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Abstract

Multiple nutritional deficiencies (MND) confound studies designed to assess the role of a single nutrient in contributing
to the initiation and progression of disease states. Despite the perception of many healthcare practitioners, up to 25% of
Americans are deficient in five-or-more essential nutrients. Stress associated with the COVID-19 pandemic further increases
the prevalence of deficiency states. Viral infections compete for crucial nutrients with immune cells. Viral replication and
proliferation of immunocompetent cells critical to the host response require these essential nutrients, including zinc. Clini-
cal studies have linked levels of more than 22 different dietary components to the likelihood of COVID-19 infection and
the severity of the disease. People at higher risk of infection due to MND are also more likely to have long-term sequelae,
known as Long COVID.
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Abbreviations
MND  Multiple nutritional deficiencies

LPA Lymphocyte proliferation assay
MPO  Myeloperoxidase

GPX4  Glutathione peroxidase isozyme 4
NOX2 NADPH oxidase 2
Introduction

Micronutrient depletion is commonly associated with stress,
aging, and infectious disease. Nutrients with solid evidence
for stress-induced deficiency include magnesium, zinc,
iron, calcium, and niacin (Lopresti 2019). An example of
the reverse, deficiency-induced stress, includes cobalamin.
On average, 41% of Americans have insufficient levels of
cobalamin (vitamin B,,), as judged by a lymphocyte prolif-
eration assay (LPA) (Bucci 1994). Low maternal plasma B,
and high folate during gestation predict increased HPA-axis
stress in the offspring. Higher cortisol responses to stress in
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children resulting from such pregnancies have been docu-
mented during adolescence (median age=13.6 years) by
Krishnaveni et al. (2020). With a higher tendency for stress,
these individuals have a greater chance of developing MND.
Figure 1 illustrates this interdependence between stress-
related deficit in micronutrients and deficiency-induced
stress.

What are nutritional deficiencies
and how are they determined?

Conventional nutritional science estimates less than 5.7%
of people (USA) lack two-or-more essential nutrients (Bird
et al. 2017). However, this assessment depends on the cri-
teria employed to define an insufficient level of an essen-
tial dietary component. For many nutrients with pleiotropic
effects on different organ systems and multiple biochemical
pathways, disease in the whole organism manifests in more
than one way and at more than one intake level. For example,
the dietary requirement for vitamin D to prevent rickets is
substantially lower than the requirement to reduce the risk
of cancer or for proper immune system functioning (Holick
2020).
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Fig. 1 Cyclic nature of stress and nutritional deficiency

Nutritional deficiency based on the LPA

William Shive, at the Clayton Foundation Biochemical
Institute (CFBI), developed a robust method (LPA) for
assessing individual deficiencies of many micronutrients
based on lymphocyte proliferation (Shive et al. 1986).
The CFBI at the University of Texas in Austin has a long
and distinguished history of nutritional research. Roger
John Williams founded the CFBI. He was a nutritional
research pioneer who discovered vitamins By (pantothenic
acid), B¢ (pyridoxine), By (folate), LA (lipoic acid), and
avidin. Shive’s method for rapidly determining deficiency
states caused by diet or individual genetic variation finally
addresses the concept of ‘biochemical individuality’ ini-
tially proposed by Roger J. Williams (1956). LPA deter-
mined the incidence of 19 different nutrient disorders in
833 Americans (Bucci 1994). Based on these data, 98%
of Americans have at least one problem; 83% have two-
or-more insufficiencies, and 25% have five-or-more nutri-
tional deficiencies (Bucci 1994). MND would predict that
a single supplement administered to a patient with multiple
inadequacies may not correct disease symptoms resulting
from the lack of several. Clinical testing of monotherapy
is likely to be confounded by other coexisting deficiencies.
Correlation of disease with a selected, single inadequacy is
expected to have substantial scatter due to the possibility
of MND in many (83%) patients.

Fig.2 Relationship between
nutrient disorders and COVID-

19 disease Cobalamin 41% W

Calcium 35% V
Zinc33% W
Thiamin 28% v
Pyridoxine 22% V

Asparagine 19% V
Magnesium 18% v

* Niacinamide 13% V

Fructose intolerance 22% V

Glucose-Insulin 17% v

Association of nutritional disorders
with COVID-19 disease

Figure 2 illustrates the relationship between COVID-19 dis-
ease, the incidence of nutrient disorders, and the effect of
nutritional supplements. The first two columns in this figure
include nutrients or conditions (i.e., fructose intolerance and
insulin dysfunction) known to be assessed by Shive’s LPA.
The incidence of disorders determined by LPA in a group of
833 Americans, expressed as a percentage, is included
immediately following the name of the nutrient or condition
(Bucci 1994). The third column of Fig. 2 contains nutrients,
where LPA has not assessed the deficiency prevalence. Col-
umn three includes available data for the frequency of insuf-
ficiency determined by other methods. Based on a compre-
hensive evaluation of peer-reviewed literature in April 2022,
those nutrients that had one-or-more credible publications
linking them with the risk and severity of COVID-19 are
indicated by a green checkmark (4/). Those nutrients that
exacerbate the risk of COVID-19 disease or are toxic in
excess have a red checkmark (\/ ). Cobalamin (vitamin B,)
is particularly noteworthy, since the incidence of B, defi-
ciency correlates with COVID-19 disease (Wee 2021), but
B, supplements increase the risk of disease severity (Dal-
beni et al. 2021). Most nutrients under consideration, 22 out
of 29, have evidence to support the notion that their levels
affect COVID-19 disease. Two micronutrients, zinc and sele-
nium, are known to be toxic in excess (Fosmire 1990; Bar-
celoux 1999).

Literature relating different nutrients with COVID-19
disease: cobalamin/vitamin B, (Wee 2021; Elham 2021;
Galmés et al. 2020; Dalbeni et al. 2021; Clemente-Suarez
et al. 2021; van Kempen and Deixler 2021); calcium (Zhou
et al. 2020; Osman et al. 2021; Yang et al. 2021; Zeng et al.
2021; El-Kurdi et al. 2020); zinc (Galmés et al. 2020; Dhar-
malingam et al. 2021; Zeng et al. 2021; Heller et al. 2021;
Maares et al. 2022; Notz et al. 2021; Du Laing et al. 2021;
Chillon et al. 2022); thiamin/vitamin B, (Al Sulaiman et al.

Not Tested by LPA

Riboflavin 10% V Selenium 14% W

* Oleic acid 10% V ¢ Vitamin D 50-96% V
¢ Glutamine 9% v * lIron 2-20% V

* Pantothenate 8% * Copper

* Inositol 7% v * Taurine v

* Biotin 6% * Phosphorus v

« Choline 5% v * Ascorbate 7-74% v

* Serine 3% * Bioflavinoids-Zn v

* Folate 2% * N-Acetyl cysteine v

* -3 fatty acids v

VV -- monotherapy affects outcome of COVID infection: positive (

en) or negative (red): literature summary 2022
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2021; Branco de Oliveira et al. 2021); pyridoxine/vitamin
By (Kumrungsee et al. 2020; Galmés et al. 2020); fructose
(Vazirani 2021); magnesium (Jose et al. 2021; Zeng et al.
2021; Trapani et al. 2022; Eskander and Razzaque 2022;
van Kempen and Deixler 2021); glucose (Shauly-Aharonov
et al. 2021; Wang et al. 2021; Ardestani and Azizi 2021);
niacinamide/vitamin B; (Raines et al. 2020); riboflavin/vita-
min B, (Akasov et al. 2022); oleic acid (Clemente-Suéarez
et al. 2021); glutamine (Matsuyama et al. 2021; Cengiz et al.
2020; Soliman et al. 2022); inositol (Espinola et al. 2021;
Bizzarri et al. 2020; Lagana et al. 2020); choline (Olivari
et al. 2020; Freedman et al. 2020; Bizzarri et al. 2020); sele-
nium (Galmés et al. 2020; Im et al. 2020; Dharmalingam
et al. 2021; Clemente-Suéarez et al. 2021; Fakhrolmobash-
eri et al. 2022; Khatiwada and Subedi 2021; Schomburg
2022; Heller et al. 2021; Moghaddam et al. 2020; Notz et al.
2021; Du Laing et al. 2021; Zhang et al. 2020; Skesters et al.
2022); cholecalciferol/vitamin D (Galmés et al. 2020; Grant
et al. 2020; Im et al. 2020; Clemente-Suarez et al. 2021;
van Kempen and Deixler 2021; Weir et al. 2020; Kaya et al.
2021); iron (Galmés et al. 2020; Nai et al. 2021; Habib et al.
2021; Drakesmith et al. 2021; Taneri et al. 2020; Dhar-
malingam et al. 2021; Zeng et al. 2021; Clemente-Suarez
et al. 2021); taurine (Iwegbulem et al. 2022; van Eijk et al.
2022); phosphorus (van Kempen and Deixler 2021; Seers
and Davenport 2020); ascorbate/vitamin C (Liu et al. 2020;
Hemilid and de Man 2021; Holford et al. 2020; Galmés et al.
2020; Clemente-Suérez et al. 2021; Biancatelli et al. 2020);
bioflavonoids (Derosa et al. 2021; Biancatelli et al. 2020;
Espaiio et al. 2021; DI Pierro et al. 2021; Landis et al. 2022);
N-acetyl cysteine (Shi and Puyo 2020; Assimakopoulos et al.
2021; Mohanty et al. 2021; De Flora et al. 2020; Zhou et al.
2021; Jorge-Aar6n and Rosa-Ester 2020; Wong et al. 2021;
Andreou et al. 2020; de Alencar et al. 2021; Kapur et al.
2022); -3 fatty acids (Clemente-Suérez et al. 2021; Das
2020; Goc et al. 2021); retinoic acid/vitamin A (Galmés et al.
2020); folate (Galmés et al. 2020; Meisel et al. 2021; Doaei
et al. 2021); copper (Galmés et al. 2020; Dharmalingam et al.
2021; Zeng et al. 2021; Andreou et al. 2020); iodine (Froh-
lich and Wahl 2021); nickel (Dharmalingam et al. 2021);
lithium (Dharmalingam et al. 2021); chromium (Zeng et al.
2021); manganese (Zeng et al. 2021); albumin (El-Kurdi
et al. 2020); potassium (Liu et al. 2021; Alfano et al. 2021;
Noori et al. 2022); sodium (Gheorghe et al. 2021).

The contribution of zinc and selenium
deficiency to morbidity and mortality
from COVID-19 disease

There is a clear correlation between zinc or selenium defi-
ciency with morbidity and mortality from COVID-19 infec-
tion (Heller et al. 2021; Moghaddam et al. 2020; Maares

et al. 2022; Notz et al. 2021; Du Laing et al. 2021). The
humoral response, production of antibodies after SARS-
CoV-2 vaccination, also correlates with free zinc, but
not total serum zinc concentrations (Chillon et al. 2022).
Although correlation does not necessarily prove causation,
the essential role of zinc in the production of 10% of all
proteins (Read et al. 2019) and of selenium in DNA biosyn-
thesis or alkyl-hydroperoxide detoxification (Muller et al.
2007) would argue that there is a mechanistic explanation.
Zinc is a gatekeeper of immune function (Wessels et al.
2017). The knowledge that insufficient dietary zinc pro-
duces an elevated risk of infection dates to the early 1960s
(Prasad 2001). Evidence suggests zinc deficiency causes
cell-mediated immune dysfunction (cytokine storm), cog-
nitive impairment (brain fog), and depression (Prasad 2013;
Nowak et al. 2005). Zinc deficiency also is associated with
retarded wound healing (Kogan et al. 2017), various types
of cancer risk (Skrajnowska and Bobrowska-Korczak 2019),
and heart failure (Rosenblum et al. 2020). Much of the
pathology associated with suboptimal zinc is also associated
with the sequelae of COVID-19, known as Long COVID.

Zinc and COVID-induced loss of smell
and taste

Zinc supplements post-infection reduce the duration of
anosmia, but not all symptoms resulting from SARS-CoV-2
infection (Abdelmaksoud et al. 2021). A likely explanation
for the effect of zinc in shortening the duration of anosmia
during COVID-19 disease involves the initial site of infec-
tion and the role that zinc plays in olfaction. The nasopharyn-
geal area is a common site for the first encounter with SARS-
CoV-2. Loss of olfaction is an expected early symptom of
COVID-19. As SARS-CoV-2 proliferates, it would result in
local depletion of zinc, since many proteins (10%) and viral
replication both require zinc ions. Localized zinc depletion
would deprive olfaction of this essential metal ion. There are
two steps in the detection of odorant molecules that require
zinc. The first is the cleavage of conjugates that mask odor-
ant detection, and the second is the conjugation of odorant
molecules that terminates detection and prevents saturation
of the olfactory receptor. The gene for the odorant metaboliz-
ing enzyme UDP-glucuronosyltransferase (UGT), elevated
during zinc deficiency (tom Dieck et al. 2003), is linked
to COVID-induced loss of smell (Shelton et al.2022). The
odorant metabolizing enzymes, UGT, and p-glucuronidase
are essential for the sense of smell (Neiers et al. 2021). Zinc
activates the membrane-associated p-glucuronidase (Yama-
guchi et al. 1990). High zinc concentrations can completely
inactivate UGT and f-glucuronidase (Schollhammer et al.
1975). These effects of zinc on p-glucuronidase and UGT
can explain the paradoxical association of anosmia with zinc
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deficiency (Pisano and Hilas 2016) and high-zinc resulting
from the intranasal administration of zinc solutions (Alex-
ander and Davidson 2006). Anosmia and dysgeusia are com-
monly associated with COVID-19 (Zahra et al. 2020) and
dietary zinc deficiency (Pisano and Hilas 2016).

Selenium has a dual role in the progression
of COVID-19 disease

Keshan disease is a highly fatal disorder first recognized
in 1935 and ultimately linked to the consumption of crops
grown in low-selenium soils (Chen 2012). Excess dietary
selenium is also toxic. The effects of chronic exposure
resulting from the consumption of crops grown in high-
selenium soils (Lower Cambrian outcrop areas in Southern
Shaanxi, China) are documented (Barceloux 1999; Du et al.
2018). Zhang et al. (2020) have pointed out that infections
by SARS-CoV-2 and other viruses are more prevalent in
those regions of China with low selenium soil content. Sele-
nium deficiency also results in congestive cardiomyopathy,
heart failure, cardiomegaly, increased risk of cancer, infec-
tion, inflammatory disease, diabetes, retarded wound heal-
ing, and infertility, while excess selenium results in brittle
hair and brittle, thickened, stratified nails or loss of both hair
and nails (Hariharan and Dharmaraj 2020; Fairweather-Tait
et al. 2011). In the extreme, selenium deficiency or excess
can result in death.

Figure 3 lists three selenium-containing enzymes (in
red) essential to life based on gene-knockout experiments in
mice (Muller et al. 2007). Glutathione peroxidase isozyme 4
(GPX4) is an enzyme capable of detoxifying alkyl-hydroper-
oxides, membrane-bound phospholipid-hydroperoxides, and
dioxetanes, like those formed during the immune response to
pathogens with reactive oxygen species (Belikov et al. 2015;
Di Mascio et al. 2019). Thioredoxin reductase is essential
for activating ribonucleotide reductase to form the deoxy-
nucleotide precursors for DNA biosynthesis and T-cell pro-
liferation (Sengupta and Holmgren 2014; Muri et al. 2018).

Gcle/~  embryonic lethal
Gpx47/-  embryonic lethal

Glutamate cysteine ligase
Glutathione peroxidase 4

Thioredoxin 1 Txn17/ embryonic lethal
Thioredoxin 2 Txn2/- embryonic lethal
Thioredoxin reductase 1  Txnrd1”~ embryonic lethal
Thioredoxin reductase 2 Txnrd27- embryonic lethal
Mn superoxide dismutase ~ Sod27" neonatal lethal

Non-lethal: Cat, Gpx1, Gpx2, MrsA, Mtl, Mt2, Mt3,
Prdx1, Prdx2, Prdx6, Sod1, Sod3, Ttpa, Oggl

Fig.3 Enzymes essential to life; their gene designation; and pheno-
typic outcome of gene-knockout experiments in mice. Enzymes in red
require an essential selenocysteine
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Selenium deficiency would have a differential effect on the
immune response and SARS-CoV-2 proliferation, since
replication of the virus involves RNA biosynthesis (RNA-
dependent RNA polymerase) in contrast to lymphocytes and
polymorphonuclear neutrophils (PMN), which rely on DNA
biosynthesis (Yin et al. 2020). Because of this, low selenium
produces a disadvantage to the immune response relative to
SARS-CoV-2 replication. Selenium deficiency would also
increase the collateral damage to host cells during infection
by limiting the host-protective effect of GPX4 (Martinez
et al. 2021).

The first stage of immune response:
proliferation

There are three stages of the immune response to infec-
tion by a pathogen, illustrated in Fig. 4. In the first stage,
immunocompetent cells that can respond to viral antigens
must proliferate to mount an adequate response to invad-
ers that are also increasing in number. The role of many
essential nutrients is evident in the first stage of the immune
response. Zinc is an integral component of a wide range
of proteins (10% overall) necessary for cell replication and
is specifically involved in human DNA polymerases and
other essential DNA-binding enzymes (Evanics et al. 2003;
Petrucco and Percudani 2008). Selenium is necessary for
the biosynthesis of deoxynucleotides for DNA replication
and the proliferation of immunocompetent cells (Sengupta
and Holmgren 2014; Muri et al. 2018). Glutamine is a regu-
lator of DNA replication and cell multiplication and is an
essential component of purine and pyrimidine biosynthe-
sis (Zetterberg and Engstrom 1981; Cory and Cory 2006).
Phosphate depletion markedly inhibits DNA synthesis and
cell division (Alexander et al. 2022; Engstrom and Zetter-
berg 1983; Houillier and Salles 2021). Many other essential
nutrients are required in adequate amounts to support the
rapid response of the immune system to a pathogen threat.
It is not surprising that most of the commonly encountered
deficiencies (Fig. 2) have evidence linking them to the devel-
opment of severe COVID-19 disease. Without an adequate
increase in the pathogen-specific and auxiliary cells of the
immune system, it will be overwhelmed by a rapidly increas-
ing pathogen.

The second stage of response: innate
immunity

The second stage of immune response is the direct destruc-
tion of the pathogen by polymorphonuclear neutrophils
(PMN) and T lymphocytes. This cytotoxic defense system
exposes the pathogen to reactive oxygen species (ROS).
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Fig.4 Overall summary of
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Myeloperoxidase (MPO) plays a role in the second stage
of the immune response by producing hypochlorous acid/
hypochlorite (C10~, pK, =7.5), singlet oxygen, and N-chlo-
rotaurine (tau-Cl) (Aratani 2018; Kanofsky 1989; Schuller-
Levis and Park 2003). In addition to the production of ROS
localized in regions of infection, PMN, in combination with
T lymphocytes, use a variety of cytotoxic mechanisms to
fight infection, including the release of antimicrobial pep-
tides and the expulsion of their nuclear contents to form
‘extracellular traps’ (Mayadas et al. 2014; Reusch et al.
2021; Witter et al. 2016). Although MPO is not essential
to the innate immune response, MPO, PMN, and mono-
cytes play a significant role in the pathology associated
with severe infection (Shrivastava et al. 2021; Matsushita
et al. 2015; Peyneau et al. 2022). ROS produced by MPO
are not an essential component of the host defense response,
since genetic deficiency in MPO only renders an individual
less capable of clearing pathogenic organisms. However, it
does not significantly increase the risk of severe infection
unless the individual has diabetes (Nauseef 1988). Severe
COVID-19 disease is associated with elevated levels of
MPO (Shrivastava et al. 2021). The T cell GPX4 is essential
for preventing T cell death by MPO-induced ferroptosis with
concomitant loss of effective immune response (Matsushita
et al. 2015).

MPO is a heme—iron-containing enzyme implicated in the
pathology of chronic inflammation that, in the presence of
hydrogen peroxide and chloride ions, will destroy its heme
prosthetic group to generate free iron (Maitra et al. 2013).
NADPH oxidase 2 (NOX2) requires essential heme—iron,
FAD (riboflavin/vitamin B, derived), and NADPH (niaci-
namide/vitamin B; derived) cofactors to produce superox-
ide (Magnani et al. 2017). Unlike MPO-deficiency (Nau-
seef 1988), loss of NOX2 results in immunodeficiency and
recurrent infections (Noreng et al. 2022). Inability to pro-
duce NADPH due to glucose 6-phosphate dehydrogenase
(G6PD) deficiency renders an individual prone to infections,

HOST PROTECTION

presumably due to reduced activity of NOX2, and suscepti-
ble to oxidative stress due to reduced activity of glutathione
peroxidases (Luzzatto et al. 2020; Mallouh and Abu-Osba
1987). G6PD deficiency also increases the risk of COVID-
19 disease (Vick 2020).

Superoxide produced by NOX2 is converted to hydrogen
peroxide by superoxide dismutase (Winterbourn et al. 2016).
Superoxide dismutase activity in PMN and lymphocytes
depends on prosthetic copper and zinc cofactors (Vucic et al.
1997). Human catalase requires a heme—iron and NADPH
(niacinamide/vitamin B derived) cofactors and detoxifies
hydrogen peroxide by its conversion to water and oxygen
(Goyal and Basak 2010). Glutathionylation of catalase by
NOX2 can result in PMN death (Nagarkoti et al. 2019).

MPO synthesizes CIO™ and tau-Cl from hydrogen
peroxide, chloride, and taurine (Aratani 2018; Kanofsky
1989; Schuller-Levis and Park 2003). Hydrogen perox-
ide and alkyl-hydroperoxides can react with C10™ and
other oxidants (e.g., metal ions and peroxynitrite) to form
singlet oxygen (Miyamoto et al. 2007; Kanofsky 1989).
ClO~ is a highly reactive oxidant that can degrade the
tetrapyrrole rings of hemoglobin, cause vitamin B, and
nitric oxide deficiency, compete with oxygen for hemo-
globin binding, and is thought to be responsible for the
induction of cytokine storms (Camp et al. 2021; Goud
et al. 2021). CIO™ reacts rapidly with glutathione to give
products that glutathione reductase cannot reduce (Carr
and Winterbourn 1997). Tau-Cl is a somewhat less reac-
tive oxidant than CIO™ with a longer lifetime and more
extended range of action but similar detoxification chem-
istry by glutathione (Schuller-Levis and Park 2003; Kim
and Cha 2014; Carr et al. 2001). Tau-Cl has anti-inflam-
matory effects by mitigating the inflammatory impact of
Cl0™ (Marcinkiewicz and Kontny 2014; Kim and Cha
2014). Singlet oxygen is the most reactive of the ROS.
Despite the limited life of PMN-generated singlet oxygen
due to its decomposition by radiative decay (4=1270 nm
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and 1200 nm) it reacts at diffusion-limited rates with vari-
ous intra- and extra-cellular components to form hydrop-
eroxides and dioxetanes (Hackbarth et al. 2022; Stief
2003; Di Mascio et al. 1990; 2019; Skovsen et al. 2005).
Singlet oxygen is also thought to potentiate thrombolysis
(Stief 2007). GPX4 (an essential selenium enzyme) is
required to prevent death by ferroptosis from the alkyl-
peroxides and phospholipid-peroxides formed by singlet
oxygen (Stockwell et al. 2020; Yang and Stockwell 2016).

The third stage of response: antibody
production

Activated B lymphocytes will differentiate into anti-
body-producing plasma cells (Nutt et al. 2015). Chillon
et al. (2022) have shown that the antibody response to
vaccination with SARS-CoV-2 antigens correlates with
free zinc but not with total zinc levels (99.999% protein-
bound). The average level of free zinc in human serum
is about 0.2 pM (0.09-0.42 nM), only 0.0015% of the
total zinc, 11.5-15 pM (Chillon et al. 2022; Alker et al.
2019; Maares et al. 2022). The difference between serum
free zinc in COVID-19 survivors is, on average, about
twice the concentration of free zinc in patients that do not
survive infection (0.4 vs. 0.2 nM) (Maares et al. 2022).
Males tend to have slightly higher free zinc levels (0.23
vs. 0.21 nM) than females (Chillon et al. 2022; Maares
et al. 2019).

IgG antibodies have a weak metal-binding site (copper
or zinc) in their Fc region (Glover et al. 2015; Mehta et al.
2021; Yamanaka et al. 2016). Zinc binding to the metal
site of IgG antibodies results in protein aggregation and
prevents copper-induced degradation (Glover et al. 2015;
Mehta et al. 2021). IgG is only one of many zinc-binding
proteins in the blood, such as other immunoglobulins
(IgM and IgA), albumin, a2-macroglobulin, haptoglobu-
lin, fibrinogen, ceruloplasmin, complement C4, prealbu-
min, and C-reactive protein (Yamanaka et al. 2016). These
proteins, together with other zinc-binding nutrients in the
blood, such as the bioflavonoid quercetin, will maintain
the ‘free’ zinc levels to facilitate cellular uptake by the ZIP
transporters (Singh et al. 2021; Dabbagh-Bazarbachi et al.
2014; Haase and Rink 2014). Free zinc is a potent inhibitor
of the SARS-CoV-2 main protease at nanomolar concen-
trations and is an inhibitor of viral replication (Panchariya
et al. 2021). Adverse effects on antibody production at
higher free zinc concentrations may explain the observa-
tion of maximum response during hypozincemia (Xu et al.
2022). There may be an optimal and dynamic range of free
zinc for antibody response to SARS-CoV-2 that may not
correspond to other aspects of the immune response.
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Summary

Nutritional deficiencies predispose individuals to severe
infection by SARS-CoV-2. COVID-19 disease further
exacerbates dietary deficiencies. Stress before or after ill-
ness also lowers the stores of essential nutrients. Although
zinc (33%) and selenium (14%) are prevalent deficiencies,
there are more than 22 different nutritional factors (MND)
reported to influence infection outcomes. People at higher
risk of infection due to MND are also more likely to have
long-term sequelae (Long COVID).
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