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ABSTRACT: MiMiC is a highly flexible, extremely scalable
multiscale modeling framework. It couples the CPMD (quantum
mechanics, QM) and GROMACS (molecular mechanics, MM)
codes. The code requires preparing separate input files for the two
programs with a selection of the QM region. This can be a tedious
procedure prone to human error, especially when dealing with large
QM regions. Here, we present MiMiCPy, a user-friendly tool that
automatizes the preparation of MiMiC input files. It is written in
Python 3 with an object-oriented approach. The main
subcommand PrepQM can be used to generate MiMiC inputs directly from the command line or through a PyMOL/VMD
plugin for visually selecting the QM region. Many other subcommands are also provided for debugging and fixing MiMiC input files.
MiMiCPy is designed with a modular structure that allows seamless extensions to new program formats depending on the
requirements of MiMiC.

■ INTRODUCTION
Biochemical processes span a wide range of time and length
scales and often require explicit modeling of electronic degrees
of freedom.1 These include enzymatic reactions, photo-
biological processes, and transition-metal ion binding to
biomolecules.2−4 Currently, the most accurate and computa-
tionally expedient way to describe these processes is provided
by hybrid quantum mechanics/molecular mechanics (QM/
MM) multiscale approaches.5−7 Here, the system is split into a
relatively small QM subsystem and a larger MM subsystem,
which are treated at different levels of theory either by different
programs (loose-coupling scheme) or within the same program
(tight-coupling scheme).8 These methods offer an excellent
trade-off between accuracy and computational cost. However,
the accessible time scales in QM/MM molecular dynamics
(MD) simulation are currently limited, especially when
applying first-principles methods like density functional
theory,9 which in turn affect the sampling accuracy of QM/
MM MD.10

To alleviate this problem, the MiMiC11 framework for
multiscale modeling in computational chemistry has been
developed. MiMiC is based on a loose-coupling scheme
without compromising computational efficiency. This flexi-
bility allows for a relatively straightforward incorporation of
any QM and MM code. The current release of MiMiC12,13

connects CPMD14 with GROMACS15,16 enabling massively
parallel QM/MM MD simulations.17 In addition, support for
CFOUR will be available soon, allowing for high-level wave
function-based QM/MM simulations.18 MiMiC has displayed
excellent scalability over more than thousands of cores, paving

the way toward routine subnanosecond QM/MM MD of large
biological systems.19,20

MiMiC QM/MM requires one input file for GROMACS
and one for CPMD. The definition of the QM region must be
added to both. To automatize this lengthy and error-prone
task, we have developed MiMiCPy, a suite of tools for the
smooth preparation of input files. MiMiCPy is based on
Python 321 and uses NumPy22 and Pandas23 for efficient data
manipulation. It selects complex QM regions through an
intuitive language, automatically tracking the atom index
conversion between GROMACS and CPMD. MiMiCPy is
designed with a modular approach, allowing it to be extended
to handle the topology, coordinates, and input script formats of
new MM and QM programs supported by MiMiC in the
future.

This article is organized as follows. First, we present the
procedure to prepare MiMiC input files. Next, we detail the
usage of MiMiCPy. Finally, we provide practical examples for
(bio)chemical systems.

■ IMPLEMENTATION
Input files can be prepared in three different ways:
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1. A set of command-line subcommands, including
PrepQM and others that will be detailed below; this is
the most convenient way to use MiMiCPy.

2. The PrepQM plugins for the VMD24 and PyMOL25

packages; this is ideal for selecting complex QM regions
where the default selection language of MiMiCPy may
not be so convenient or where visual inspection is
required.

3. The Python library, which can be imported directly in a
Python script, exposing all the features of MiMiCPy; this
approach is powerful when developing automated
workflows.

■ COMMAND LINE AND PLUGINS
PrepQM is the chief subcommand used to generate both the
GROMACS portable binary run (tpr) input file and the
CPMD input file for a MiMiC QM/MM run. A workflow
diagram depicting the general scheme of how input files are
generated with MiMiCPy is shown in Figure 1.

The minimal set of arguments to be passed to the PrepQM
subcommand are the topology and coordinate files. Currently,
MiMiCPy supports GROMACS topology (.top), GRO-
MACS gro (.gro), pdb (.pdb), xyz (.xyz), and the
CPMD GEOMETRY format. Launching the mimicpy
prepqm command starts an interactive session, where the
atoms to be included in the QM region can be selected. This is
done by using a custom selection language provided by
MiMiCPy, which is designed to be human readable similar to
the ones offered by CHARMM,26 VMD,24 and PyMOL.25 It
includes selections by atom/residue properties grouped by
Boolean operators. The syntax for the selection query involves
the following general structure:

where atom selection can include resname for the residue
name, resid for residue ID, name for the atom name, type
for the atom type, id for the atom ID, and mol for the
molecule/chain. All the IDs and names are as per conventions
of the MM engine, i.e., the GROMACS topology. Logical
operators can be is, not, >, <, ≥, or ≤. Many selection
queries can be strung together using the and or or operators
and grouped with brackets. In the interactive session, atoms

can be added and/or deleted to the QM region. Examples of
this are discussed in the Applications section.

PrepQM generates a CPMD input file with a minimum box
size and the total charge. The &MIMIC and &ATOMS sections
are also filled up. Other CPMD instructions can also be added.

A GROMACS index file, containing the GROMACS indices
of the QM atoms, is also written by PrepQM. This file, with
the topology, the coordinate file, and the molecular dynamics
parameters (mdp) file, can be passed to the GROMACS
preprocessor (gmx grompp) to generate the GROMACS tpr
file. The same coordinate and topology files passed to PrepQM
must be passed to gmx grompp. Conveniently, if a
GROMACS mdp file is initially passed to PrepQM, it will
call gmx grompp and generate the tpr file automatically. The
generated CPMD input and the GROMACS tpr files are used
to run the MiMiC-based QM/MM simulation by passing them
to cpmd.x and gmx mdrun, respectively.

Selecting QM atoms through the command line may be
inconvenient, especially for large QM regions. MiMiCPy
provides PrepQM plugins for the VMD and PyMOL packages
to select the QM region visually. Furthermore, the MiMiCPy
console application provides other tools to fix and debug input
files:

• CPMD2Coords writes the QM atoms selected in a
MiMiC-compliant CPMD input file to a gro or pdb file.

• FixTop fixes missing information in GROMACS
topology files that are required by CPMD in a MiMiC
run.

• CPMDid provides the indices that CPMD assigns to
each atom; this is especially useful for the MM atoms
because in general such indices are reshuffled in a
nonobvious way with respect to the GROMACS
ordering.

• Geom2Coords converts a CPMD GEOMETRY file to
a gro or pdb file for easy visualization.

■ MiMiCPy AS A PYTHON LIBRARY
MiMiCPy can also be used as a Python library (Figure 2).

Coordinate and topology data can be loaded into MiMiCPy
by using the dedicated CoordsIO and Mpt or MiMiCPy
topology classes. These handle different coordinate and

Figure 1. Flowchart of the generation of the CPMD and GROMACS input files for a MiMiC-based QM/MM simulation.
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topology formats by passing the information to dedicated
parser classes. Each coordinate file format has its own
dedicated class which is inherited from BaseCoords. This
is an abstract base class, providing the skeleton of a coordinate
parser. Currently, MiMiCPy includes Gro, Pdb, CPMDGeo,
and Xyz classes to handle the respective formats. The
CoordsIO class acts as an adapter that aggregates and
wraps these different classes and exposes only the coordinate
information (as a Pandas DataFrame) and the box size to
the user. This is the only information required by the rest of
the package. The Mpt class functions in a similar way, as an
adapter interfacing multiple topology parser classes. The Mpt
class provides a common framework to deal with disparate
topology formats. Mainly, it exposes methods for selecting
specific atoms from the topology. Currently, only the
GROMACS topology format (.top) is supported. Other
formats may easily be supported by adding new classes that
interface with the Mpt class.

The coordinate and topology information should be passed
to a “Selector”-type class. This type of class combines
coordinate and topology information, handling the selection of
the atoms. To use the MiMiCPy selection language, an object
of the DefaultSelector class can be instantiated. To use
the selection languages of VMD and/or PyMOL, instances of
the VmdSelector or PyMOLSelector classes can be
created instead. These latter classes provide a simplified façade
to the VMD and PyMOL software packages in order to work
with the Preparation class (described below). Moreover,
these classes are inherited from the abstract VisPackage
class (which in turn is inherited from DefaultSelector),
which provides a common set of rules for all these façade
classes. A new façade class can be easily added to allow
MiMiCPy to interface with other molecular visualization
packages.

An instance of the desired selector-type class is to be passed
to the Preparation class, which is the “central” class that
keeps track of all the selected QM atoms and creates the input
files. The Preparation class can be essentially thought of
as a decorator for the selector classes, aggregating them and
attaching the new behavior of input file generation. Calling the
get_mimic_input() method of a Preparation

instance returns instances of type CpmdScript and Ndx.
These are children of the abstract Script class, allowing for
“pythonic” interactions with these script instances, i.e., using
the dot operator for setting and getting of script properties.
Similarly, get_mimic_input() would result in a
template Mdp object (GROMACS .mdp handler), which
also is inherited from the Script class. All Script
instances can be converted to and from text files.

MiMiCPy is fully object-oriented and built with a modular
architecture in mind. It can be seamlessly extended to support
new coordinate and topology formats. This allows it to quickly
keep up with and support new developments in the MiMiC
framework.

■ USAGE
The simplest way to create input files uses PrepQM:

This command passes the GROMACS topology file top-
ol.top and the initial coordinate file coords.gro to the
PrepQM subprogram. The command starts an interactive
session, where instructions can be given to add and/or delete
atoms to select the QM region. An example of such an
instruction is

The keyword after add corresponds to the query that identifies
the atoms to be added to the QM region. In this case, atoms in
the residue with name ACT are selected. After selecting the
desired atoms, typing q will exit the interactive session.
MiMiCPy generates the CPMD input file cpmd.inp and the
GROMACS index file index.ndx. The latter is used to
generate the GROMACS tpr file. If the GROMACS mdp file is
passed to PrepQM, this is done automatically:

Other options are available in the PrepQM subcommand to
tailor the input files to the user’s needs (see https://mimic-
project.org/).

The species of the QM atoms need to be passed from
GROMACS to CPMD. For standard atom types (e.g., atoms

Figure 2. Organization of the main classes in MiMiCPy.
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in the natural amino acids), the information is in the
GROMACS force field. For nonstandard atom types (e.g., a
ligand), this information is usually not found. MiMiCPy
automatically guesses the atomic species based on a
combination of atomic mass, name, and type. This guess can
be toggled on or off using the -guess option. If set to
False and nonstandard atoms are present, MiMiCPy will exit
with an error message. If one is not satisfied with the guessed
elements, a file containing the list of all nonstandard atom
types with the correct atomic elements can be specified with
the -nsa option.

The PrepQM plugins for PyMOL and VMD have a very
similar syntax and functionality as the command-line version.
In the case of the VMD plugin:

Here, the QM atoms are selected visually and/or using the
VMD selection commands and entered into a named selection
object called $sel. No coordinates need to be passed since
they have already been loaded into VMD.

MiMiCPy can also be used as a Python library:

To load the topology and coordinate files into MiMiCPy, pass
the file names to the DefaultSelector instance (or the
VmdSelector or PyMOLSelector instances if desired):

The selector instance is then used to instantiate the
Preparation class to actually prepare the input files:

Atoms can be added and deleted to the QM region using the
add() and delete() methods, respectively. Finally, the
get_mimic_input() method can be called to generate
the GROMACS index and the CPMD input instances:

Parameters to change the way the CPMD file is written (e.g.,
box_padding to specify a minimal distance in nanometers
between the QM atoms and the QM box boundaries) can be
passed to get_mimic_input(). The resulting Script-
type instances ndx and cpmd can be used to explore the
properties in a “pythonic” way. For example, to print the total
net charge of the QM region, reported as the CHARGE
parameter in the &SYSTEM section of the CPMD input file,
one can type:

Further usage examples covering all MiMiCPy features in
more detail can be found at https://mimic-project.org/.

■ APPLICATIONS
Here, we describe using the MiMiCPy command-line tools for
a small molecule in water with the solute as the QM part and a
protein in solution with covalent bonds that cross the QM-
MM boundary.
Case 1: Acetone in Water. Here, we setup a QM/MM

simulation of an acetone molecule (QM subsystem)
surrounded by water molecules (MM subsystem). The full
system is equilibrated at the MM and QM/MM levels. Usually,
the first step consists of an annealing simulation, where the

temperature of the QM/MM system is smoothly decreased by
removing the excess kinetic energy (released due to the
relaxation from the MM to the optimal QM geometry) from
the system. The input files for the annealing of this system are
prepared using the MiMiCPy PrepQM tool. The following files
have to be passed to PrepQM (see the Supporting Information
for more details):

1. The GROMACS topology file topol.top and the
MM equilibrated coordinate file coords.gro.

2. A “template” CPMD input file template.inp with
only the &CPMD and &DFT sections filled to instruct
CPMD to perform annealing.

3. A text file pp_info.dat, reporting pseudopotential
details (like pseudopotential filenames, LMAX, LOC,
etc.) for each element in the system.

4. A GROMACS simulation parameter file mimic.mdp
with generic instructions to perform a MD run.

These four files are passed to MiMiCPy PrepQM with the
command:

The acetone molecule is a nonstandard molecule;
consequently, its atom definitions in the topology do not
contain information about the species. The atomic elements
are correctly guessed by PrepQM. The user is then asked to
select, in an interactive environment, the atoms to be included
in the QM region. The following commands can be entered to
select the acetone molecule:

A new file cpmd.inp is created with the &ATOMS and the
&MIMIC sections filled up from template.inp. The path
to the GROMACS tpr file is also included when it is passed
through the -path option of PrepQM. The pseudopotential
information (specified with the -pp option) is included as
specified in pp_info.dat. The QM system charge and size
are calculated, and a value of 0.35 nm (as specified in the
-pad option) is added to the QM box in all directions to
comply with the requirement of the Poisson solver (Martyna
and Tuckerman method) for isolated systems of CPMD. In
practice, a larger value would have to be passed, depending on
the system under consideration. The GROMACS index and
tpr files are also generated.
Case 2: The IDH1 Enzyme. The isocitrate dehydrogenase

1 enzyme (IDH1) from Escherichia coli in complex with the
isocitrate ligand (ICT) and the cofactor NADP+ (PDB ID:
4AJ3)27 is first equilibrated at the MM level. Then, to run
QM/MM, ICT and two residues (Arg 100 and Arg 109)
involved in ligand binding are included in the QM region. This
leaves NADP+ in the MM region, a nonstandard molecule with
no atom species information in the topology file. This cannot
be fixed by PrepQM, since it can only fix missing information
for atoms in the QM region. CPMD does not have the species
information on NADP+, possibly leading to segmentation fault
errors. This can be avoided before launching PrepQM by
running:

FixTop guesses missing atomic species information in the
topology file (this includes atoms in the MM region, which
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PrepQM will not fix) and prints a consolidated [ atom-
types ] section into a GROMACS .itp file. The easiest
way to incorporate this information into an existing
GROMACS force field is to write it to the ffnonbonde-
d.itp file containing the [ atomtypes ] definition of the
whole system for all default GROMACS force fields. A copy of
the AMBER force field directory is created locally under
amberff/. FixTop replaces the [ atomtypes ] section
in amberff/ffnonbonded.itp with the updated one
containing all species information and clears other [
atomtypes ] sections from the topology (as -cls was
specified). This can now be passed to PrepQM:

and typing in the interactive session:

ICT and the (side chains of) two amino acid residues (with
residue IDs 100 and 109) are included in the QM region
without the backbone atoms.

The syntax used in the PrepQM command in this case is
similar to the previous example, apart from an extra -bound
option. The two amino acid residues included in the QM
region are part of the protein, and hence, the QM-MM
boundary cuts through covalent bonds with a QM and an MM
atom on either side. These QM atoms need to be treated in a
special way in order to saturate all the open valences in the
QM region. One approach is to use the boundary-pseudoatom
scheme where open-valence QM atoms are described through
a special monovalent pseudopotential.28 When the -bound
option is turned on, PrepQM will automatically detect the QM
atoms with open valence and modify the CPMD input file
accordingly.

The CPMD input file obtained in the output of the PrepQM
subcommand can be edited further. We would like to constrain
the distance between the atom H1 of ICT and the atom C4N
of NADP+ to its current value. The following block has to be
added to the &ATOMS section:

where in place of the placeholders and , we should insert
the CPMD indices of the two atoms involved in the constraint.
Since ICT is in the QM region, we can look into the &MIMIC
section of the CPMD input file to obtain the CPMD index of
the H1 atom. However, as NADP+ is instead in the MM
region, it is very difficult to obtain the CPMD index of the
C4N atom by inspection of the input files alone. The MM
atoms are grouped by species in a nonobvious way when
transferring the data from GROMACS to CPMD. The
CPMDid subcommand of MiMiCPy is provided to help in
this context. It can be used to retrieve the CPMD indices
corresponding to any atom in the topology file. For example, in
our case, we launch the command:

to enter in an interactive session where we provide the
selection of the atoms we are interested in by using the usual
selection language:

This will output the CPMD indices of the two atoms, which
we can insert in the CONSTRAINTS block of the CPMD
input. The indices can be printed in a table format (for
debugging), list format (for quickly copying into the input),
or as a range (for certain tasks like multiple thermostats).
The printing format can be set with the -print option.

■ CONCLUSIONS
We have presented MiMiCPy, a companion tool of MiMiC.
The code simplifies the preparation and debugging of input
files via a user-friendly interface. It provides an extensive list of
command-line tools. PrepQM allows the generation of CPMD
input files and GROMACS tpr files from the GROMACS
topology and coordinate files. An easy-to-use selection
language allows the selection and design of QM regions. The
correct guess of atomic species from the MM topology is
checked. Further tools to facilitate the interconvertibility
between MM and QM engines are provided.

A plugin version of PrepQM for PyMOL and VMD allows
the selection of visually complex QM regions. MiMiCPy can
also be used as a Python library, allowing one to develop
complex workflows to set up MiMiC-based QM/MM
simulations. The package has been designed with a modular
and object-oriented approach. This allows one (i) to easily
support new topology and coordinate file formats from
different programs, when they become available in MiMiC;
(ii) to develop new tools as MiMiC expands its functionalities.

Applications to acetone and the IDH1 enzyme in water
illustrate how users can expedite the setup, reducing human
error by automating the procedure.

■ DATA AVAILABILITY STATEMENT
Releases of MiMiCPy are made available in the PyPI
repository (https://pypi.org/project/mimicpy/). The source
is available on GitLab at https://gitlab.com/MiMiC-projects/
mimicpy, published under the GNU Lesser General Public
License version 3 or later (LGPLv3+). Installation guides,
tutorials, and other documentation are available at https://
mimic-project.org/. Additional information about online
documentation and software needed for running MiMiC-
based QM/MM simulations is provided in the Supporting
Information.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01620.

Further details on the topology and other input files
mentioned in the Applications section, information
about available online documentation, and a brief
introduction to the MiMiC framework for QM/MM
simulations (PDF)
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