). 
The World Health Organization recently lowered their air 
quality guidelines and indicated there is no known safe level 
of  PM2.5 (U.S. EPA 2019; WHO 2021). The recent study 
of the Global Burden of Disease estimates that exposure to 
 PM2.5 contributed to 6.7 million deaths per year worldwide, 
nearly 12% of the global total and the fourth highest risk 
factor for global mortality (Fuller et al. 2022). Of note, expo-
sure to  PM2.5 constitutes an environmental justice concern as 
exposure and adverse effects are borne disproportionately by 
the most vulnerable, including infants, children, the elderly, 
people of color, those with low incomes, and those with 
underlying health conditions (Tessum et al. 2021).

Recent studies report that the combustion of fossil fuels, 
including coal, oil, and natural gas, is the largest source 
of ambient  PM2.5-related mortality with coal the largest 
source of this mortality (Vohra et al. 2021; McDuffie et al. 
2015). Combustion, however, is not the only source of coal-
related particulate matter as fugitive dust from rail transport 
is known to be significant (BNSF Railway 2011). Trains 
transport nearly 70% of coal deliveries in the United States, 
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with coal accounting for 1 of every 3 tons of American rail 
freight (US Energy Information Administration 2022). In 
a note to its customers, the BNSF Railway’s own assess-
ment stated: “The amount of coal dust that escapes from 
PRB [Powder River Basin in Wyoming and Montana] is 
surprisingly large” and reports have indicated that as much 
as 3% of the coal loaded into a coal car can be lost in tran-
sit (Baruya 2012; BNSF Railway 2011). Studies have con-
firmed that coal trains produce particulate matter through 
not only engine diesel emissions but also directly from the 
coal. These latter emissions are via blow-off, suspension, 
and re-entrainment from wind erosion and wind scouring of 
loaded and unloaded coal cars, door leakage, and the “para-
sitic load, i.e., coal spilled and carried on external parts of 
the train (Prakash et al. 2018). The magnitude of ambient 
particulates from coal trains are influenced by train and wind 
speed, weather, moisture, rail car and load geometry, physi-
cal properties of the coal, vibration, and the use and efficacy 
of dust suppression methods (Prakash et al. 2018). Unfortu-
nately, the actual contribution of coal trains to ambient  PM2.5 
is poorly documented.

Given the dearth of studies quantifying the effects of coal 
transport on subsequent concentrations of particulate mat-
ter and the significant health implications of exposure to 
particulate matter, additional study is warranted. Below, we 
report results from the novel monitoring system we devel-
oped and utilized to quantify the contribution to ambient 
 PM2.5 from uncovered railcars that convey coal predomi-
nantly from mines in Southern Utah to the Levin Terminal 
in Richmond, California.

Methods and materials

Data collection

Particulate matter from coal is known to contain many impu-
rities and elements including heavy metals known to be toxic 
or carcinogenic to humans (OEHHA 2015). Specifically, the 
coal of interest in this study originated from the Wasatch 
Plateau coal fields, a coal-bearing outcrop approximately 
145 km long and 11 to 32 km wide (Hatch et al. 1979). Pre-
vious assessments have determined coal from the plateau to 
be high volatile bituminous (Hatch et al. 1979). The coal is 
primarily carbonaceous with various inclusions and impuri-
ties, including several mineral species along with elemental 
impurities of Cr, Ni, and Se. There are also trace elements 
including As, Ba, Cd, F, Mn, Sb, Sr, Th, U, and V (Hatch 
et al. 1979).

To determine the  PM2.5 concentration resulting from 
passing full and unloaded (“empty”) coal, freight and pas-
senger trains, passing trains were monitored from May 19, 
2022 through October 31, 2022 at a populated residential 

site approximately 7 km north of the terminal. The site is 
near the culmination of an 800-mile journey, thereby captur-
ing the realistic conditions of long-haul coal conveyance as 
compared to the conditions at departure where dust suppres-
sants are freshly applied, and trains are optimally loaded. 
The monitoring site is approximately 21.5 meters east (gen-
erally downwind) of the rail line, with parkland to the east 
and the San Francisco Bay to the west (Fig. 1). The site 
was selected to avoid  PM2.5 from other important sources 
such as major roadways, industrial facilities, Richmond port 
operations and the Levin terminal itself. This location and 
our study methodology ensured that any observed changes 
in  PM2.5 as the trains passed were strictly due to the trains 
themselves.

The train monitoring system comprises three data col-
lection systems:

1. A personal weather station
2. An air quality sensor
3. A custom camera system

The personal weather station was selected for direct data 
output via serial communication (VantageVue, Davis Instru-
ments, USA). It provides temperature, ambient pressure, 
relative humidity, precipitation, and other meteorological 
parameters. The meteorological data is collected every one-
minute. In addition, hourly wind speed and direction were 
derived from the NOAA site in Richmond for comparison.

The air quality sensor is a custom package consisting of 
three optical PM sensors (PMS5003, Nanchang Panteng 
Technology Co., Ltd, China). These are equivalent to cell-
reciprocal nephelometers and are commonly recognized as 
the sensors used in the widely-distributed PurpleAir PA-II 
monitor (Ouimette et al. 2022). The sensor responds to opti-
cal scattering from a 657 nm laser. Therefore, it is associ-
ated with mass via the mass scattering coefficient, which 
is a function of the chemical, morphological, and optical 
properties of the observed particles. The accuracy of this 
determination is governed by the variability of particle 
characteristics in the temporal and spatial dimensions. The 
sensors’ high temporal resolution of one second and their 
inter-instrument precision, as assessed by numerous field 
and laboratory studies, were the principal qualities that ena-
bled the detection of rapid train events (Tsai et al. 2020; AQ-
SPEC 2022). Three channels were included to strengthen 
data quality control and calculate variance for each obser-
vation. The raw data from all three sensors was collected 
every second.

Data quality metrics of the PM2.5 data were evalu-
ated for 1 s, 10 s, and 10 min, equivalent to instantaneous 
readings, train event averaging, and pre-event background 
conditions, respectively. Prior to evaluation, the data was 
cleaned to remove aberrant sensor readings. Specifically, 
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values outside two standard deviations were omitted. In all 
cases, these values were excessively high readings from 
the low-cost sensor. The observations used in the subse-
quent statistical analysis ranged from 0 to 117.45 µg  m−3 
with a median uncertainty of 27%, well within the linearity 
range of the sensors of < 300 µg3 (Barkjohn et al. 2022).

The custom camera system consists of a microcomputer 
(Jetson Nano, Nvidia, USA), a camera (NoIR PiCamera, 
Raspberry Pi), an artificial intelligence (AI) accelerator 
(Coral Edge TPU, Google, USA), a solid-state hard drive 
(500 GB T5, Samsung, S. Korea), and an infrared floodlight 
(IR Illuminator 30 deg, Axton Technologies, USA). The sys-
tem is placed approximately 60 m from the chosen source 
and operates autonomously on a continuous basis, except for 
a daily 30-min period when data is being uploaded to a cloud 
server (Lightsail, Amazon Web Services, USA).

The camera system is the pivotal technology that ena-
bles detection of passing trains. Images from the camera 
are passed to the computer at 30 frames per second, where 
they are pre-processed and passed to the AI accelerator. The 
accelerator is a Tensor Processing Unit (TPU, Coral Edge 
TPU, Alphabet, USA), which runs an image classification 
model customized for the monitoring location. This model 

identifies whether or not a train is present in the image. If so, 
the computer creates a train event and records: one second 
before the train was detected, the entire train event, and one 
second after the train is no longer detected. This record-
ing is saved as an individual train event to an external hard 
drive. Train speed (meters per second) and the train direction 
towards or away from the terminal were determined dur-
ing manual post-processing of the data. Determining object 
velocity from video recordings is error prone due to variable 
image processing rates. Instead, train speeds were estimated 
by using the average frame rate (frames per second) recorded 
during the monitoring period and fixed observation points 
in the camera’s field of view. A schematic diagram of the 
system is presented in Fig. 2.

For each 24-h period, data was aggregated from all three 
data sources and standardized into one second observa-
tions for each measurement parameter including meteor-
ology,  PM2.5 concentrations and train detection. During 
this < 30-min period, the monitoring systems were disabled 
and the data file along with associated video files were 
uploaded to the cloud server. The data aggregation and 
upload period were scheduled in the early morning hours 
when train activity was determined to be consistently absent. 

Fig. 1  Location of monitor site 
and surroundings

Fig. 2  A schemata of the data 
collection system
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Files located in the cloud were retrieved at the user’s con-
venience for post-processing, which consisted of associating 
particulate matter and meteorological data with the observed 
train events based on the shared data timestamps. Accurate 
date and time determinations were ensured by consistent 
internet connection and verification by the operating system. 
Further detail on the derivation of the variables used in our 
analysis is provided in Appendix A.

Data management

The  PM2.5 during train passage was recorded in one-second 
concentrations and averaged for the roughly 4 to 5 min of 
passage (longer for freight trains). In addition to the  PM2.5 
average during the passage of the train, the maximum 10-s 
average concentrations during the train passage were also 
recorded and analyzed in order to compare with previous 
studies.

To determine the change in  PM2.5 due to passing trains, 
we quantified the difference between the measured  PM2.5 at 
the rail site and a “control” period of exposure. The control, 
also considered a “pre-exposure” period, corresponded to 
the period just prior to a train’s passage, allowing capture 
of ambient  PM2.5 without the train’s contribution as well 
as controlling for normal diurnal and regional changes in 
 PM2.5 concentrations. A generally similar approach was used 
by previous studies (Jaffe et al. 2015; Akaoka et al. 2017). 
We also established a gap between the control period and 
the train passage to ensure that particles influenced by the 
high-pressure zone in front of an oncoming train would not 
be included in the control.

To select the duration of the control exposure and this gap 
immediately before the train passage, we examined several 
alternatives including: a five-minute average ending with a 
2- minute gap before the train (5/2) as well as 3/2, 5/5, 10/2, 
10/5 and 10/10. Ultimately, the results were insensitive to 
the alternative control and gap periods, so only the results 
using 10/10 are reported below.

Analysis

We addressed several issues including whether full or empty 
coal cars contribute to local ambient  PM2.5 concentrations 
and, if so, by how much. We also compared the impacts 
of coal cars relative to those of both freight and passenger 
trains. Using multiple linear regression with the change in 
 PM2.5 concentration as the dependent variable, our model 
included binary variables for each of the four train types 
(passenger, freight, empty and full coal) and examined and 
controlled for potential confounders. For example, a previ-
ous study found a strong association between  PM2.5 from 
coal trains and the effective wind speed (the sum of train 
and wind speed) (Jaffe et al. 2015). To test the sensitivity 

of our results to the model specification, we examined the 
impact of several covariates including train speed, wind 
speed, effective wind speed, duration of exposure (based on 
the elapsed time of the train passing), average temperature, 
dewpoint and relative humidity. The inclusion of humidity 
served to control for the potential impact of the hygroscopic 
property of fine particles when measured with optical sen-
sors. We ran the model without a constant term, which facili-
tated the direct comparison of the impact among the train 
types. The model results were identical to a model that adds 
a constant term and drops one of the train types to avoid 
multi-collinearity.

Additional sensitivity analysis included examining the 
impact of converting the negative values for the change in 
 PM2.5 into zero values. The negative change from the control 
period could be a result of significant dust from activities at 
the monitor’s residential location, dust from trains occurring 
in the control period, or from a sudden change in wind speed 
or direction prior to the train arrival. We also considered 
subsets of certain covariates. For example, we examined 
those days where wind was below the mean level of 3.1 mph 
since these calmer periods may relate to higher concentra-
tion at the nearby monitor, whereas particles may disperse 
to a larger area under other wind conditions. Finally, we 
tested a model where the air quality sensor was calibrated 
and directly corrected for relative humidity using the clos-
est Federal Equivalency Method (FEM) monitor to our site. 
This monitor was located in nearby San Pablo (Air Quality 
System Site ID: 06–013-1004), 1.6 km from our site and 
generated the following fit, with an  R2 of 0.58:

where PM2.5_C is the calibrated and corrected concentra-
tion of  PM2.5, and PM_PA is the original reading at the train 
site. In addition to the average change in  PM2.5 (difference of 
 PM2.5 during train passage and the control), the maximum 
(10 s average) concentration relative to the control period 
was analyzed to compare with findings of previous studies.

Results

Ultimately, during the six-month observation period, the 
increases in ambient  PM2.5 concentrations were measured 
during the passage of four different train types. Complete 
data were available for full coal trains (n = 15), empty coal 
trains (n = 14), freight trains (n = 568) and passenger trains 
(n = 2235) as identified by the video recordings from the 
camera system described above. There were some significant 
differences between characteristics of the train types (see 
Appendix B for detailed summary statistics). For example, 
focusing on freight trains versus full coal trains, the mean 

PM2.5_C = 9.79 + .76 ∗ PM_PA − 0.095 ∗ humidity
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duration (in seconds) and speed (m/s) for the former were 
236 and 18.3, versus 144 and 12.5 for the latter. At the other 
extreme, the means of these same parameters for passenger 
trains were 2.2 s and 31.7 m/s.

The results for the basic regression model are presented 
in Table 1. As expected, wind and train speed were both 
statistically significant. In addition, the passage of an empty 
coal car contributed about 2.3 µg/m3 (95% CI = -0.28, 4.82; 
p < 0.1) to the ambient air, while freight and full coal cars 
contributed 4.5 µg/m3 (95% CI = 3.82, 5.18; p < 0.01) and 
6.8 µg/m3 (95% CI = 4.34, 9.24; p < 0.01). Controlling for 
the direction of the freight train did not alter the results. 
This finding indicated that the regression coefficients of 
these three train types (freight and full/empty coal) were 
statistically significant from zero and also statistically dif-
ferent from each other. In contrast, the  PM2.5 increment from 

passenger trains was relatively small and not significantly 
different from zero, so it was not included in the sensitivity 
analyses below. The amount of explained variation from the 
basic model was relatively low at 16%.

The findings of the sensitivity analysis are displayed in 
Table 2. Given the null impact of passenger trains, further 
results for this mode were not included. Model (1) repro-
duces the results of the basic model. Model (2) added 
the average temperature during the one-hour average that 
included the train passage, and resulted in increases in the 
 PM2.5 impact for all three train types with empty coal, freight 
and full coal cars contributing 5.6 µg/m3 (95% CI = 2.5, 8.7), 
7.5 µg/m3 (95% CI = 5.8. 9.2) and 9.7 µg/m3 (95% CI = 6.8, 
12.6), respectively. All were statistically significant with 
p < 0.01. Model (3) indicates the impact of adding humid-
ity which resulted in reductions of approximately 2.5 µg/m3 
from the basic case. Model (4) again includes humidity but 
assigns a zero value when the change in  PM2.5 was negative. 
This adjustment slightly increased the  PM2.5 contribution 
of all of the train types. Model (5) adds a control for dew-
point, a combination of temperature and humidity, which 
resulted in an increase in the change in  PM2.5 from the basic 
model, while in Model (6) observations are restricted to 
those occurring during calm wind conditions (less than the 
mean of 3.0 mph). This constraint significantly increased 
the contribution of coal trains to ambient  PM2.5 to 12.1 µg/
m3 (95% CI = 7.7, 16.5; p < 0.01) versus 5.1 µg/m3 (95% 
CI = 3.8, 6.4; p < 0.01) for freight cars. Finally, Model (7) 
uses the data from the calibrated  PM2.5 concentrations and 
generated statistically significant estimates of 8.3 µg/m3 
(95% CI = 6.4, 10.3; p < 0.01) and 6.5 µg/m3 (95% CI = 6.0, 
7.1; p < 0.01), respectively, for full coal and freight trains. 
Models (1) through (6) each exhibited modest  R2 less than 
0.19. However, the calibrated Model (7), which provided a 
robust correction for humidity, explained 53% of the varia-
tion in the change in  PM2.5. Additional model specifications 
of Model (7) with covariates used in the earlier models such 
as train duration, effective wind speed or quadratic terms 
failed to improve the model fit.

Table 1  Regression Results for Basic Model

PM2.5ave = average during train passage;  PM2.5max = maximum 10 s 
during train passage; standard errors in parentheses
***  p < 0.01, ** p < 0.05, * p < 0.1

Variables PM2.5ave PM2.5max

Windspeed -0.256*** -3.865***
(0.0628) (0.742)

Train speed 0.0131** 0.185*
(0.00582) (0.089)

Passenger 0.257 7.785
(0.455) (7.265)

Empty Coal 2.274* 12.179
(1.301) (8.194)

Freight 4.496*** 18.498***
(0.347) (4.095)

Full Coal 6.794*** 22.838***
(1.252) (7.484)

R2 0.16 0.25
n 2829 550

Table 2  Regression Results of 
the Increase in Average  PM2.5 
(µg/m3) in Alternative Models

***  p < 0.01, ** p < 0.05, * p < 0.1
Models are: (1) Basic (2) Basic + temperature (3) Basic + humidity 4) Basic + humidity + negatives = 0 (5) 
Basic + dew point (6) wind speed < mean (7) Calibrated monitor. (Note: Basic model includes wind speed, 
train speed and a binary variable for each train type, no constant)

Train type 1 2 3 4 5 6 7

Empty Coal 2.27* 5.64*** 0.96 1.10 5.84*** 2.19 6.41***
Freight 4.50*** 7.49*** 2.78*** 3.05*** 7.80*** 5.07*** 6.53***
Full Coal 6.79*** 9.71*** 5.09*** 5.20*** 10.00*** 12.12*** 8.32***
R2 0.16 0.16 0.16 0.18 0.16 0.20 0.53
n 2829 2829 2829 2829 2829 1330 2829
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Table 3 displays the regression results for the increase in 
peak (10 s average)  PM2.5 concentrations above the control 
concentrations during the passing of full coal cars (n = 18), 
empty coal cars (n = 16) and freight cars (n = 653). Results 
for passenger trains were not included since few of these 
trains had durations that were 10 seconds or more. The 
model specifications were similar to those used in the pre-
vious analyses and included wind speed, train speed and 
the 3 train types. Given the above findings, we focused on 
3 different models: a basic model (Model 1), a model cor-
rected and calibrated for humidity as above (Model 2), and 
the calibrated model under calm wind conditions defined as 
average wind less than the mean (Model 3).

For the basic model, the results indicated an increment 
in maximum  PM2.5 over the control period of 22.9 µg/m3 
(95% CI = 8.1, 37.5); p < 0.01) for full coal trains. For the 
model calibrated and corrected for humidity, the increment 
from coal cars was 17 µg/m3 (95% CI = 6.2, 28.5; p < 0.01) 
while the corresponding change in  PM2.5 was 14.1 µg/m3 
(95% CI = 7.9, 20.2; p < 0.01) for freight trains and 9.3 µg/
m3 (95% CI = -3.0, 21.5, NS) for empty coal cars. Under 
calm wind conditions, the impact from coal cars increased 
to almost 20 µg/m3 (95% CI = 3.4, 36.6; p < 0.05) while the 
freight increment did not change from the previous case.

Discussion

Our results indicate that the average change from passing 
coal trains adds approximately 8.32 µg/m3 (95% CI = 6.37, 
10.28; p < 0.01) to the ambient  PM2.5, with a range of mid-
point estimates, based on the sensitivity analysis, of 5 to 
12 µg/m3. These results also suggest that full coal cars con-
tribute approximately to 2 to 3 μg/m3 of  PM2.5 more than 
freight trains observed in our Richmond, California sample. 
Strikingly, with very calm winds, the nearby concentrations 
from coal trains were about 12 μg/m3 versus 5.1 for freight 

trains. This suggests the possibility of our study underesti-
mating the emissions and overall impact of dust from coal 
trains, since on windier days the dust may simply be dis-
persed over a wider region beyond our monitoring site. We 
also observed that unloaded coal cars tended to add 2 μg/
m3 of  PM2.5 to the existing ambient concentrations, with a 
range from our sensitivity analysis of from about one (non-
significant) to over 5 µg/m3. Regarding peak (10 s) concen-
trations of  PM2.5, the calibrated model indicated an increase 
of 17.4 µg/m3 (95% CI = 6.2, 28.5) from coal trains which 
tended to contribute about 3.5 µg/m3 more than freight trains 
across the models examined. Calm wind conditions resulted 
in an increase from coal trains of 20 µg/m3 (95% CI = 3.4, 
36.6; p < 0.01).

Given the known bias of humidity on optical PM moni-
tors, in addition to controlling for humidity and dewpoint 
directly in the model specification, a regression model was 
estimated using data calibrated and corrected for humidity 
using a nearby FEM monitor (Barkjohn et al. 2021). It is 
well established that mass calibrations of optical sensors 
are temporally and spatially dependent on particle optical 
characteristics (Dubovik et al. 2002; Bond and Bergstrom 
2006). The assumption here is that consistent calibration fac-
tors from monitors within the same geographic region and 
time period are reasonable surrogates for in situ calibration.

There are only a few previous studies that have measured 
 PM2.5 concentrations from coal trains. One study examined 
coal and freight trains passing through the rural Columbia 
River Gorge (Washington) in the summer of 2014 (Jaffe 
et al. 2015). The study examined the difference between the 
10 s maximum  PM2.5 and the background concentration. The 
authors observed a doubling in peak concentration for coal 
trains (20.9 µg/m3) versus freight trains (10.7 µg/m3). This 
is consistent with our results for coal trains using a similar 
averaging time of 17.4 µg/m3. The average effective wind 
speeds in the Jaffe study were much higher than those in 
our study and were often associated with very high concen-
trations of  PM2.5. This suggests that  PM2.5 concentrations 
associated with train passage are likely to be even greater 
in certain areas farther away from the City of Richmond’s 
urban setting due to greater train speeds.

A previous study collected data on coal trains operating in 
the Fraser River Delta area of British Columbia, Canada. In 
comparing ambient air impacts of the coal trains (n = 20) to 
background concentrations, the results suggested an increase 
of 5.3 (a 54% increase over background), 4.1, and 2.6 µg/
m3, respectively, for  PM3 (comparable to  PM2.5),  PM10, and 
 PM20, with occasional spikes in  PM3 from coal trains to 
100 µg/m3 (Akaoka et al. 2017).

Another study collected data on a single day from four 
monitors located at varied distances from the train line on 
full (n = 10) and empty (n =11) coal trains heading to and 
from the Port of Newcastle in New South Wales, Australia 

Table 3  Regression Results of the Increase in Peak  PM2.5 (µg/m3) in 
Alternative Models

***  p < 0.01, ** p < 0.05, * p < 0.1;
Models are: (1) Basic (2) Calibrated monitor (3) Calibrated monitor 
with wind < mean
Basic model includes wind speed, train speed and a binary variable 
for each train type

Train type 1 2 3

Empty Coal 12.8 9.26 8.09
Freight 18.50*** 14.06*** 14.37***
Full Coal 22.84*** 17.37*** 19.96 **
R2 0.25 0.25 0.27
n 550 550 360
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(Higginbotham et al. 2013). For full coal cars, there were 
increases of 2.9 and 7.2 µg/m3, respectively for  PM2.5 and 
 PM10 and 7.1 and 18.9 for empty coal cars. Higher impacts 
for empty coal cars were also reported in studies by Kates-
tone Environmental Pty Ltd (2013).

Finally, Ryan and Wand (2014) analyzed the impacts of 
freight, empty coal and full coal trains in the Hunter Valley 
in New South Wales, Australia (Ryan and Wand 2014). The 
crude (unadjusted) increases in  PM2.5 for passing freight, 
empty coal and full coal cars was 0.53, 1.13 and 1.20 µg/
m3, respectively; all statistically significant differences from 
baseline levels. Their measurements indicated that particu-
late level concentrations were elevated not only during but 
also prior to and especially after a train’s passing.

Most of the dust from coal trains occurs from the rail car 
(80%), with spilled coal (9%) and door leakage (6%) being 
other sources (Connell Hatch 2008). A consequence is coal 
dust deposition, with studies finding that, on average, coal 
composed 6—25% of deposited dust in rail corridors, although 
Akaoka et al. reports up to 90% in local dust (Akaoka et al. 
2017; DSITIA 2015). Evidence indicates that particulate mat-
ter from coal trains, storage and open mines can disperse at 
least 500 m from the source (Trivedi et al. 2009; Akaoka et al. 
2017; Srivastava et al. 2021; Sahu and Pakra 2022).

To put our results into perspective, the current U.S.EPA 
24-h and annual average standards are 12 and 25 μg/m3, 
respectively, while the World Health Organization guide-
lines for the same averaging times are 5 and 10 μg/m3 (U.S. 
EPA 2019; World Health Organization 2021). In addition, 
both U.S.EPA and WHO indicate that there is no threshold 
or safe level for ambient  PM2.5. Therefore, a hypothetical 
three coal trains per week in an urban area could represent 
an important increase in  PM2.5 to nearby residents. Incre-
mental concentrations would subsequently increase the 
risk of a wide range of health effects including: premature 
mortality, cardiovascular and respiratory hospitalization or 
urgent care visits, increases in or exacerbation of asthma, 
adverse birth outcomes (e.g., low birth weight, prematurity, 
birth defects and neurodevelopment), possible neurological 
impacts in children and adults (autism, Alzheimer’s, Par-
kinson’s) as well as functional impacts such as days with 
respiratory symptoms, restricted activity, and work or school 
loss (WHO 2021). As noted above, even acute  PM2.5 expo-
sures as short as one hour (or a few hours) can increase the 
risk of adverse health outcomes, including: acute myocardial 
infarction, hospitalization and emergency department visits 
for cardiovascular and respiratory disease, ambulance calls 
and asthma exacerbation (Yorifuji et al. 2014; Kim et al. 
2015; Chen et al. 2019).

Our study has several advantages including the develop-
ment of an AI-based platform for precise identification of 
train types during the day or night; real time measurement 
of  PM2.5 and meteorology; siting of a monitor with only the 

trains as a source of  PM2.5; and the ability to produce data on 
train direction and speed. There were also some shortcom-
ings in our study. There was only a small number of full and 
unloaded coal cars due to the reduction in economic activ-
ity during the COVID-19 pandemic and related supply chain 
issues. There was only a single monitor to measure the impact 
of passing trains. This was due to both logistical constraints 
pursuant to the COVID-19 pandemic and the difficulty in find-
ing monitor host sites that were not impacted by other  PM2.5 
pollution sources in Richmond, a city transected by major 
highways, refineries, other heavy industry and a port. There 
is the possibility of exposure misclassification if some of the 
freight trains also included coal cars. The low  R2 in some of 
the regression models could be due to several factors including 
the assignment of hourly wind, temperature and humidity to 
the 4–5 min of train passage and uncertainty in estimating train 
speed and length. There were also unmeasured factors such as 
train weight and number of engines. Finally, it is important to 
note that our analysis did not include measurements of either 
ultrafine (particles less than 0.1 micron) or coarse particles 
(PM10) which will always be generated from the passing 
trains. Since there is substantial evidence of adverse health 
effects from both of these particle sizes, the actual health risks 
posed by passing coal trains are clearly underestimated in this 
present study (Adar et al. 2014; Ostro et al. 2015).

Identifying the source of fugitive dust is important in part 
because the implications of exposure extend beyond individual 
and population health effects to matters of environmental and 
racial justice (Mikati et al. 2018). While coal dust can have far-
ranging population exposures, the communities in relatively 
close proximity to the rail lines will be disproportionately 
exposed. These residents are more likely to be of lower-income 
or people of color (or both) and also more vulnerable to adverse 
health outcomes (Hricko et al. 2014; Jha and Muller 2017).

Finally, the impacts of the rail transport of coal are com-
pounding because it involves traversing thousands of kilo-
meters, meaning multiple environmental justice communi-
ties are impacted. Ecosystems such as rivers and coastlines 
also receive extended exposure as the rails often trace their 
contours. Further, the climate change implications of coal 
transport, storage and handling are significant, ultimately 
resulting in up to 16% of US carbon pollution (Meyer 2019).

Conclusion

In this paper, we have reported evidence of significant 
increases in  PM2.5 due to passing coal-carrying trains 
in Richmond, California. The observed increases were 
greater than those produced by freight trains and passen-
ger trains. Unloaded coal cars also generated increases 
in  PM2.5, but at lower concentrations than full coal cars. 
Quantifying the contribution of coal trains in urban air 
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populations is important since vulnerable communities are 
typically found in close proximity to rail lines. In addi-
tion, inevitable dispersion of  PM2.5 will increase popula-
tion exposure over a much wider area. Since shipment of 
coal by train occurs throughout the world and for many 
urban areas, it represents a significant public health haz-
ard. Finally, to overcome technical challenges that have 
historically been barriers to the study of coal trains, we 
developed an artificial intelligence-driven monitoring 
platform to detect and quantify air pollution from passing 
trains. These advancements will contribute to future stud-
ies of health effects from mobile sources.

Appendix A. Data field descriptions

The following discussion provides more background 
regarding the data fields, their units, and their calculation.

• TrainStart:
– This field reports the date and time, to the second, 

that a train was observed by the customized artifi-
cial intelligence camera system

• TrainType:
– This study classified the observed trains into four 

types:

Passenger – either Amtrak or CalTrain trains
Freight – Union Pacific trains that are carrying 
various products on rail cars but not identifiable 
coal-bearing cars
Coal – Union Pacific trains exclusively carrying 
coal hopper rail cars, either full or unloaded

• PreTrainPM#:
– These fields represent the air quality levels prior to 

the arrival of a train. We explored various combi-
nations of averaging times (1, 3, 5 and 10 min) and 
gap lengths between the PreTrainPM average and 
the observed train start time (1, 2, 5 and 10 min. For 
example, PreTrainPM10-10 utilizes a 10-min aver-
age  PM2.5 that is a 10-min gap between the averaging 
period and the train event start. This field is presented 
in micrograms per cubic meter.

• AvgPM:
– This field is the average  PM2.5 concentration, in 

micrograms per cubic meter, observed during the 
time that a train was observed at the monitoring 
location. Note that each second of recorded data is 

the average of three separate PM sensors, and this 
value is the average of those averages.

• MaxPM:
– This field is the maximum 10-s  PM2.5 concentra-

tion, in micrograms per cubic meter, observed 
during the time that a train was observed at the 
monitoring location. Again, the data point is the 
average of three separate PM sensors.

• PMdelta_10_10:

– These fields represent the difference between the 
 PM2.5 concentrations observed during the train event 
and the pre-event levels. They are calculated as:

  Where XPM is either the AvgPM or the MaxPM,

• Meters per second:
  This field is the estimated speed of the train using a 

custom video processing algorithm. The video is sepa-
rated into individual images. Two positions (x-coordi-
nates) are selected on either side of each image to act 
as positional triggers. The pixel values (in RGB) are 
collected from every pixel in each of these two lines. 
As the trains pass, we anticipate the pixel values to 
oscillate more than in the rest of the image; therefore, 
a y-coordinate is chosen with the maximum relative 
standard deviation out of all the y-coordinates in each 
line. Since each image is related to a distinct times-
tamp, we compare the first derivative of pixel intensity 
change in each optical band (R, G, and B) to find the 
temporal difference in peaks. Specifically, we are calcu-
lating the lag time between when the train is observed 
in each of the two locations. The distance between 
these two points is calculated from a conversion factor 
of pixels per meter, as determined by image analysis of 
Amtrak engines and train cars, whose dimensions are 
publicly available. Knowing the distance traveled (in 
meters) and the time difference (in seconds), we con-
verted and calculated the speed in meters per second.

• Direction:
  This field indicates the direction the train was trave-

ling in the observation. The determination of this 
parameter uses the same algorithm described for the 
previous parameter (m/s). The derivative peaks ana-
lyzed inform whether the train is moving to the right 
(northward and away from the terminal) or left (south-
ward or towards the terminal), which result in binary 
values of 1 and 0, respectively.

XPM − Pretrain_10_10
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Appendix B Table 4

Table 4  Descriptive statistics for regression variables

PMave Change in average  PM2.5 (µg/m3), PMave_C Change in average Corrected  PM2.5 (µg/m3), PMmax10 Change in peak  PM2.5 (µg/m3), 
PMmax10_C Change in peak Corrected  PM2.5 (µg/m3), Wind Average wind speed (m/s), TS Train speed (m/s), Temp Average Temp (F)

Stats Pmave PMave_C PMmax10 PMmax10_C Wind TS Humidity Temp

Passenger Trains
  Mean .36212 -.15727 9.7675 -.15437 1.37 30.759 70.741 66.291
  SD 1.7242 1.5461 7.8401 1.5532 .621 7.1571 15.351 7.6733
  Min -18.84 -9.4019 2.5 -9.4019 0 3.576 20 51.3
  Max 29.84 13.801 39.75 13.801 3.62 44.253 95 93.1
  N 2235 2235 20 20 2235 2235 2235 2235

Freight Trains
  Mean 4.2347 1.3748 22.745 2.5612 1.25 17.064 76.505 63.841
  SD 9.8485 5.2076 31.526 7.3161 .657 5.6849 15.177 8.2692
  Min -9.8 -7.057 0 -5.2539 0 1.341 20 49.5
  Max 68.46 36.208 157.73 49.002 3.88 38.889 96 100
  N 568 568 507 507 568 568 568 568

Full Coal Trains
  Mean 6.3867 2.5569 24.305 4.2791 1.35 12.779 75.867 62.14
  SD 13.3 6.5004 42.809 9.5825 .724 5.5336 16.274 7.929
  Min -.42 -2.5676 1.7 -2.0174 .441 6.705 49 53.5
  Max 41.43 19.443 162.4 33.68 2.73 29.055 94 76.6
  N 15 15 15 15 15 15 15 15

Empty Coal Trains
  Mean 1.935 1.5673 12.286 1.8331 1.38 15.837 60.286 71.943
  SD 4.8405 2.5167 18.95 2.5482 .582 3.192 15.544 6.9966
  Min -.57 -1.0231 1.35 -1.0231 .661 10.281 37 58.4
  Max 18.54 9 74.3 9 2.73 20.115 84 85.9
  N 14 14 14 14 14 14 14 14
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