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The structure of a population strongly influences its evolutionary dynamics.
In various settings ranging from biology to social systems, individuals tend
to interact more often with those present in their proximity and rarely with
those far away. A common approach to model the structure of a population
is evolutionary graph theory. In this framework, each graph node is occupied
by a reproducing individual. The links connect these individuals to their
neighbours. The offspring can be placed on neighbouring nodes, replacing
the neighbours—or the progeny of its neighbours can replace a node during
the course of ongoing evolutionary dynamics. Extending this theory by
replacing single individuals with subpopulations at nodes yields a graph-
structured metapopulation. The dynamics between the different local
subpopulations is set by an update mechanism. There are many such update
mechanisms. Here, we classify update mechanisms for structured metapopu-
lations, which allows to find commonalities between past work and illustrate
directions for further research and current gaps of investigation.

1. Introduction

The spatial structure of a population has a considerable impact on the evol-
utionary dynamics of a population. One of the most popular theories for
studying the effect of underlying structure on the evolution of a population
is evolutionary graph theory [1], where the nodes of a graph represent individ-
uals, and links indicate individual’'s neighbours. A link determines where an
individual can place their offspring. An update mechanism describes which
individuals produce offspring and how this offspring is placed. Here, we
focus on fixed structures, but the framework can be extended to the case
where a spatial structure itself varies over time [2—4].

An extension of evolutionary graph theory is given by graph-structured meta-
populations in which the nodes indicate subpopulations, and the links indicate
the migration between subpopulations [5-8]. Evolutionary dynamics in subdi-
vided populations has been studied by researchers for a long time [9]. Models
investigating the evolution of frequencies of different individuals in a subdivided
population are also known as ‘island models’ [10]. A simplified version of these
models considers individuals migrating from every island (subpopulation) to
all the other islands with the assumption of a constant migration rate. In the
language of evolutionary graph theory this is equivalent to the migration
dynamics on a complete graph of subpopulations. To make this model more rea-
listic, the stepping stone model was introduced where the migration rate depends
on the distance between islands [11]. For a long time, the studies were mainly
focused on the fully connected metapopulation. Patwa & Wahl [12] gives a
good overview of the earlier work done on fixation probabilities for metapopula-
tions. More recently, structures other than the complete graph are also being
investigated. As an example, the star graph-structured metapopulation, where
nodes are connected to each other via a central node, is studied in Constable &
McKane [5], Yagoobi & Traulsen [6] and Marrec et al. [7]. Depending on the
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system, different update mechanisms have been applied to
describe the dynamics. In general, evolutionary dynamics are
not robust to the choice of update mechanisms [13-16]. An
important factor that changes the system’s dynamics is how
selection acts.

Depending on the update mechanism, selection can be
global or local. This can affect the evolutionary dynamics dra-
matically. The two most important events that govern the
dynamics of the population are birth and death. The order
in which birth and death occur, which often determines if
selection is local or global, has a high impact on the fate of
the population [17]. We categorize different update mechan-
isms for the evolution of structured metapopulations to
facilitate future work. First, we recall the update mechanisms
on graphs of individuals, and then we generalize them to
graphs of subpopulations.

2. Update mechanisms for graphs of individuals

In graphs of individuals, three main events influence the
evolution of a population: birth, mutation and death. In the
long run, a mutation—selection balance is reached [8,18-21].
Typically, the focus is on the low mutation regime in which
the system reaches fixation or extinction of the mutant
before the next mutation occurs. In that case, the population
is typically homogeneous, and mutations reach fixation one
after another. In the low mutation regime, the two quantities
of most interest are the fixation probability and the average
time to fixation.

If the fixation probability for advantageous mutants on a
graph is higher than the fixation probability of the complete
graph (and vice versa for disadvantageous mutations), the
graph is called an amplifier of selection. On the other hand,
if the fixation probability for advantageous mutants on
a graph is less than the fixation probability on the complete
graph (and vice versa for disadvantageous mutations), this
graph is called a suppressor of selection. These notions
have been first introduced in [1].

The order of birth and death events and how selection acts
upon them can substantially influence the population’s fate.
We use the following scheme to differentiate between the
update mechanisms. For birth, we use b if birth is random,
i.e. a birth-giving individual is chosen uniformly at random,
and B if the birth-giving individual is chosen with probability
proportional to its selection parameter for birth. Similarly, we
represent the death event by d if the individual dies uniformly
at random and by D if the individual is selected for death with
a probability proportional to its selection parameter for death.

Accordingly, the eight possible update mechanisms are
BD, Bd, bD, bd, DB, Db, dB and db, where the order
shows which event is first (see table 1). In all these update
mechanisms, the first event is global, meaning that the indi-
vidual is selected from the whole population. By contrast,
the second event is local because the individual is selected
only from the neighbourhood of the first individual, which
is a subset of the population.

As an example, applying the update mechanism Bd in a
well-mixed population of size N consisting of two types of
individuals, N —n wild-types and n mutants, with mutants
having a relative selection parameter for birth r with respect
to wild-types. Let us consider that the number of mutants in
the population is increased by one: one mutant is selected for

Table 1. Update mechanisms in graphs of individuals. In these update [JEJj
mechanisms, birth and death change the state of the population. The first
event is global and the second event is local.

update
mechanism comment references
BD — [17,22,23]
VR equwalent o [173639—41] 1
completely neutral
model
o b [172226—283236
42-44]
b b [16172227—31 R
36,45—47]
w equwalent o [1741]

completely neutral
model

reproduction (global event). Then, from the neighbours of the
mutant, one wild-type is selected for death (local event).
The offspring fills the empty spot of the dead individual.
The probability of increasing the number of mutants by one
is then

m N-—n
T — 2.1
Bd T4+ N—n N-1 1)

birth of mutant death of wild-type

Similarly, the probability of decreasing the number of
mutants by one is

N-—n n
n— __
B ™ iy N—-n N-1 (2.2)

birth of wild-type death of mutant

Note that Tj; /Tii = 1/r. Using the recursive relation for the
fixation probability [24,48], the fixation probability starting
from n mutants is

L Tt
1+ Mo 1-4

T
N- .
1+ 320 [T Ti- 1 N

d,(")

The update rule Bd has been vastly explored in both struc-
tured and well-mixed populations [1,22,25,42,45,49,50]. For
small populations, under the update mechanism Bd, most
undirected unweighted structures are amplifiers of selection,
and only a small fraction of random structures suppress selec-
tion [15]. In general, the fixation probabilities for mutants are
computed using numerical approaches [51,52]. Only for
highly symmetric graphs like the star graph or the complete
bipartite graph, can the fixation probability be computed ana-
lytically [25,53]. Under the Bd updating scheme, the star
graph is an amplifier of selection for all population sizes
[11. In [54], a few small-sized undirected, unweighted
suppressors of selection have been studied. In larger
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Figure 1. Different update schemes for graph of individuals. We consider an arbitrary population structure of size eight with five wild-type individuals (blue) and
three mutant individuals (red). Neighbours are connected via links. Individual marked with solid black circle represents the birth giving parent, whereas, the indi-
vidual marked with black dashed circle is the one chosen for death. The population size remains constant throughout the dynamics with offspring replacing dead
individuals. Assuming that the selection parameter for birth of a mutant individual is r =2 (1 for the wild-type) and that the selection parameter for death of the
mutant is ¢ = 1/2 (1 for the wild-type), the probabilities that the transition shown in the figure takes place are different for the different update mechanisms shown

in table 1. For example, in the case of BD, the probability to choose this particular mutant |nd|V|duaI for birth is

this pamcular wild-type neighbour for death is
Bd: ke 51~§~0061 bD: ; 11/z+z1 =0.05. b
db 27~ 0.042

populations, in the weak selection regime, a lot of graphs
have been shown to suppress selection [55,56]. Furthermore,
under Bd updating, regular structures have the same fixation
probability as the complete graph regardless of the mutant’s
fitness. To be specific, a graph where the total incoming
weight to all the nodes are equal, then according to the ‘iso-
thermal theorem’ [1,24] the graph has the same fixation
probability as the complete graph.

Many studies are also dedicated to dB wupdating
[15-17,22,45-47,49,57,58]. Contrary to Bd, under dB updating
only a small fraction of undirected random graphs amplify
selection while the majority of graphs suppresses selection
[15]. The star graph is a suppressor of selection under the
dB update mechanism [13,15]. Another popular update
mechanism is Db which is equivalent to the voter model
in statistical physics [26,42,50,59], but which is also used in
biology [43]. In [22], it is shown that the evolutionary
dynamics on a lattice under update mechanisms Bd and
Db are equivalent when the selection parameter for death
in the update mechanism Db equals the inverse of selection
parameter for birth in the update mechanism Bd. However,
it is illustrated that the dynamics on this lattice under
update mechanisms dB and bD are fundamentally different.

Among the eight update mechanisms for graphs of indi-
viduals, bd and db are identical, describing a system where
natural selection has no role in the evolution of the popu-
lation [17,41]. For the update mechanisms DB and BD,
selection acts both on death and birth [17,22,23], but they
are not equivalent in general. Intuitively, one may expect
that the fixation probability of an advantageous mutant is
higher in the presence of update mechanisms DB and BD
than in the other update mechanisms—but this is not
always the case. The general transition probabilities for
these eight update mechanisms are given in appendix A. In
figure 1, the transition probabilities for a specific example
are given for the eight update mechanisms.

In addition to the above update mechanisms, there are

other update mechanisms in which, instead of two

3 1/2+5 1

T3 +51 17+ The probability to choose
55

3257 A 0.077. Db:

2{21 #21 —%, which leads to a probab|l|ty == 0.072 for the event shown Similarly, we find:
22/~ 0.042. DB:

12051, dB: |- —Z~ ~0.062.

31/z+51 3 8 T2421

individuals (one for birth, one for death), one edge is selected
[27,42,44]. Then an individual dies at one end, the other gives
birth, and the offspring fills the neighbouring empty spot. In
this update mechanism, selection can act on death and/or
birth events. Here, we will not consider this kind of update
mechanism.

For more information about the comparison of different
update mechanisms on various graphs with different fea-
tures, we refer to the following references: in [44], the
authors ask when the fixation probability in an evolutionary
graph equals the fixation probability in a Moran process. A
Moran process [60] is equivalent to the update mechanism
Bd in a complete graph. In [28], the authors investigate the
evolutionary game dynamics on the star graph in the pres-
ence of different update mechanisms. They show that the
evolutionary dynamics of heterogeneous graphs is not
robust under the choice of update mechanism. In [27], the
effect of the directionality of a graph on its evolutionary
dynamics for different update mechanisms is investigated.
It has been shown that regardless of the update mechanism,
the directionality always suppresses selection. In this manu-
script, we extend the above update mechanisms to graphs
of subpopulations where each node comprises a well-mixed
subpopulation. The links indicate the migration between
the patches (see figure 2).

3. (Categorizing update mechanisms for graphs
of subpopulations

In most of the potential applications of evolutionary graph
theory, both in biology and in social dynamics, each node
represents a population rather than an individual: individ-
uals tend to interact locally in subpopulations, with some
rare interactions with other groups of individuals. This
is because the populations are segregated for various reasons,
and they are geographically distant. Individuals in the
same geographical area compete over resources or provide

69/02207 0T 2pua3u 20S Y yisi/jeunol/bio buiysijgndAiaposiesol H



Figure 2. Graph of subpopulations. Each node in the graph includes a well-
mixed subpopulation and each link indicates migration between two
subpopulations.

common goods. However, there is an occasional migration to
and from other geographical areas. In [6], it has been shown
that for the Bd update mechanism, some results of evolution-
ary graph theory do not carry over into graphs of
subpopulations. For example, a star-structured metapopula-
tion does not always amplify selection—in some migration
regimes, it suppresses selection. It will be interesting to see
if this is the case for other update mechanisms.

In a model with fixed local population sizes, birth and
death either happen in the same subpopulation, or the first
event can be followed by an individual’s migration to or
from another subpopulation. Having this in mind, we can
categorize update mechanisms into two groups:

— a set of update rules where there is always the possibility
that the first event (birth or death) is accompanied by
migration (figure 3a,b); and

— a set of updates where birth and death events are always
in the same subpopulation and migration happens inde-
pendently from birth and death, (see figure 3a,c).

We refer to the former category as update mechanisms with
coupled migration and the latter as update mechanisms
with uncoupled migration. The order of events (birth and
death) in each of these classes and how selection acts upon
them might affect the dynamics considerably. In both cat-
egories of update mechanisms, selection for the first event
can act on both patch and individual levels, i.e. one first
selects a patch and then an individual from the chosen
patch. Selection on the second event can act both on the
patch and individual levels in the update mechanisms with
coupled migration. However, in the update mechanisms
with uncoupled migration, selection in the second event
always acts on the individual level since the second event
must happen in the same patch as the first event.

We code the update mechanisms as follows: the first
letter stands for migration to show if it is coupled (M) or
uncoupled (m). The order of letters, except for the letter
for migration, indicates the order of events. In addition, if
selection is associated with selection parameters, we assign
a capital letter and, otherwise, a lower-case letter. For
uncoupled migration we need only three letters (the patch
of the second event is fixed), for coupled migration we

need four letters (we can select the patch and the individual [ 4 |

for the first and for the second event).

3.1. Update mechanisms with coupled migration

In this class of update mechanisms, the first event is directly
coupled with migration. The first event can be birth or death.
If the birth occurs first, one of the patches is selected ran-
domly proportional to the size of the patch (b) or randomly
proportional to the sum of selection parameters of that
patch for birth (B). Next, an individual from the patch is
selected uniformly at random (b) or randomly proportional
to its selection parameter for birth (B) to produce an identical
offspring. The offspring can either stay and substitute one of
the individuals in its patch (figure 3a) or migrate to one of the
neighbouring patches and replace one of the individuals
there (figure 3b).

If the offspring stays in its own patch, one of the individuals
is chosen for death uniformly at random (d) or proportional to
its selection parameter for death (D) (a common choice is the
inverse of the selection parameter for birth). If the offspring
migrates to a neighbouring patch, an individual in an adjacent
patch is selected in two stages. First, among the neighbouring
patches, one patch is selected randomly proportional to the size
of the patch (d) or randomly proportional to the collective
selection parameter for death of the patch (D). Finally, one of
its individuals is selected for death uniformly at random
(d) or randomly proportional to its selection parameter for
death (D).

As an example, consider the update mechanism MbBDd.
In this update mechanism,

(i) First, a patch is selected uniformly at random.

(i) Then, from the random patch, one individual is
selected with probability proportional to its selection
parameter for birth to produce an offspring.

(iii) Next, with a certain probability, the offspring will
migrate to one of the adjacent patches or remain in
its innate patch. In the former case, one of the neigh-
bouring patches is selected uniformly at random as a
function of its collective selection parameter for death.

(iv) Finally, in the selected patch, which can be either an
adjacent patch or the innate patch, one individual
dies uniformly at random, and the offspring fills its
empty spot.

In general, selection can be uniformly at random or pro-
portional to a selection parameter in each step.

Based on such procedures, there are 16 different update
mechanisms, with birth being the first event (see table 2).
Similarly, if the first event is death, there are 16 different
update mechanisms (see table 3). So far, only a few of these
mechanisms have been studied in detail. For example,
MBBdd is adopted in [5,6,61]. Not all of the observations
made in graphs of individuals with the Bd update rule
carry over to a graph of subpopulations when the update
rule is MBBdd [6,61]. In fact, in the graph of subpopulations,
the dynamics and, in particular, the fate of advantageous
mutants are highly dependent on the pattern of migration,
local population size and the graph structure itself. Also,
applying MddBB in the graph of subpopulations reduces
the chance of advantageous mutants compared with
the equivalent well-mixed population with the update
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Figure 3. Update mechanisms in a graph-structured metapopulation. The population consists of two types of individuals, wild-types (blue) and mutants (red). The
individual marked with the solid black circle gives birth and the individual marked with black dashed circle is selected for death. (a) Birth—death or death—birth in
one patch without migration: this includes birth—death or death—birth in a coupled update mechanism without migration as well as an uncoupled update mech-
anism in which both death and birth happen in the same subpopulation. (b) A coupled update mechanism with migration: if birth is coupled with migration after
each birth the newborn migrates to an adjacent patch and replaces one of its individual. If death is coupled to migration, a death in one patch is followed by birth of
an individual in one of the adjacent patches where newborn occupies the place of dead individual. (c) Migration in an uncoupled update mechanism: migration
happens independently from birth or death and it only exchanges the position of two individuals from different patches. This process is completely random.

mechanism dB [61]. Furthermore, employing MddBB in the
star of islands in which many subpopulations are connected
only via a central subpopulation, it is shown that it is the rela-
tive size of the local population in the leaves and the centre
that determines whether the star of islands is an amplifier,
reducer or transient amplifier of selection [16]. In general, in
this class of update mechanisms, intuition suggests that the
more selection is associated with the selection parameters,
the more likely a beneficial mutant will spread through the
population. However, in appendix D.1, we see that this is
not true for the metastar in the low migration rate regime
when birth is the first event.

3.2. Equivalence to weighted graphs of individuals

In the mechanisms with coupled migration, some update
mechanisms reduce to simpler ones in a weighted graph of
individuals, where the weights of the links that connect indi-
viduals in the same subpopulation are different from the
weights of the links that connect individuals in different sub-
populations (see figure 4). For instance, for the update rule
MDDBSB, first a patch is selected randomly proportional to
its collective selection parameter for death. Afterwards,
within the patch, an individual is chosen for death randomly
proportional to its selection parameter for death. This is
equivalent to selecting one individual from the whole popu-
lation with a probability proportional to its selection
parameter for death. Similarly, selection at birth both at the

patch and individual levels is equivalent to selecting an indi-
vidual for birth proportional to its selection parameter
for birth from the whole population (for more details see
appendix C).

Hence, MDDBB on a graph-structured metapopulation
can be treated as a DB on the equivalent graph of individuals
with weighted links between individuals such that the
weights of links that connect the individuals belonging to
one patch differ from the ones that connect individuals
from different patches. In fact, in the coupled update mechan-
isms, whenever selection on each of the birth and death
events both on the patch level and individual level is either
uniformly random or randomly proportional to selection par-
ameters (BB or bb and DD or dd), the update mechanism
reduces to an update mechanism in an equivalent graph of
individuals, as mentioned in tables 2 and 3.

3.3. Update mechanisms with uncoupled migration
Migration is said to be uncoupled if birth and death events
take place within a single patch (figure 3a), and individuals
migrate independently such that the population size in
each patch remains constant, independent of birth and
death (figure 3c). In this scenario, we can model migration
as follows: with a certain probability, two random indivi-
duals from two random connected patches exchange
their positions. In this way, the local population size will
remain constant.
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Figure 4. Equivalence of an update mechanism in a graph of subpopulation to an update mechanism in a graph of individuals. In a coupled update mechanism
whenever selection on each of the birth and death events both on the patch and individual levels is either uniformly random or randomly proportional to selection
parameters, the update mechanism is equivalent to an update mechanism in an associated weighted graph of individuals. In this weighted graph, the weights of
the links that connect local individuals are different from the weights of the links that connect individuals in neighbouring subpopulations and depend on the

migration probability as well as local population sizes.

Table 2. Birth—death processes with migration coupled to reproduction. In
all these update mechanisms in graph-structured metapopulations, the
individual producing offspring is identified first and the individual to be
removed afterwards. In both steps, we can select for the patch and for the
individual separately, leading to 16 such update mechanisms. As an
example, the evolutionary dynamics on the metastar under this category of
update mechanisms is investigated in appendix D.

update
mechanism comments references
MBBDD equivalent to BD in a —

graph of individuals
s o o
VEBdd } equwalent S [5661] .

graph of individuals

MbbDD . equwalent Cwna
graph of individuals

e o o

wead equw VRO mp I etely ............ o

neutral model

The first event can be birth or death. If birth happens first,
one of the patches is selected uniformly at random (b) or ran-
domly proportional to its selection parameter for birth (B).

Table 3. Death—birth processes with migration coupled to death. In all
these update mechanisms in graph-structured metapopulations, the
individual being removed is identified first and the individual producing
offspring afterwards. Again, there are 16 such update mechanisms. As an
example, the evolutionary dynamics on the metastar under this category of
update mechanisms is investigated in appendix D.

update
mechanism

references

comments

MDDBB equivalent to DB in a —

. graph of individuals

Cenomns
. gaph of individuals

o equwalent s [1661]
graph of individuals
O equwalent toacompletely e
neutral model

From the chosen patch, one individual is selected for birth uni-
formly at random (b) or randomly proportional to its selection
parameter for birth (B) and produces an identical offspring.
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Once an individual is selected for birth, one individual is
selected for death uniformly at random (d) or randomly pro-
portional to its selection parameter for death (D) from the
same patch. The new offspring replaces the empty spot of the
dead individual. Since there is no patch selection for the
second event, the second event is indicated by a single letter.
In this category, there are eight different update mechanisms.
As an example, let us consider mbBD. At each time step, with
the migration probability, 1, a migration happens, and with the
probability, 1—21, the population gets updated through the
birth—death process. The birth-death process is as follows,

(i) First, a patch is selected uniformly at random (b).

(ii) From this patch, an individual is selected with prob-
ability proportional to its selection parameter for
birth to reproduce (B).

(iii) After that, one of the individuals from the same patch
is chosen randomly with probability proportional to
its selection parameter for death to die (D) and the
offspring will fill the empty spot.

Similarly, when death happens first, there are eight other
update mechanisms. In the update mechanisms mbbd
and mddb, where selection is not active in either of the
events, the update mechanism is identical to the neutral
model, i.e. bd.

In many popular models of the population genetics litera-
ture, migration is assumed to be independent from birth and
death [7,9,11,62—-65]. However, most of these studies use the
Wright-Fisher model as the local update mechanism and
thus are not captured by our metapopulation framework of
evolutionary graph theory.

4. Discussion

Evolutionary graph theory is a mathematical framework that
has been used to think of the role of population structure in
evolutionary dynamics. More recently, empirical scientists
have become interested in this framework, but in most of
the systems in their focus, the nodes are subpopulations
and not individuals. Here, we have classified different classes
of update mechanisms on such graph-structured metapopu-
lations. We focus on update mechanisms that are natural
extensions of the update mechanisms typically used in
evolutionary graph theory for graphs of individuals.
Our classification is based on three factors:

(i) first, if migration is coupled to reproduction or not;
(ii) second, the order of birth and death events; and
(iii) third, how selection acts on the growth and survival of
the population.

Each of these update mechanisms can result in different
dynamics—using different update mechanisms can affect
not only the fixation probability and fixation time of newly
arising mutations but also other features of the dynamics.
The fixation probability in graphs of individuals under
Bd (where selection for birth is proportional to a selection
parameter) and Db (where selection for death is proportional
to the inverse of the selection parameter for birth) are equiv-
alent in undirected regular graphs [42] and they both follow
the isothermal theorem [1]. For more details, see appendix
A.2. In addition, in a fully connected graph of individuals,

where all individuals are equivalent, and every node in the

graph includes a self-loop, meaning that the individual
selected for birth can die or the individual selected for
death can give birth, Bd is equivalent to dB, bD is equivalent
to Db and BD is equivalent to DB. It is worth mentioning
that in an update mechanism where death is followed by
birth, having self-loops in the graphs makes only limited
sense if we think of the actual physical death of individuals.
However, it is sensible if we think of it in the social setting
where death and birth are interpreted as imitating one’s
idea or sticking to your own [15]. Furthermore, in a fully con-
nected graph including self-loops, if the selection parameter
for death equals the inverse of the selection parameter for
birth, then the fixation probabilities in the update mechan-
isms Bd, dB, bD and Db and are the same as the fixation
probability of the well-mixed population under the update
mechanism Bd [44]. However, in this condition, the fixation
probability of a beneficial mutant in an arbitrary graph
under BD and DB is higher than the respective fixation
probability in the corresponding well-mixed population
under Bd.

In a system where individuals with a higher selection par-
ameter for birth have a lower selection parameter for death,
the more the birth and death are associated with these selec-
tion parameters, the higher the probability for advantageous
individuals to take over the population. This implies that the
fixation probability of a beneficial mutant under BD is higher
than the corresponding fixation probability under Bd and
bD. Also the fixation probability of a beneficial mutant
under DB is higher than the corresponding fixation prob-
ability under Db and dB. In addition, the fixation
probability of a beneficial mutant in an arbitrary graph
under an update mechanism in which selection is global is
more than or equal to its fixation probability under an
update mechanism in which selection is local [17]. Equality
holds for a well-mixed population which includes self-loops
meaning that every individual can also replace itself.

In a graph of subpopulations with update mechanisms
where migration is coupled with death or birth, the fixation
probability of an advantageous mutant in an arbitrary
graph is higher under some update mechanisms compared
with others. In appendix B, we consider two update mechan-
isms that are exactly the same except that the individual
selection for birth or death in one is uniformly random and
in the other is random proportional to selection parameters.
The fixation probability of an advantageous mutant for
selection proportional to selection parameters is higher than
the fixation probability where selection is uniformly at
random. For example, the update mechanism MBBDD has
a higher fixation probability for advantageous mutants than
MBDbDD. In addition, one intuitively expects that if selection
on the patch level is associated with a collective selection par-
ameter, the beneficial mutant has a higher chance of being
fixed. Nevertheless, it is not straightforward to prove this.
In appendix B, we show this in more detail.

Similarly, as it is shown in appendix B, for the update
mechanisms with uncoupled migration, if we have two
update mechanisms that are only different in individual
selection on birth or death, the fixation probability of an
advantageous mutant under the update mechanism in
which individual selection is uniformly random is smaller
than the corresponding fixation probability under the
update mechanism in which individual selection is associated
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with selection parameters. For instance, the fixation prob-
ability of an advantageous mutant under mBBD is higher
than the corresponding fixation probability under mBBd in
an arbitrary graph.

In addition, it is interesting to see under which of the
coupled or uncoupled update mechanisms the beneficial
mutant has a higher chance of taking over the whole popu-
lation. Intuitively, under the coupled update mechanism,
migration helps to spread beneficial mutants, whereas
under uncoupled migration, exchanges of the individual
between the patches occur uniformly at random and
independent of the selection parameters.

In appendix D, we investigate the fixation probability for the
star-structured metapopulation (metastar) under update mech-
anisms with coupled migration. The analysis is done in the
low migration rate regime where every node (subpopulation)
is in a homogeneous state at the time of migration. In the low
migration rate regime, selection on the individual level plays
an important role, whereas selection on the patch level changes
the fixation probability only slightly. This leads to grouping of
the update mechanisms into three classes based on the fixation
probability of an advantageous mutant: update mechanisms in
which both birth and death on the individual level are associ-
ated with the selection parameters, update mechanisms in
which either birth or death on the individual level is associated
with the selection parameter, and update mechanisms in which
neither birth and nor death on the individual level are associ-
ated with the selection parameters.

Various update mechanisms have been applied to study
biological, ecological and social systems. It has been argued
that death-birth processes can be applied to study the evol-
utionary dynamics of trees in a tropical forest: a new seed
grows into an adult tree when one of the trees in the forest
dies [66]. Here, death happens first. Similarly, birth-death
processes have been employed in cancer evolution [67,68].
Cancer cells grow excessively, and since they exhaust the
nutrients and resources, the healthy cells die due to the lack
of resources and leave empty spaces for the cancer cells to
grow further. The evolutionary dynamics of the cancer cells
arising in the crypts of the inner lining of the intestine can
be modelled by a birth-death process in a line structure
[69,70]. In this case, birth triggers death.

In a graph of subpopulations, coupled migration could
denote the natural tendency of the species to look for a
better place to live. Uncoupled migration can describe disper-
sal caused by humans or abiotic factors such as wind or water
streams. The selection pressure on the patch level makes
sense when patches share common and limited resources
but still are partly isolated.

We hope that this paper paves the way for future work on
the evolutionary dynamics of graph-structured metapopula-
tions. Here, we only classify possible update mechanisms on
metapopulations and only partly analyse some of them. How-
ever, the update mechanism is a crucial ingredient of
evolutionary graph theory, and a better understanding of how
it affects evolutionary dynamics in structured metapopulations
will be necessary to move the field forward.
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Appendix A. Evolutionary dynamics on graphs of
individuals

Assume a connected graph of individuals where wj; is
the weight of the link connecting node i to j. The population
consists of two types, wild-type A and mutant B. The vari-
able s; indicates the status of node i, 5;=0 if it is occupied
by a wild-type, and s;=1 if it is occupied by a mutant. The
selection parameter for the birth of the mutant with respect
to the wild-type is r, and the selection parameter for the
death of the mutant with respect to the wild-type is t. In
the following section, we explain the transition probabilities
for both birth-death and death-birth processes on graphs
of individuals.

A.1. Transition probabilities

In an update mechanism where birth is global and death is
local, one individual is selected for birth, and then one of
its neighbours is chosen for death. The offspring will replace
the empty spot. Based on this model, there are two possible
transitions: increasing and decreasing the number of mutants
by one. The probability T{:5; qeath Of increasing the number
of mutants, n =) ;s;, by one is

7S > wi(1—s))

Tnﬂ» — Z .
birth—death P> sk + o (1 —sp) t > wisy + > wa(1 — )

i

birth death
(A1)

This equation is the summation over all the possibilities that
the number of mutants increases. The probability T} i deatn
of decreasing the number of mutants 1 by one is

1—s; £ wisi

n— — E
Tbirth—death -

birth death
(A2)

When death is global and birth is local, an individual
is selected for death, and then from its neighbour, one indi-
vidual is selected for birth. In this case the transition
probabilities are

=13 Sk + D (T —sp) £ was) + > wa(1 —s1)

T _E 1—s; rZ]‘wz‘ij
death—birth - tZk Sk + Zk(l - Sk) r Zl wjS) + Zl wil(l — S[)
death birth
(A3)
and
ts; > wii(1 =)

T it = :
death—birth Z ' Ek Sk + Zk(l — Sk) 7 El w;is + EZ w,-/(l - S])

i

death birth
(A4)

Based on the values of r and ¢, the update mechanisms
can be categorized as follows:
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(i) In the above equations if r # 1 and f # 1 there are selec-
tion pressures both on the birth and the death. This
corresponds to the update mechanism BD in which
birth is global and death is local, and the update
mechanism DB in which death is global and death
is local.

(i) If r#1 and t=1 birth-death corresponds to update
mechanism Bd and death-birth corresponds to dB.

(iii) If =1 and t+#1, birth-death correspond to bD and
death-birth correspond to Db.

(iv) If r=1 and t=1 birth-death corresponds to bd and
death-birth corresponds to db.

A.2. Equivalence of Bd and Db in undirected regular
graphs

Generalizing the transition probabilities from appendix A.1,

to an arbitrary weighted graph with weights w;; under the

update mechanisms Bd leads to

rs > iwii(1—sj)
Tal = 1 ! A5
B ZerSk+2k(l —sK) Do Wi (4.5)

birth death
and

_ 1—s5; Z‘wijsj
T = ! / . A6
B z;:erSkJer(l = Sk) 2 Wil (4.6

birth death

The transition probabilities of an arbitrary graph under the
update mechanisms Db are

1—s > Wis;
T71+ _ ! ] A7
b Zt2k5k+2k(1*5k) 21 Wi (A7)
~—
death birth
and
ts >iwii(l—s)
T = d ! ) A8
PP ZtstkJFZk(l —SK) D Wi (4.8)
death birth

In a regular graph, > ,wj is identical for all the nodes.
Thus we can set it as ) ;w; = . As a result, the transition
probabilities for update mechanism Bd are simplified to

Z wUS, (1- s]

ot = (A9)

rn+N

and

Thy = e +N Zw,] (1-s;) (A.10)

Since in the regular graphs w;; = wj; therefore, 3 7, wjj(1 — s;)s; =

> wi(1 —sj)s; and consequently Tgy /Thi =1/r is inde-
pendent of the s. As a result the fixation probability is
1-1/1"
(n) _
¢ 1-1/1N°

Similarly, the transition probabilities for the update
mechanism Db simplify to

Thy = ol +N Zw” (1—s)s (A11)

Table 4. Parameters for a graph of subpopulations.

parameter description

N; populatlon size in patch i
n; number of mutants in patch i
n total number of mutants DM
N total populatlon size, Z N;
r selectlon parameter for blrth of the mutant
t selectlon parameter for death of the mutant
A migration probablllty
7 welght of the I|nk from patch I to patch j
and
t
n— —_ ..Q J— .
TDb = a(f_‘n—i——]\]—]’l); w,js,(l Sj). (A12)
: n— [+ oAb Tib S (1) 11— .
Since T}y, /Thi = t, the fixation probability is ¢ = T

cf. equation (2.3). If we set t=1/r the fixation probability
is the same as the fixation probability of the equivalent
well-mixed population under the update mechanism Bd.

Appendix B. Evolutionary dynamics on graphs of
subpopulations

This appendix discusses why some update mechanisms fix ben-
eficial mutants with higher probability. Assume that we have
two types of individuals, mutants and wild-types. The transition
probabilities of increasing and decreasing the total number of
mutants 7 are given by T"" and T"", respectively. We use a
mean-field approximation and assume that the transition prob-
abilities are the summation of the transition probabilities for all
the possible configurations for a specific number of mutants #.
The other parameters are described in table 4.

If we start with a single randomly placed mutant in a
wild-type population, the fixation probability of the mutant
is given by [24]

o = ! : (B.1)
L+ 320 T (T T7)
Therefore, in order to investigate how the fixation probabil-
ities in different update rules vary, it is sufficient to
compare the transition probabilities.

B.1. Comparison of update mechanism with or without
individual-level selection

By comparing the transition probabilities, we can see that for
both coupled and uncoupled update mechanisms, if two
update mechanisms only differ in individual-level selection
for either birth or death, the fixation probability of the ben-
eficial mutant under the update mechanism in which
individual selection is associated with selection parameter is
higher than the one in which individual selection is uniformly
random. Here, we compare the transition probabilities of
update mechanisms MBBDD, MBbDD, MBBDd. The tran-
sition probabilities of increasing and decreasing the total
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number of mutants, n = ), n; update mechanism MBBDD are

m+N—n rm;+ N; —n;
birth patch

T B Z m; + N; — n; n;
MBBDD —
i

birth of individual

< (A w; tnj + Nj —n; N; —n;
j IS wi(tng + N — ng) tnj + N — nj
N

death of individual

choosing a patch to migrate to

Ni—ni
tn; + N; — n;
———

death of individual in parental patch

+(1-2) (B.2)

_Z mi+Ni—ni  Ni—n
m+N—n rn+N;—n;

selection patch birth birth of individual

tn; + N; — n; tn-
x| A Wi ] ] i j
( Z Uzsz'k(tnk + Ny — ny) tn; + Nj —
. ————

death of individual

choosing a patch to migrate to

tn;
tn; + N; — n; '
[ —

death of individual in parental patch

+(1-A) (B.3)

The transition probabilities for the update mechanism
MBbDD are

Tt :Zrni+Ni—niﬁ
MBbDD —~ m+N—n N;

tni + N; — n; N; —n;
X<Azwij (i Ne ) by N =
7 kalk(nk—k k—i”lk) l/l]+ i — 1N
N,'—Vli
1—A)———— B.4
+ )tni+Nini> (B4
and
n— o rn; + N; — n; N; — n;
TMBbDD_Zrn—&-N—n N;
tni + N; — n; tn;
< [ A Wi ] ] ] ]
( ZJ: ”ka,-k(tnk +Nk—1’lk)tﬂ]‘+1\]j—n]‘
tn;
1—A)———|. B.5
+( )i’n,‘-i-Ni—n,‘) (B5)

The transition probabilities for the update mechanism MBBDd
are

T :Zrni+Ni—ni i
MBBDA ™ £y + N —n rnj + Ni — n;

i’n]'+Njfn]' I\]jfi’lj

N,' — n;
X [ A wj
( Z]: U Zk wik(tnk —+ Nk — I’Zk) Nj

N;
(B.6)

INCRDY

and

T B m;+N;—n; N;—n;
MBBDd — Z
i

m+N —n rmj+ N; —n;

)

tni + N; — n; nj n;
x AY wi L T Tra-n-_2|.
( z]: " Zk wik(tnk + N — nk)N] ( )N,'

Comparing equations (B.2) and (B.4), all the terms are the same [ 10 |

except the second term which is the probability of choosing a

mutant in patch i for birth. Since
m; n;
—_— >, B.8
i +N;—n; N; (B.8)

for beneficial mutants, 7 > 1 (except for n; = N; and 1; = 0, where
the transition probabilities are zero) that implies

Thiseon > Tissop- (B.9)
Also if we compare equations (B.3) and (B.5) since
N,‘ — n; N,' — Nn;
< , B.1
m; + N; — n; N; ( O)

for beneficial mutants, 7 > 1 (except for n; = N; and 1; = 0, where
the transition probabilities are zero). Thus, we find

Tyseop < Tvisoop- (B.11)
As a result,
n— Tn*
T?,AEBDD _MBODD - forall 1 <n <N — 1. (B.12)
T\msop  Thvisoop

The ratio T""/T"" appears in the denominator of equation
(B.1). This implies that the fixation probability of an advan-
tageous mutant under MBBDD is higher than the
corresponding fixation probability under MBbDD for an arbi-
trary graph, ¢nmpepp > ¢Mebpp. Similarly, we can show that the
fixation probability of a deleterious mutant under MBBDD is
lower than the corresponding fixation probability under
MBDbDD for an arbitrary graph, ¢mespp < dmBbDD-
In addition, comparing equations (B.2) and (B.6), since

N; —nj N; —nj
L B

, B.13
tnj + N; — n; N;j (B.13)
for beneficial mutants, t <1, we have
Tyssop > Thisepd: (B.14)
Also by comparing equations (B.3) and (B.7), we have
Tussop < Tvsspd (B.15)
because
dn; n;
j j
_— <L, B.16
dle + I\]] — N N]' ( )

forall 1 <n;<N;—1and for n; = N; both sides are equal. In con-
clusion, the fixation probability of an advantageous mutant in
an arbitrary graph under MBBDd is smaller than the corre-
sponding fixation probability under MBBDD. On the other
hand, for deleterious mutants, ¢ypgpg = PmBrDD-

We can show in a similar way as above that for beneficial
mutants that the fixation probability, ¢ of an arbitrary graph
under update mechanism MBBDD, MBbDD and MBbDd
have the following relationship with each other:

(bMBBDD = ¢MBbDD > ‘bMBdel

and similarly the relation between the fixation probability of
a beneficial mutant for an arbitrary graph under update
mechanisms MBBDD, MBBDd and MBbDd is

buMBBDD > PMBBDA = PMBbDA-

In the above expressions, one cannot simply state which of

(B.17)

(B.18)
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the ¢mpepa and @uvpwpp is higher. The relation between these
two values might be dependent on the graph structure.

On the other hand, the relation between the fixation prob-
abilities, ¢, of a deleterious mutant in an arbitrary graph under
the update mechanisms, MBBDD, MBbDD and MBbDd is

brmBBDD < PMBoDD < PumBbDA

and similarly, we can simply show that the fixation probabil-

(B.19)

ities of a deleterious mutant in an arbitrary graph under the
update mechanisms MBBDD, MBBDd and MBbDd has the
following relationship:

dnvBBDD < PMBBDA < PmBbDA-

As we see from these equations, for an arbitrary graph, if an

(B.20)

update mechanism is more associated with selection par-
ameters, the fixation probability of advantageous mutants
increases and the fixation probability of deleterious mutants
decreases.

B.2. Comparison of update mechanism with or without
patch level selection

Comparing the transition probabilities of a beneficial mutant
under two update mechanisms that only differ in patch level
selection for either birth or death is not as straightforward. Intui-
tively we expect that the update mechanism in which patch level
selection is associated with the collective selection parameter of
the patch has a higher fixation probability. In the following, we
show why one cannot easily infer from the transition probabil-
ities which one is higher. Let us compare the transition
probabilities for increasing the mutant population size by one
under the update mechanisms MBBDD and MbBDD.

N; ;i
T+ _ I
MbBDD Z N i+ N;—n;
i ~—
birth patch pirth of individual
tnj + N; — Nj —n;
x (A wye N -
, >k Wik(tng + Ny — i) tnj + Nj — n
] ——

death of individual

choosing a patch to migrate to

Ni—l’l,'
tn; + N; — n;
—_——

death of individual in parental patch

+(1-2) (B.21)

Comparing the equations (B.2) and (B.21), the only difference is
the term for the birth patch. T\jssnp > Tbspp if for all i values
m;+ Ni —n; _ N

> . B.22
m+N-n — N ( )

The above relation holds if and only if
n; n
— > B.2
Ni =N ( 3)
However, the above relation does not always hold, and it
depends on the configuration of the population. Hence, it is
not easy to compare equations (B.2) and (B.21).

B.3. Comparison of update mechanism with uncoupled
migration

Similarly, by comparing the transition probabilities for

uncoupled update mechanisms, we can see that the fixation

probability of an advantageous mutant under update

mechanisms in which individual selection is associated

with selection parameters is higher than the corresponding [ 11 |

fixation probability under update mechanisms in which
individual selection is independent of selection parameters.
The transition probabilities of this update mechanism only
include the non-migrative terms because the migrative term
does not change the number of mutants in the whole
population. The transition probabilities for the update
mechanism mBBD are

T = (1= 2)

Zrni +N; —n; m; Ni —n;

m+N —n rn;+ N; —n;tn; + N; — n;
(B.24)

and

Theep = (1—A)
y Zrni—f—N,-—ni N; —n; tn; )
m+N —n rn;+ N; —n;tn; + N; — n;

(B.25)

and the transition probabilities for the update mechanism
mBBd are

Thgpa = (1—A)

Z rn; + N — n; m; N; —n; (326)
m+N—n rnj+N;—n; N;
and
. N —n; Ni — 1. .
Tigpa = (1— 1) S 0 1 MM (B27)
i

m+N—n rmi+N;—mN;’

From equations (B.24) and (B. 26), we can see that for ben-
eficial mutants, <1,

Thbep > Tobpar (B.28)
because for 1<n; < N; we have
Nl‘ — n; Ni — Nn;
. B.29
di’li + N; —n; N; ( )
Analogously, for the beneficial mutants we have
Tiesp < Trpea- (B.30)

Thus, the fixation probability of an advantageous mutant
under mBBD is higher than the corresponding fixation prob-
ability under mBBd, ¢, ggp > Pppg- Similarly we can see
that for a beneficial mutant

PmBbd < Pmpbd < PmpBD-

On the other hand, for the deleterious mutants we have an

(B.31)

opposite relation between the fixation probabilities:

DmBbd > PmBbd > PmBBED- (B.32)

Appendix C. Equivalence of evolutionary
dynamics on graphs of subpopulations and
graphs of individuals

In the mechanisms with coupled migration, some update
mechanisms reduce to simpler ones in a weighted graph of
individuals, where the weights of the links that connect
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individuals locally are different from the weights of the links
that connect individuals in adjacent subpopulations (see
figure 4).

In order for an update mechanism to reduce to a simpler
update mechanism, selection for birth and death should be
either associated with selection parameter or not for both
patch and individual levels. As an example MBBdd reduces
to Bd. This can be easily shown by transition probabilities; in
order to increase the number of mutants by one through
selecting one mutant from the patch i consists of two parts;
first selecting a mutant from patch i with probability

i + Nj — n; r
m-+N—n rm; +N; —n;

(C.1)

This probability is simplified to r/(rn+ N —n), which is
equivalent to the probability of selecting one mutant from
the whole population regardless of the collective selection
parameter of the patches. The second part is choosing one
of the wild-type neighbours of the selected mutant for
death. The neighbour could be either selected from the
parental patch with probability

Nj — n;
T=N—=5— (€2)
or from the neighbouring patches with probability
N;i—n
A w2 C3
2w >k WikNi (©3)

The above two equations for the death probability of a wild-
type imply that a graph of patches can be reduced to a graph
of individuals. In the equivalent graph of individuals the
weight of the link between each two individuals within
the patch i is (1 —4)/N; if we take into account self-loops,
and the weight of the link from an individual from patch i
to an individual from patch j is Aw;;/ Z]- w;iN;. Therefore,
the update mechanism MBBdd on a graph of subpopulations
is equivalent to the update mechanism Bd on a graph of
individuals in which the weight of the links that connect
local individuals differ from the weight of links that connect
individuals in different patches. The weight of the
links depends on the migration probability as well as the
local population sizes.

Appendix D. Evolutionary dynamics on the
metastar

In this appendix, we calculate the fixation probability for the
metastar in the low migration rate regime. A metastar is a star
graph where every node is occupied by a subpopulation. The
internal structure of each subpopulation is well mixed. These
subpopulations are connected to each other through the cen-
tral node. We denote the total population size by N and
assume it is distributed evenly into M patches, so that the
size of each patch is Ny = N/M.

When the migration probability is sufficiently low, and
the population sizes of the patches are comparable, the indi-
vidual migrating to a neighbouring patch either reaches
fixation or goes extinct in that respective patch before the
next migration event occurs. Therefore, the subpopulations
are in a homogeneous configuration at the time of a migration
event. By homogeneous configuration, we mean that each

patch is either occupied by the mutant type or the wild-
type individuals. In the low migration rate regime, to calcu-
late the fixation probability, instead of considering the
transition probabilities between 2V states, the state space is
reduced to 2™. The transition probabilities between these
2M states are sufficient to compute fixation probabilities. As
a result, we can look at the problem as if we have a graph
of individuals. However, the probability of replacing a node
with the offspring of a neighbouring node needs to be modi-
fied. In a graph of individuals, the probability that the
offspring of a chosen node i replaces the individual of node
k is equal to the weight of the link directed from node i to
node k, wy. In a graph of subpopulations, assuming the
low migration rate regime, this probability is modified to
wids , where ¢Ne is the fixation probability of the
migrating offspring to take over the patch k of size Ny, and
wm stands for well-mixed. With the individual-selection
parameters r and ¢, we obtain from equation (B.1)

1—(t/r)
Ne = : D.1
= (D)
Here, we focus on the update mechanisms with coupled
migration described in §3.1.

D.1. Update mechanisms with birth first

We start with writing the transition probabilities for all the 16
update mechanisms in table 2 in a compact way. To do so, in
addition to the selection parameters r and t introduced in
table 4, we introduce two more parameters v and . Par-
ameters r and t represent selection at the individual level
for birth and death, respectively, whereas, parameters ' and
t' represent selection at the patch level for birth and death,
respectively. If the selection for birth at the individual level
is uniformly at random, then r =1, otherwise r # 1. Similarly,
if the selection for death at the individual level is uniformly at
random, then t =1, otherwise t# 1. The same holds for the
parameters defined at the patch level. As an example, for
the update mechanism MbBDD, since the birth selection at
the patch level is uniformly random, ' =1. But the par-
ameters 7, t and t' are not equal to 1. The parameters r' and
t' describe the contribution of an individual to the collective
selection parameters of a patch. When a patch is occupied
by mutants, its collective selection parameters for the birth
and the death events equal ¥N; and #N;, respectively.
When a patch is occupied by wild-types, its collective selec-
tion parameters for the birth and the death events equal N;.
With this in mind, we generalize the transition probabilities
for update mechanisms with coupled migration, with birth
being the first event.

A state of the metastar is denoted by (e / o, j), where the
first index represents the state of the central patch: e if the
central node is occupied by mutant individuals, o if it is
occupied by wild-type individuals. The second index
denotes the number of mutant occupied leaf patches. The
transition from the state (e, ) to the state (e, j+ 1) occurs
with probability

| N (M—1-))N;
= N1 N,
T.H. (j+1)7”N1 + (M—l —f)N1 (M— 1 —j)Nl +jt/N1 )‘d)wm(rrt)-

(D.2)

The transition from the state (o,j) to the state (e,j) occurs
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Figure 5. The fixation probability of the metastar in the low migration rate regime under the coupled update mechanisms with birth being first, starting from a
single mutant. In terms of the value of fixation probability, one can put the update mechanisms into three classes: (H) a class of four update mechanisms with high
fixation probability in which selection on the individual level both in both birth and death is associated with the selection parameter (solid lines), (1) a class of eight
update mechanisms with medium fixation probability in which selection on the individual level is associated with the selection parameter either for birth or death
(dashed lines), and (L) a class of four update mechanisms with low fixation probability in which selection on the individual level is uniformly random for both birth
and death (dotted lines). Parameters: number of patches, M =5, patch size, N, = 5.

with probability

i B jT/N 1

T =t AN (1,1). D.3
L= R A ) (D.3)

The transition from the state (o,j) to the state (o,j—1) occurs
with probability

T = N Ad%(l’l)'
j'N1+(M—j)N1 (M—1—)N; +jt'N; vt
(D.4)

The transition from the state (e,j) to the state (o,j) occurs
with probability

o Mo1pNy 1
0 (AN +(M—1—j)Ny "W™\r't)’

(D.5)

The fixation probability of a mutant taking over the entire
metastar depends on the patch where the initial mutant
appears. It can be a leaf patch or the central patch. Let us
denote the fixation probability of a mutant starting from
the central patch by ¢2. Using [6,25], we find

¢ = m!

11— 22 (%)

(D.6)

Here, 7, is the conditional probability of the transition
from the state (o,j) to the state (o, j—1) given that the

population starts from state (O, j),

T ..
T+ T,

o

P /e
= r ) (D.7)

(1 1[0+ (M=1 =) (1)

Similarly, 7" is the conditional probability of the transition
from the state (e,j) to the state (e,j+1) given that the
population starts from state (e,j),

. T,
T,
_ Y P (1:)
P e (1) +(M—1—j+jt) i (1/7,1/1)

(D.8)

The fixation probability of a mutant starting from a leaf
patch, ¢!, can be obtained by using the relation

¢1:1_7T<]>7¢0.

it

(D.9)

Thus, the average fixation probability of a metastar
starting from a single fully occupied mutant patch is,

*« M-1
A VI

1
1 0
— .. D.1
b+ b (D-10)
Consequently, the average fixation probability of a metastar
staring from an individual mutant is

o =" PN (1, b). (D.11)
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Using equations (D.6), (D.9) and (D.11), we find

M—1 1
¢* = (Td’l +M¢9> 4%1(?, t),
M—11-m7!" 1) it N
:( o L . — N (1),
M 1+ M = _
™ 14+ (1= ) S (%)

(D.12)

To illustrate the fixation probability ¢* using equation
(D.12), we assume that all selection parameters are controlled
by the same variable, 4. If any of the selection parameters for
birth is not equal to 1, then it is set to g. That is, if r#1, then
r=q and if ' #1, then ¥ =q. Similarly, if t#1, then t=1/g
and if ¥ #1, then # =1/4. Figure 5 shows the fixation prob-
ability of the metastar under different update schemes
with migration coupled to the birth event. Based on the fix-
ation probabilities for g>1, the birth first update
mechanisms with coupled migration can be broadly categor-
ized into three classes with high, intermediate and low
fixation probabilities:

(A) The class with high fixation probability consists of the
update rules where selection acts at the individual
level, both in the birth and the death event. That is in
the high fixation probability class, r#1 and t # 1.

(B) The class with intermediate fixation probability consists
of the update mechanisms where selection acts at the
individual level but only in one event, either birth (r #
1) or death (t#1).

(C) The low fixation probability class consists of the update
mechanisms where selection does not operate at the indi-
vidual level. For this class, r=t=1.

The ordering of the fixation probabilities corresponding to
the update mechanisms of these three classes is consistent
with the inequalities (B.17) and (B.18) obtained in appendix
B.1. For example in inequality (B.17), it is shown that

$mpspD, > $mBBDd > bmpeng (D.13)
—— —— N —
high fixation intermediate fixation low fixation

probability class probability class probability class

In the class with high fixation probability, for a given
value of g, the fixation probabilities for the update rules of
the class are nearly the same. Let us understand the reason
behind this small difference in the fixation probabilities.
Recall for the update rules of high fixation probability class
both r and t are not equal to 1, i.e. selection operates at the
individual level for the high fixation probability class
update rules. We have

D t) (f) M1

7(%1[“(]”’ 1D = (- (D.14)

t
. . . 1
We first focus on the regime g>1, with r=g, t = 5,

N
Pum( ) 2N s 1

o /1 (>19)

As a result, the fraction

M—1—j+ iy (1/r,1/t)

1+

- v N (r,t
= ¢$Il(r£ )t) <1, (D.16)
7 7,
Sl M ) g
t Gt (1/7,1/1)
and consequently, equation (D.2) reduces to
M—-11-7" 1

. 1—al- o .
In the above equation, ——"— can be simplified when M is
e

N1 11
wm 0t

sufficiently small such that (M — 2+ t') ) < 1. In
this case,
! ;;if ~1 (D.18)
and
Mt~ (D.19)
Hence,
$* = (1), (D.20)

which is independent of the selection parameters #' and ¢’
This implies that the fixation probability of a mutant on the
metastar for an update rule of high class fixation probability
(update rule where r#1 and f# 1) is the same regardless of
the nature of selection at the patch level. This in turn explains
why the fixation probability profiles in the high fixation
probability class are so similar.

We use similar arguments to study the differences
in the fixation probability profiles of the intermediate
fixation probability class where either r#1 or t#1. From
figure 5, we observe that for a given g value, the differences
among the fixation probability for different update rules of
the class is higher. For the update rules with ¥#1 and t=1,
we have

N,
Dot/ 1) Ni—1

LA fr, 1D (D.21)

Similarly, for the update rules with r=1 and t#1, we have

Dum(r ) _ (1)““‘ (D.22)
oajrim \t) '
Substituting r =g and t = %, we get,
N1
(bwm(r' t) _ Ni—1 (D23)

o a1

which for g>1 is less than what we have in the class with
the high fixation probability (see equation (D.15)). As a
result, we expect that in the class with the intermediate fix-
ation probability, the patch level selection is more important.

In the class of low fixation probability with r=¢=1, since

P (r, )
—cb%(l/r, 1D =1, (D.24)

the effect of patch selection on the fixation probability is more
notable compared with the two other classes. As a result, the
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Figure 6. The fixation probability of the metastar in the low migration rate regime under coupled update mechanisms with death being first, starting from a single
mutant. In terms of the value of fixation probability, one can again put the update mechanisms into three classes: (H) the class with high fixation probability in
which selection on the individual level both in both birth and death is associated with the selection parameter, (I) the class with medium fixation probability
in which selection on the individual level is associated with the selection parameter either for birth or death, and (L) the class with the low fixation probability
in which selection on the individual level is uniformly random for both birth and death. Parameters: number of patches, M =5, patch size, N; =5.

differences in the fixation probabilities for the update rules of
this class is larger than what we found in the previous two
classes. Also, the conditional transition probabilities in
equations (D.7) and (D.8) become identical to the transition
probabilities of star graph with one individual per node.
Therefore, for the case of low fixation probability class
update rules, the fixation probability on the metastar starting
from a single mutant patch is equivalent to the fixation prob-
ability on the star graph starting from a single mutant. The
fixation probability of the metastar starting from a single
mutant, is then the fixation probability of the mutant on the
star graph of size M times the probability ¢} .

Let us now focus on the case of g<1. In the class with
high fixation probability, for g <1 and N; >1,

P (1, 1) 2Ny 1)
= <1, D.25
Pom1/r 1) 02
and hence,
, LMo (1)t
- / Ny
™ _ ’ SumD) 1 (Do)
A r gy (it
T+ M =1 —j+t)) -
t by (1/1,1/1)
As a consequence, from equation (D.12), we find
P* < 1. (D.27)

Therefore, the effect of patch level selection in the class with
high fixation probability is negligible. Similarly, we find that
for the class with intermediate fixation probability, ¢* < 1.
Although the variation in fixation probabilities is very
small for the high fixation probability class, from figure 5,
we find seemingly unintuitive fixation probabilities ordering
for the different update mechanisms. Intuitively, an update

mechanism with higher selection associated events is
expected to yield higher fixation probabilities of beneficial
mutants. In our numerical investigation, we observe that
this holds only for a finite range of 4. In fact, for a certain
value of g, we have

* * * *
¢MBBdD > d)MBBDD > (beBdD > (beBDDI

which is counterintuitive. Similarly, based on the numerical
calculations, in the class with the intermediate fixation prob-
ability, for a range of g,

0. R > L.
PMBbdD = PMBODD ~ PbbdD ~ PMbbDD-

which again is counterintuitive.

In the fixation probability for metastar ¢*, the selection at
the individual level always enters the formula via ¢\ (7, t).
Since @\ (1) =ML (rt), we have SN (r=1,t=1/q) =
oM (r=gq,t=1). Therefore, in the intermediate fixation
probability class, two update mechanisms that are similar at
the patch level selection, but different at the individual
level selection, have the same fixation probabilities. For
example, MBBdd and MBbdD, have the same fixation prob-
abilities. This is the reason that instead of eight, we have four
distinct curves for the fixation probabilities of intermediate
fixation probability class (see inset of figure 5).

(D.28)

(D.29)

D.2. Update mechanisms with death first

A similar analysis using the metastar can be performed for
the case of 16 update mechanisms where migration is
coupled to death, introduced in table 3. We recover a similar
grouping of update mechanisms into three fixation prob-
ability classes as encountered for the birth first coupled
migration update mechanisms (see figure 6).
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