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Abstract
The reproductive success of flowering plants with generalized pollination systems is influenced by interactions with a 
diverse pollinator community and abiotic factors. However, knowledge about the adaptative potential of plants to 
complex ecological networks and the underlying genetic mechanisms is still limited. Based on a pool-sequencing ap
proach of 21 natural populations of Brassica incana in Southern Italy, we combined a genome-environmental asso
ciation analysis with a genome scan for signals of population genomic differentiation to discover genetic variants 
associated with the ecological variation. We identified genomic regions putatively involved in the adaptation of 
B. incana to the identity of local pollinator functional categories and pollinator community composition. 
Interestingly, we observed several shared candidate genes associated with long-tongue bees, soil texture, and tem
perature variation. We established a genomic map of potential generalist flowering plant local adaptation to complex 
biotic interactions, and the importance of considering multiple environmental factors to describe the adaptive land
scape of plant populations.

Key words: Brassica incana, generalist-pollinated plant species, local adaptation, natural populations, plant–pollin
ator interactions, genome-environmental association.
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Introduction
Many flowering plant species interact simultaneously with 
different functional groups of pollinators and are thus 
termed plants with generalized pollination systems 
(Albrecht et al. 2012). By being able to achieve pollination 
through an assemblage of generalist and specialist pollina
tors of various taxa, widely distributed generalist plant spe
cies (Waser et al. 1996; Johnson and Steiner 2000) appear 
robust to pollinator changes within mutualistic networks 
(Bascompte and Jordano 2007; Thébault and Fontaine 
2010; Burkle et al. 2013; Zografou et al 2021). Although 
generalist plant species are keystones in mutualist inter
action networks, we know little about the adaptive poten
tial of these plants to variable pollinator communities. 
Only a handful of studies have demonstrated the role of 
pollinator assemblages on floral evolution in generalist 
plant species (Gòmez, Abdelaziz, et al. 2009; Sahli and 
Conner 2011; Gòmez et al. 2015; Sobral et al. 2015; 
Schiestl et al. 2018; de Manincor et al. 2021). For instance, 
it has recently been shown that pollinator communities 
can drive flower shape evolution in the genus Erysimum 
(Gòmez et al. 2015), or geographic variation in flower scent 

(de Manincor et al. 2021). However, floral evolution in gen
eralist plant species appears to be complex (Gòmez et al. 
2015), probably involving independent and genetically 
linked phenotypic traits associated with pollinator prefer
ences (Frachon et al. 2021; Ohashi et al. 2021). To under
stand if and how generalist plant species adapt to their 
local pollinator communities, we need to investigate the 
underlying genomics. This will help us understand the co
evolution of generalist plant–pollinator networks.

Plant–pollinator interactions are influenced by abiotic 
factors (Tylianakis et al. 2008; Chamberlain et al 2014; 
Antiqueira et al. 2020). For instance, climate change can in
duce mismatches between plants and pollinators due to 
nonsynchronized phenology shifts (Hegland et al. 2009; 
Petanidou et al. 2014), or changes in plant attractiveness 
to pollinators (Petanidou and Smets 1996; Hoover et al. 
2012; Herrera and Medrano 2017; Descamps et al. 2021). 
Moreover, soil heterogeneity can strongly affect plant at
tractiveness to pollinators through changes in nectar se
cretion, production of pollen, and floral scent (Burkle 
and Irwin 2009; Majetica et al. 2017; David et al. 2019; 
Carvalheiro et al. 2021). Understanding how both 
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pollinator communities and abiotic factors simultaneously 
drive the evolution of phenotypic traits and their asso
ciated genomic regions is a current challenge requiring a 
holistic approach from ecology to genomics (Clare et al. 
2013; López-Goldar and Agrawal 2021).

Natural selection drives variation in phenotypic traits 
towards a local optimum by changes in allele frequencies 
of associated genomic regions. Genome-environment as
sociation (GEA) analysis is a powerful approach to identify 
those genomic regions involved in potential adaptive re
sponses of organisms to complex combination of environ
mental factors without phenotypic characterization (de 
Mita et al. 2013; Günther and Coop 2013). This approach 
takes advantage of the genetic fingerprint left by selective 
pressures due to environmental variation among natural 
populations. By detecting genomic regions highly corre
lated with environmental variables and combined with 
methods testing for evidence of signatures of selection, 
GEA successfully detects the putative loci underlying local 
adaptation, that is, the genomic local adaptation (Hancock 
et al. 2011; Hoban et al. 2016; Sork 2018). Although com
monly used to understand the genetic architecture of 
plants involved in responses to climate change (Hancock 
et al. 2011; Lasky et al. 2015; Pluess et al. 2016; Cortés 
and Blair 2018; Frachon et al. 2018), the GEA approach 
has recently shown its effectiveness in unraveling the 
genetic variants of A. thaliana associated with adaptative 
responses to complex biotic interactions such as plant— 
leaf microbiomes (Horton et al. 2014) and plant—plant 
communities (Frachon et al. 2019).

In our study, we adopted a GEA approach to under
stand the genomic regions involved in putative signals of 
local adaptation of the generalist-pollinated plant 
Brassica incana to its pollinator community (visitation 
by pollinator functional categories, and pollinator commu
nity composition) as well as to potential interacting effects 
with climatic and edaphic (soil composition and texture) 
variables. By characterizing 61 ecological factors, de novo 
assembly of the B. incana reference genome, and pool- 
sequencing of 21 natural populations of B. incana in 
Southern Italy for 5,530,708 single nucleotide polymorph
isms (SNPs), we fine mapped QTLs associated with vari
ation in pollinator communities, climate, and soil. This 
approach was combined with a genome scan for signatures 
of spatial genomic differentiation (XTX) and enrichment in 
SNPs with high genomic differentiation to detect putative 
signatures of selection. Altogether, we identified genomic 
regions involved in putative signals of adaptation of a plant 
species with a generalized pollination system to a complex 
ecological network and abiotic factors.

Results
Variation in Ecological Factors Among 21 Natural 
Populations of Brassica incana
Pollinator communities were characterized during the 
spring seasons of 2018 and 2019 by observing the visits 
of functional categories of pollinators to B. incana plants 

within 21 natural populations (fig. 1, supplementary 
table S1, Supplementary Material online). Flower visitors 
were grouped into 12 functional categories, that is, bum
blebees, long-tongue bees, other large bees (called large 
bees), small bees, honeybees, large wasps, small flies, large 
flies, hoverflies, small beetles, large beetles, and butterflies 
(fig. 2). To characterize differences in pollinator communi
ties among populations, we performed a plant–pollinator 
network analysis based on the total number of pollinator 
visits by functional categories. We graphically depicted pol
linator community structure for the different B. incana popu
lations in figure 2, where the number of visits by functional 
categories of pollinators is linked to the different plant popu
lations. Pollinator communities were mainly dominated by 
long-tongue bees, small bees, honeybees, large bees, hover
flies, and bumblebees in decreasing order (fig. 2). Moreover, 
visitation by functional categories of pollinators varied 
among the 21 populations (fig. 2), leading to variation in pol
linator community composition as estimated by the partner 
diversity index (minimum = 0.63, maximum 1.80, average =  
1.28) (supplementary table S2, Supplementary Material on
line). The calculated indices from the network analysis 
(supplementary table S2, Supplementary Material online) 
suggest that B. incana plants in natural populations can be 
considered generalist. We found high normalized degree in
dex values (i.e., the number of observed links between pollin
ator functional groups and a plant populations) showing a 
high number of realized B. incana—pollinators links among 
populations (minimum = 0.17, maximum = 0.83, average =  
0.56, supplementary table S2, Supplementary Material on
line) and low d-index values, that is, the degree of specializa
tion (0 = highly generalized, 1 = highly specialized) of each 
plant population (minimum = 0.04, maximum = 0.53, aver
age = 0.17, supplementary table S2, Supplementary 
Material online).

Among the 21 natural populations, 28 of 61 character
ized ecological variables were highly correlated (Spearman 
ρ > 0.8) and were all discarded from the genomic analyzes 
(supplementary fig. S1, Supplementary Material online). 
These highly correlated variables concerned mainly pollin
ator community indices (four out of eight variables) and cli
mate variables (17 variables out of 20). While we had a clear 
differentiation of tuff versus limestone soils following the 
Northwest—Southeast axis among the 21 populations 
(due to the geography of Southern Italy), the different char
acteristics of these soils were not correlated with each other 
(supplementary fig. S1, Supplementary Material online). 
The principal component analysis showed that the six po
pulations in tuff soil (AMEN, CAMA, CORO, CUMA, 
PROC, and EPOM) were ecologically similar and differen
tiated from other populations by the visits of hoverflies, 
the visits of large beetles, the mean annual precipitation, 
and the species strength (an index for pollinator commu
nity structure, supplementary fig. S2, Supplementary 
Material online). The visits of bumblebees, large bees, and 
d-index values (another index of pollinator community 
structure) were correlated to the fine sand, coarse silt, Fe, 
and summer precipitation in the ecological space created 
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by the two first axis of the principal component analysis 
(supplementary fig. S2, Supplementary Material online).

Annotated Reference Genome of Brassica incana
The final assembled sequences of the Brassica incana refer
ence genome were organized into 1,339 contigs, which 
were scaffolded into 139 super-scaffolds using Bionano op
tical map (supplementary table S5, Supplementary 
Material online). The 139 super-scaffolds were used in 
our study, including a total sequence length of 617 Mbp, 
scaffold N50 of 12 Mbp, and a longest sequence at 32 
Mbp, with a BUSCO completeness score of 97.7% 
(supplementary table S5, Supplementary Material online). 
Sequencing data from Pacbio and Illumina used for this 
study are available in the European nucleotide archive 
(ENA) database (accession number PRJEB54646). The bio
nano raw data and assembled optical maps are available at 
National Library for Biotechnology Information (NCBI) 
database (sample name PRJNA859008).

In total 51,001 genes were predicted, including 50,895 
proteins (from the iprscan) divided into 1,112 different 
categories of Gene Ontology (GO) terms. In comparison, 
the reference genome of Brassica oleracea (genome size  
= 488.6 Mb) is composed of 53,125 genes, and that of 
Arabidopsis thaliana contains 38,311 genes (genome size  
= 119.1 Mb) in the NCBI database.

Genomic Architecture Associated With Ecological 
Variation
After mapping the 21 pool-sequences from 21 natural popu
lations to the generated B. incana reference genome, we 

estimated the allele frequencies across the 139 super-scaffolds 
for a final number of 5,530,708 SNPs. An important concern in 
GEA is the effect of population structure on association 
scores, which can increase the number of false positives. In 
our study, we attempted to reduce and correct this effect 
in multiple ways. First, we worked at a regional geographical 
scale which should reduce the effect of population structure 
(Bergelson and Roux 2010; Frachon et al. 2018, 2019). Using 
singular value decomposition (SVD) of the population 
variance-covariance matrix Ω, we observed a dispersion of 
populations in the genomic space represented by the 
first PCgenomic explaining 94.3% of genomic variance 
(supplementary fig. S3, Supplementary Material online). 
While we observed a geographic pattern along the 
Northeast—Southwest axis (linear model for PC1genomic; lati
tude: t-value = 3.24, P = 0.005, longitude: t-value = 3.31, P =  
0.004, latitude*longitude: t-value = −3.33, P = 0.004, adjusted 
R2 = 47.1%), the variation of most ecological factors was 
weakly (nonsignificant) correlated with the genomic variation 
(supplementary table S6, Supplementary Material online) 
suggesting true positives in the genome-environmental ana
lysis (Frachon et al. 2018, 2019). Six out of 33 of the environ
mental factors are significantly correlated with the genomic 
variance (PC1genomic) among populations (long-tongue bees, 
species strength, ratio C/N, fine silt, and Zn, supplementary 
table S6, Supplementary Material online). Using sensitive ana
lyzes, it has been shown that the performance of GEA analyzes 
decreases when the correlation between environmental vari
able and first PCgenomic increase is strong (Frachon et al. 2018). 
To be conservative, the interpretation of the results for these 
six environmental variables deserves to be carefully consid
ered, even though the correlations remain low (below 0.6). 

FIG. 1. Distribution of Brassica incana natural populations. On the left is a photograph of a flowering B. incana in the PALI population. On the 
right, the Campania region is represented in dark gray on the Italy map. The 21 natural populations of B. incana are indicated with colored dots 
on the map. The orange dots indicate six populations on tuff soil and the blue dots 15 populations on limestone soil. See supplementary table S1, 
Supplementary Material online for full name of populations. Courtesy of Léa Frachon.
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Second, we controlled for population structure in the 
genome-environmental association analyzes by using a covari
ance matrix of allele frequencies across populations imple
mented in the Bayesian hierarchical model used (Gautier 
2015). Third, the obtained association scores were corrected 
by the local score approach, which proved to be efficient in 
reducing false positive rates in the genome-wide analyzes by 
considering surrounding genomic regions (Bonhomme et al. 
2019).

To identify the putative adaptive genetic loci associated 
with visitation by specific functional categories of pollina
tors (e.g., visitation by long-tongue bees or bumblebees), 
pollinator community composition (based on B. incana— 
pollinator network indices such as number and diversity 
of pollinator groups), climate, soil composition, and texture 
variation, we performed a genome-wide scan for associa
tions between standardized allele frequency variation along 
the 139 super-scaffolds of B. incana genome and these 33 
ecological variables using a Bayesian hierarchical model. 
Combining the Bayesian hierarchical model and local score 
approaches, we observed neat and narrow peaks of 
association across the 139 super-scaffolds for the consid
ered ecological variables (fig. 3, supplementary fig. S4, 

Supplementary Material online). Most of the identified 
genomic regions associated with visitation by specific func
tional categories of pollinators were unique, except for the 
visits of bumblebees, hoverflies, and long-tongue bees 
(supplementary Figs S5 and S6, Supplementary Material
online). With unique genomic regions we mean SNPs asso
ciated with variation in a given ecological variable that is 
not shared with any other variable. For instance, 56% of 
the top SNPs (i.e., 56% of the 0.05% of SNPs with the highest 
association score) associated with long-tongue bees (1,435/ 
2,541 SNPs) were unique, as were 95% of SNPs associated 
with large bees (2,414/2,541 SNPs), and 97% of SNPs asso
ciated with honeybees (2,471/2,541 SNPs, supplementary 
fig. S5, Supplementary Material online). However, only 
15% of the top SNPs were unique for the bumblebee or 
hoverfly visits (supplementary fig. S5, Supplementary 
Material online). The latter shared 22% of their SNPs with 
the highest association score between them, and an im
portant part of SNPs with the texture of the soil (fine silt 
and coarse sand, supplementary fig. S5, Supplementary 
Material online). Overall, 88% of the top SNPs were unique 
across the GEA performed on pollinator functional cat
egories indicating an important part of SNPs associated 

FIG. 2. Brassica incana—pollinator interaction network for 21 natural populations. The upper part of the figure represents the 12 functional 
categories of pollinators. The size of boxes represents the total number of visits per functional category of pollinators observed in all 21 popula
tions in springs of 2018 and 2019. The lower part of the figure represents the 21 natural populations of B. incana colored according to their soil 
type (tuff soil in orange, limestone soil in blue). The size of the boxes represents the total number of visits of all categories of pollinators com
bined per population. The width of the lines connecting functional categories of pollinators to populations indicates the proportion of visits 
observed per pollinator category within each population. Pollinator functional groups and plant population are ordered as such leading to 
as few crossings of interactions as possible.
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with visitation by functional categories of pollinators 
(supplementary fig. S6, Supplementary Material online).

Interestingly, the genomic architecture associated with 
pollinator community composition was slightly more com
plex, with the detection of multiple narrow peaks per vari
able (fig. 3, supplementary fig. S4, Supplementary Material
online). As expected from their ecological correlations, 
some indices describing pollinator community compos
ition shared genomic regions among them (fig. 4 and 
supplementary fig. S5, Supplementary Material online). 
Considering all the network indices related to pollinator 
communities, 73% of SNPs were associated with variation 
in these indices (supplementary fig. S6, Supplementary 
Material online). The remaining SNPs were shared among 
the indices and the variables associated with mean annual 
temperature, texture of the soil (fine silt and coarse sand), 
and visitation by some functional categories of pollinators 
(supplementary fig. S5, Supplementary Material online). 
Finally, 92% and 85% of SNPs with the highest association 
scores were uniquely associated with soil and climate, re
spectively (supplementary fig. S6, Supplementary 
Material online). Overall, our results highlighted a flexible 
genetic architecture involving mainly unique genomic re
gions associated with ecological variables, as well as few 
shared genomic regions among them.

Putative Signals of Local Adaptation of Brassica incana 
to Combinations of Ecological Factors
To address the putative signatures of selection along the 
genome, we performed a genome-wide scan for the spatial 
genomic differentiation index XTX (an analogous to 

traditional FST-based; Günther and Coop 2013) among 
the 21 natural populations of B. incana based on standar
dized allelic frequencies (i.e., allele frequencies corrected 
for population structure). After correcting the signal with 
the local score method (reducing potential false positives), 
we detected four genomic regions with strong spatial gen
omic differentiation among populations on super-scaffolds 
1 (including five candidate genes), 10 (including three can
didate genes), 37 (including nine candidate genes), and 74 
(including 32 candidate genes, supplementary fig. S7, table 
S8, Supplementary Material online).

For each of 33 ecological variables, we tested for poten
tial over-representation of SNPs with highest association 
scores (0.05% upper tail of BFdB distribution) in the ex
treme tail of the spatial genomic differentiation index 
(XTX) distribution (i.e., 0.05% of the most genomically dif
ferentiated SNPs among populations) as described in 
Brachi et al. (2015). The significance of these enrichments 
was estimated based on 10,000 null permutations as de
scribed in Hancock et al. (2011). These enrichments in sig
natures of selection allow us to distinguish the ecological 
variables for which genomic regions associated with their 
variation are potentially due to selective processes (signifi
cant enrichment) from those potentially due to neutrality 
processes (nonsignificant enrichment). We found that 17 
out of 33 ecological variables displayed a significant enrich
ment (table 1, supplementary table S7, Supplementary 
Material online). For instance, we found a strong enrich
ment between the environment associations and the tail 
of XTX distribution for visitation by five functional categor
ies of pollinators including bumblebees (23-fold), hoverflies 
(25-fold), and long-tongue bees (21-fold, table 1). The four 

FIG. 3. Manhattan plot of genome-environmental association analysis for four ecological variables; (A) visitation of bumblebees, (B) partner di
versity, (C ) fine silt, and (D) mean annual temperature. The x-axis indicates the physical position of the 5′530′708 SNPs along the 139 super- 
scaffolds illustrated by different colors. The y-axis indicates the Bayes factor corrected by the local score method (Lindley score).
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pollinator community indices showed significant enrich
ment ranging from 6-fold for species strength to 31 for spe
cialization (the d-index) (table 1). Finally, abiotic factors 
showed significant fold-enrichment for 7 out of 15 edaphic 
variables [ranging from 12 for calcium carbonate (CaCO3) 

to 62 for coarse sand], and a strong significant enrichment 
for mean annual temperature (109-fold, table 1, 
supplementary table S7, Supplementary Material online). 
These enrichments in genomic spatial differentiation in
dexes (XTX) combined with our GEA results suggest poten
tial signals of local adaptation of B. incana to pollinator 
communities and abiotic factors encountered in these 
populations.

Candidate Genes Involved in Putative Signals of Plant 
Adaptation to Pollinators Visitation
The candidate genes involved in putative signals of B. inca
na adaptation to the ecological network were identified by 
retrieving genes within significant zones identified by the 
local score approach on the GEA analyzes results, as well 
as down- and upstream genes as described in Libourel 
et al. (2021). From the GEA results showing significant en
richment in XTX index, we identified 48 candidate genes in
volved in plant adaptive responses to visitation by 
functional categories of pollinators, and 26 candidate genes 
involved in adaptive responses to pollinator community 
composition. The list of all candidate genes and underlying 
gene function, using the proteomic SwissProt database is 
available in supplementary table S8, Supplementary 
Material online.

For candidate genes involved in putative signals of plant 
adaptation to visitation by pollinator functional categor
ies, we found some genes involved in plant signals and re
wards. For instance, we identified a gene important for the 
synthesis of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate 
synthase (ISPF), important for the biosynthesis of 

FIG. 4. Illustration of the relationship among candidate genes associated with genomic local adaptation to ecological network. Only variables for 
which a significant enrichment of the selection signature was detected are considered. The left shows the number of candidate genes (set size) 
identified in genomic local adaptation to the specific variable in GEA analysis. On top, the number of candidate genes associated with a specific 
variable (single black dot) or shared among variables (multiple black dots linked). The candidate genes are those from the significant zones 
identified by correcting with the local score method the GEA, and the down and upstream genes.

Table 1. Significant Enrichment in Signatures of Selection for Pollinator 
Categories, Plant–Pollinators Interaction Network Indices, Climatic, and 
Edaphic Variables Testing the Over-Representation of the 0.05% Upper 
Tail of the Lindley Score Distribution in the 0.05% Upper Tail of the 
Genome-Wide Spatial Differentiation (XTX) Distribution. See 
supplementary Table S7, Supplementary Material online for the 
Enrichment’s Results of the 33 Ecological Variables.

Traits ntops Enrichment P-value

Long-tongue bees 21 16.53 **
Bumblebees 23 18.11 ***
Large bees 15 11.81 **
Hoverflies 25 19.68 ***
Small flies 6 4.72 *
Normalized degree 19 14.96 **
Species strength 6 4.72 *
Partner diversity 20 15.74 ***
d-index 31 24.40 ***
Mean annual temperature 109 85.81 ***
Ratio C/N 13 10.23 **
CaCO3 12 9.45 **
Fe 39 30.70 ***
Fine silt 59 46.45 ***
Large sand 62 48.81 **
Large silt 31 24.40 **
P2O5 15 11.81 **

The significance of the enrichment test obtained by performing 10,000 circular 
null permutations of the 0.05% top SNPs is indicated by the following P-values: 
*0.05<P-value <0.01, **0.01<P-value <0.001, ***P-value <0.001.
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terpenoids (Tarkowská and Strnad 2018). We also identi
fied a gene involved in the biosynthesis of the enzyme di
hydropyrimidine dehydrogenase [NADP(+)] (PYD1), 
which is important for β-alanine biosynthesis (Wang 
et al. 2021), a compound present in nectar.

We found several candidate genes involved in plant 
architecture and growth (e.g., NAC031, NUP98A, and 
PMEI10), in reproduction processes (e.g., EXPB5 and 
IP5P12), and in immunity and plant defense (BSK7). It is 
noteworthy that 38% of the identified candidate genes in
volved in plant adaptive responses to pollinators were as
sociated with proteins with unknown function. Finally, a 
few candidate genes mentioned above were involved in 
both adaptive responses of B. incana to bumblebees and 
hoverflies such as UV-B induced protein, or PYD1 (fig. 4, 
supplementary table S8, Supplementary Material online).

For candidate genes involved in the putative signals of 
adaptation to pollinator community composition, we 
found some genes involved in plant architecture and 
growth such as transcription factor BEE2, protein TGD2, 
and ethylene-responsive transcription factor ERF024. 
Some of these candidate genes were involved in control
ling pollen tube growth such as LLG3, or in flowering 
time such as PCFS4. However, 48% of the identified candi
date genes involved in the putative signals of B. incana 
adaption to pollinator community composition are asso
ciated with proteins with unknown functions.

Finally, we observed multiple shared candidate 
genes in the putative signals of B. incana adaption to 
pollinators and climatic factors: between mean annual 
temperature and hoverfly and bumblebee visitation, pollin
ator diversity, and combined pollinator diversity and rea
lized number of pollinator links, as well as shared 
candidate genes to pollinators and edaphic factors, for ex
ample, between long-tongue bees and coarse sand, and 
coarse sand and fine silt (fig. 4, supplementary table S8, 
Supplementary Material online).

Discussion
While pollinators provide essential ecosystem services 
(Klein et al. 2007; Potts et al. 2010), whether and how 
plants with generalized pollination systems adapt to geo
graphic variation in pollinator communities, and the 
underlying genetic basis of this adaptation is still poorly 
documented. Using an ecological genomics approach, 
our study unraveled the genomic bases of putative signals 
of plant adaptation to pollinator communities and poten
tially interacting abiotic factors.

Putative Signals of Adaptation to Local Functional 
Categories of Pollinators
We observed a mosaic of pollinators among our 21 natural 
populations of B. incana and documented a genomic 
signature of putative signals of adaptation of this 
generalist-pollinated plant species to functional categories 
of pollinators. These results are in line with few studies 

emphasizing the importance of pollinators in driving the 
floral evolution not only in specialist but also in generalist 
plant species (Gòmez, Perfectti, et al. 2009; Bodbyl Roels 
and Kelly 2011; Sahli and Conner 2011; Gòmez et al. 
2015; Sobral et al. 2015; Gervasi and Schiestl 2017; 
Schiestl et al. 2018; de Manincor et al. 2021). Our study un
covers the underlying genomic mechanisms of these puta
tive signals of adaption: a genomic architecture involving 
different genomic regions strongly associated with visit
ation by functional categories of pollinators. In particular, 
we have identified pollinator category-specific candidate 
genes including some that are potentially involved in bio
synthetic pathways of plant signals and rewards to attract 
pollinators. For instance, we identified two interesting can
didate genes involved in B. incana adaptive responses to 
long-tongue bees; a candidate gene encoding for the en
zyme ISPF involved in the ethylerythritol phosphate 
(MEP) pathway, responsible for terpenoids biosynthesis 
(mono- and diterpenoids biosynthesis; Abbas et al. 2017; 
Tarkowská and Strnad 2018; Bouwmeester et al. 2019), 
an important class of volatiles in plant–pollinator interac
tions (Baldwin et al. 2006; Abbas et al. 2017; Bouwmeester 
et al. 2019). In addition, we found a candidate gene encod
ing for the trehalose-phosphate phosphatase B (TPPB) en
zyme involved in carbon flux maintenance correlated with 
sucrose supply (Nunes et al. 2013), an essential component 
of nectar. Interestingly, we identified genomic regions in
volved in putative signals of B. incana adaption both to ef
ficient pollinators in terms of pollen transfer (long-tongue 
bees, bumblebees, and other large bees), as well as to sup
posedly less efficient pollinators (hoverflies and small flies). 
Genomic regions involved in local adaptation to sup
posedly “inefficient” pollinators may be surprising since 
they contribute less to plant reproductive success. A first 
explanation is an adaptative response of the plant to avoid 
those interactors by reducing/excluding visitation. 
Alternatively, in hoverfly dominated populations, limited 
pollen transfer could result in morphological changes to 
ensure reproduction by selfing such as reduced flower 
size, a decrease of herkogamy (physical distance between 
reproductive organs), and reduced volatile emissions 
(Gervasi and Schiestl 2017). However, although hoverflies 
are supposedly less efficient pollinators compared to large 
bees, hoverflies can still provide efficient pollination 
(Jauker and Wolters 2008; Q. Rusman unpublished) as 
well as protection against herbivores, as the larvae of 
many species are predators. Indeed, spatial and temporal 
variation in selective regimes by the local interactions 
(Gòmez, Perfectti, et al. 2009) can increase the importance 
of hoverflies for pollination when bees are scarce or absent 
(Jauker and Wolters 2008; Ohashi et al. 2021).

Surprisingly, in our study, it appears that putative sig
nals of adaption to bumblebees and hoverflies involved 
similar genomic regions. For instance, we identified a can
didate gene encoding for a dihydropyrimidine dehydro
genase (PYD1) enzyme involved in the biosynthesis of 
β-alanine (Wang et al 2021). β-alanine is a component pre
sent in nectar and potentially relevant for flower visitation 
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behavior of bumblebees in Gentiana lutea (Rossi et al. 
2014). It would be interesting to compare the rate of 
β-alanine production among our populations in relation 
to the ratio of bumblebee and hoverfly visitations to better 
understand this adaptive response at the phenotypic level. 
Finally, among the identified candidate genes involved in 
putative signals of adaption to visitation by different func
tional categories of pollinators, we also identified candi
date genes involved in protein chaperones, plant growth, 
plant immunity, and a non-negligeable part of proteins 
with unknown function (∼33% of candidate genes). 
Thus, plant species with generalized pollination system 
show putative signatures of genomic adaption to their 
generalist pollinator community associated with candi
date genes that are involved in plant–insect interactions.

Putative Signals of Genomic Adaptation to Multiple 
Ecological Factors
We demonstrated genome-wide putative signatures of 
adaptation for multispecies assemblages of pollinators, 
that is, pollinator communities composition. This agrees 
with previous studies in evolutionary ecology showing 
adaptive responses to pollinator communities, that is, to 
the whole range of pollinators interacting with the plant 
(Gòmez, Abdelaziz, et al. 2009; Gòmez, Perfectti, et al. 
2009; Sahli and Conner 2011; Lomáscola et al. 2019). 
Interestingly, the genomic architecture underlying the pu
tative signals of B. incana adaption to the pollinator com
munity composition was not the sum of genetic variants 
specific to functional categories of pollinators. In other 
words, the genetic variants involved in the putative signals 
of plant adaptation to the pollinator community are com
pletely different from those involved in the putative signals 
of adaptation to unique pollinator functional categories, 
indicating nonadditive selection acting on B. incana as pre
viously observed in plant–plant interactions (Baron et al. 
2015; Libourel et al. 2021). This assumption agrees with a 
previous evolutionary study in B. rapa observing nonaddi
tive selection for floral traits where phenotypic evolution 
mediated by the combination of two pollinator species 
was different from that mediated by either pollinator in 
isolation (Schiestl et al. 2018). A phenotypic characteriza
tion of our populations is still needed to better understand 
this evolutionary process. Nonadditive selection seems to 
be a common process in natural populations caused by in
direct ecological effects. Such effects remain unpredictable 
in the study of pairwise selection, and difficult to study due 
to infinite number of ecological factors to be considered 
(Sahli and Conner 2011; Terhorst et al. 2015).

To estimate the potential indirect effects of abiotic fac
tors on plant–pollinator interactions, we compared shared 
genetic variants among putative signals of adaption to abi
otic and biotic factors. We observed only few shared can
didate genes involved in the putative signals of B. incana 
adaptation to long-tongue bees, structure of the soil, 
and temperature. Long-tongue bees, mostly the genus 
Anthophora in our study, are ground-nesting bees. 

Variation in soil texture could have a significant impact 
on their occurrence in populations (Antoine and Forrest 
2021). However, further ecological characterization is 
needed to control for indirect effects such as the local cli
mate, composition of lower soil layers, microbiomes, herbi
vores, and natural enemies, or surrounding (flowering) 
plants. In addition, due to the geology of Southern Italy, 
we had a strong confounding effect between population 
structure (controlled by Bayesian models and local scores) 
and the type of soil (following a Northwest—Southeast 
axis), likely leading to a decrease of GEA power to detect 
true genomic bases involved in local adaptation. By illus
trating the effect of complex ecological networks and abi
otic factors on generalist plants through a complex 
genomic architecture, our results highlighted the import
ance of considering ecological variables, including biotic 
and abiotic factors, in the adaptative landscape of general
ist species to better understand their impact on plant evo
lution (Carvalheiro et al 2021). With the current declines in 
insect diversity and its potential impact on flowering plant 
reproductive success, we stress the need to expand knowl
edge of the adaptive potential of plants to pollinator com
munities using a multidisciplinary approach from ecology 
to molecular biology to genomics.

Materials and Methods
Natural Populations of Brassica incana
We used the nonmodel plant species Brassica incana 
(fig. 1), an allogamous and self-incompatible perennial spe
cies growing on cliffs, and mainly distributed in Southern 
Italy (Landucci et al. 2014; Ciancaleoni et al. 2018). This 
wild species is a close relative of Brassica oleracea crop spe
cies (Landucci et al. 2014; El-Esawi 2017). From the data 
available in the literature and our own observations, we 
found 40 populations in Southern Italy. We used 21 natural 
populations with safe access (fig. 1, supplementary table S1, 
Supplementary Material online) for which at least 20 indi
viduals were present in spring 2018. The populations grew 
on two distinct types of soil: six populations on tuff soil and 
15 populations on limestone soil (fig. 1, supplementary 
table S1, Supplementary Material online). The populations 
were located from 2- to 767-month elevation (average =  
278 months, supplementary table S1, Supplementary 
Material online), with an average distance of 61.78 km (me
dian = 41.9 km, minimum = 1.25 km, maximum =  
168.6 km).

Ecological Characterization
We characterized the soil of the 21 natural populations of 
B. incana during spring of 2018 by collecting two soil sam
ples per population from the ground surface (maximum 
depth ∼10 cm). The samples were sent to the Soil 
Analysis Laboratory of Arras (INRA, France, https:// 
www6.hautsdefrance.inrae.fr/las). Twenty-one soil com
pounds were measured (Dataset2): aluminum (Al), car
bon (C), ration carbon/nitrogen (ratio C/N), calcium 
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(Ca), total CaCO3, clay (< 0 µm), total copper (Cu), iron 
(Fe), fine sand (0.05 mm–0.2 mm), coarse sand (0.2– 
2 mm), fine silt (2 µm–20 µm), coarse silt (20 µm– 
50 µm), potassium (K), magnesium (Mg), manganese 
(Mn), total nitrogen (N), sodium (Na), organic matter 
(om), phosphorus (P2O5), silicon (Si), and zinc (Zn). 
We followed the same method as described in Brachi 
et al. (2013), and all protocols are available at https:// 
www6.hautsdefrance.inrae.fr/las/Prestations/Catalogue- 
analytique.

We retrieved 20 biologically meaningful climatic vari
ables (Dataset2) for the 21 populations from ClimateEU 
database (v4.63 software, described in Hamann et al. 
2013). Like Frachon et al. (2018), the average data across 
2003–2013 were used for these 20 climatic data related 
to temperature and precipitation.

We characterized pollinator communities in spring 
2018 (for 17 out of 21 populations) and spring 2019 (for 
19 out 21 of populations) for a total of 19 biotic variables 
(Dataset1, Dataset2). To fully characterize the pollinator 
communities, one to four sessions (on average three ses
sions) of observations were conducted in spring 2018 
and 2019 (one session in 2018, and three in 2019). We re
corded pollinator visitation for one hour starting at 11.30 
AM in each population, with observations of 10 min per 
plant. On average, five plants were observed per session 
(median = 5 plants, maximum = 11 plants, minimum = 1 
plant). We assigned visitors to 13 functional categories: 
bumblebees (genus Bombus), long-tongue bees (genus 
Anthophora), other large bees (called large bees, mostly 
genus Andrena), small bees, honeybees (genus Apis), large 
wasps, small flies, large flies, hoverflies, small beetles, large 
beetles, butterflies (mostly genus Pieris), and wasps. Due to 
the scarce number of wasp visits (only one visit in CHIU 
population), it was discarded from the dataset, except 
for the plant–flower visitor network.

Because our study was population-centered, we esti
mated the best linear unbiased predictions (BLUP, 
Dataset2), that is, the average number of pollinator visits 
per population using a mixed model in the R Studio envir
onment (package lme4, Bates et al. 2015).

Yi = μtrait + population + εi 

where Yi is BLUP for visits by functional categories of pol
linators, µtrait the overall average of the trait (observed 
number of visits of functional categories of pollinators), 
population is considered as a random effect, and ϵi is the 
residual variance.

The plant–flower visitor network was constructed using 
the bipartite package (Dormann et al. 2008) based on the 
total number of visits within the populations from the 12 
distinct functional categories of pollinators among the 21 
natural populations of B. incana. Similarly to the species– 
species interaction networks, category-level indices for 
each population were calculated using bipartite 
(Dormann 2011). We calculated eight indices as described 
in Dormann (2011) and called latter B.incana—pollinator 

network indices or pollinator community composition in
dices: 1) normalized degree representing the number of 
partner species in relation to the potential number of part
ner species, 2) species strength representing the sum of de
pendencies of each species, aiming at quantifying a species’ 
relevance across all its partners, 3) species specificity index 
representing the coefficient of variation of interactions, 
normalized to values between 0 (low variability suggesting 
low specificity) and 1 (high variability suggesting high spe
cificity), 4) partner diversity representing the Shannon di
versity index of the interactions of each species, 5) 
effective partners representing the logbase to the power 
of “partner diversity” interpreting as the effective number 
of partners, if each partner was equally common, 6) propor
tional similarity representing the specialization measured 
as dissimilarity between resource use and availability, 7) 
proportional generality representing the effective partners’ 
divided by effective number of resources; this is the quan
titative version of proportional resource use or normalized 
degree (i.e., the number of partner species in relation to the 
potential number of partner species), and 8) d-index repre
senting the specialisation of each species based on its dis
crimination from random selection of partners.

We performed Spearman correlations for the 61 eco
logical variables (11 functional categories of pollinators, 8 
network indices, 20 climatic variables, and 22 edaphic vari
ables) using the R package Hmisc (Harrell 2021). We 
pruned the set of variables using the pairwise Spearman 
correlations among variables, and only variables with 
spearman’s ρ < 0.8 were retained for the genomic analysis. 
In total, we kept 33 ecological variables: 11 functional cat
egories of pollinators, 4 network indices, 3 climatic vari
ables, and 15 edaphic variables. We performed a 
principal component analysis representing the distribu
tion of 33 ecological variables among the 21 populations 
using the ade4 package in R (Dray and Dufour 2007).

De novo Reference Genome
DNA Extraction
We chose one individual from the island of Capri population 
as reference genome (CAPR in fig. 1), a stable population be
tween 1984 and 2012 with low gene flow with cultivated 
plants (Ciancaleoni et al. 2018). Seeds from the Capri popu
lation were collected in 2017, sown in a phytotron in the sum
mer of 2018 (24 h light, 21 °C, 60% humidity, watered twice a 
day), and grown in an air-conditioned greenhouse at the 
University of Zürich (22.5 °C, 50–60% of humidity, additional 
light). Before DNA extraction, plants were kept in the dark for 
2 days, which reduced the amounts of polysaccharides that 
interfere with the DNA extraction yield. We modified the 
high-molecular-weight genomic DNA (gDNA) extraction 
protocol from Mayjonade et al. (2016) as described in 
Russo et al. (2022). Briefly, this extraction was performed in 
23 parallel tubes to increase the quantity of final DNA. The 
23 DNA extracts were pooled together, and purified using 
carboxylated magnetic beads as explained in Mayjonade 
et al. (2016). We measured 146 ng/µL of total DNA 

9

https://www6.hautsdefrance.inrae.fr/las/Prestations/Catalogue-analytique
https://www6.hautsdefrance.inrae.fr/las/Prestations/Catalogue-analytique
https://www6.hautsdefrance.inrae.fr/las/Prestations/Catalogue-analytique
https://doi.org/10.1093/molbev/msad036


Frachon et al. · https://doi.org/10.1093/molbev/msad036 MBE

concentration using a nanodrop (ratio A-260/A-280 = 1.85, 
ratio A-260/A-230 = 2.19) and 152 ng/µL with Qubit. The 
purified sample was sent to the Functional Genomic 
Center of Zürich (FGCZ) for library preparation and three dif
ferent next-generation sequencing were performed to obtain 
a de novo reference genome of Brassica incana.

PacBio Library Preparation and Sequencing
The continuous long read SMRT bell library was produced 
using the single-molecule real-time (SMRT) bell Express 
Template Prep Kit 1.0. (Pacific Biosciences) at the FGCZ. 
The input gDNA concentration was measured using a 
Qubit Fluorometer dsDNA Broad Range assay (Thermo). 
The high-molecular weight gDNA sample (6 μg) was mech
anically sheared to an average size distribution of 30 kbp, 
using a g-TUBE (Covaris) on a minispin plus centrifuge 
(Eppendorf). A Femto Pulse gDNA analysis assay 
(Agilent) was used to assess the fragment size distribution. 
Sheared gDNA was DNA damage repaired and end- 
repaired using polishing enzymes. PacBio sequencing adap
ters were ligated to the DNA template, according to the 
manufacturer’s instructions. A Blue Pippin device (Sage 
Science) was used to size-select the SMRT bell library and 
enrich for fragments > 25 kbp. The size selected library 
was quality inspected and quantified using a Femto Pulse 
gDNA analysis assay (Agilent) and a Qubit Fluorimeter 
(Thermo), respectively. A ready-to-sequence SMRT bell- 
polymerase complex was created using the Sequel binding 
kit 3.0 (Pacific Biosciences P/N 101-500-400) according to 
the manufacturer’s instructions. The Pacific Biosciences 
Sequel instrument was programed to sequence the library 
on five Sequel™ SMRT® cells 1 M v3 (Pacific Biosciences), 
taking one movie of 10 h per cell, using the Sequel 
Sequencing Kit 3.0 (Pacific Biosciences). After the run, the 
sequencing data quality was checked, via the PacBio 
SMRT Link software (v 6.0.0.47841), using the “run QC 
module” (supplementary table S3, Supplementary 
Material online).

Illumina Library Preparation and Sequencing
The TruSeq DNA Nano Sample Prep Kit v2 (Illumina, Inc., 
California, USA) was used in the succeeding steps. DNA 
samples (100 ng) were sonicated with the Covaris using 
settings specific to the fragment size of 350 bp. The frag
mented DNA samples were size-selected using AMpure 
beads, end-repaired, and adenylated. TruSeq adapters con
taining unique dual indices for multiplexing were ligated to 
the size-selected DNA samples. Fragments containing 
TruSeq adapters on both ends were selectively enriched 
by polymerase chain reaction (PCR). The quality and quan
tity of the enriched libraries were validated using 
Tapestation (Agilent, Waldbronn, Germany). The product 
was a smear with an average fragment size of approximate
ly 500 bp. The libraries were normalized to 10 nM in Tris– 
Cl 10 mM, pH 8.5 with 0.1% Tween 20. The Novaseq 6000 
(Illumina, Inc., California, USA) was used for cluster gener
ation and sequencing according to standard protocol. 
Sequencing was paired end (PE) at 2 X150 bp. This 

described protocol was used for both de novo sequencing 
of the reference individual, as well as the pool-sequencing 
of the 21 natural populations.

Preprocessing and Mapping of Illumina Reads
Quality control and Bowtie2 alignment of the Illumina PE 
reads were performed using data analysis workflows in the 
R-meta package ezRun (https://github.com/uzh/ezRun), 
managed by the data analysis framework SUSHI 
(Hatakeyama et al. 2016), which was developed and main
tained by FGCZ. Technical quality was evaluated using 
FastQC (v0.11.7). We screened for possible contaminations 
using FastqScreen (v0.11.1) against a customized database 
in ezRun, which consists of SILVA rRNA sequences (https:// 
www.arb-silva.de/), UniVec (https://www.ncbi.nlm.nih.gov/ 
tools/vecscreen/univec/) sequences, refseq mRNA sequences 
and selected refseq genome sequences (human, mouse, 
Arabidopsis, bacteria, virus, phix, lambda, and mycoplasma) 
(https://www.ncbi.nlm.nih.gov/refseq/). Illumina PE reads 
were preprocessed using fastp (v0.20.0), with which sequen
cing adapters and low-quality ends (4 bp sliding windows 
from both ends, average quality < Q20) were trimmed. 
Trimmed reads passing the filtering criteria (average quality 
≥ Q20, minimum length ≥ 18 bp) were aligned using 
Bowtie2 (v2.4.1) with the “–very-sensitive” option. Trimmed 
reads from the reference individual were aligned to the 
PacBio HG4P4 assembled contigs for genome polishing. 
Afterward, trimmed reads from the 21 natural populations 
were aligned to the polished and scaffolded genome assembly 
for variant analysis. PCR-duplicates were marked using Picard 
(v2.18.0). Read alignments were comprehensively evaluated 
using the mapping QC app in ezRun in terms of different as
pects of DNA-seq experiments, such as sequence and map
ping quality, sequencing depth, coverage uniformity, and 
read distribution over the genome (supplementary table S3, 
Supplementary Material online).

De novo Genome Assembly
PacBio subreads from all five SMRT cells were merged and 
assembled using HGAP4 (Hierarchical Genome Assembly 
Process v4) in the PacBio SMRT Link software 
(v 6.0.0.47841). Before being assembled, subreads were fil
tered with reading quality of 70%. The estimated genome 
size was set at 650 Mbp. Illumina PE reads from the same 
sample were preprocessed and mapped to the assembled 
primary contigs as described above. Assembled primary 
contig sequences were then further polished with mapped 
Illumina PE reads using pilon (v1.23). Only reads with map
ping quality above Q20 and bases with phred scores above 
Q20 were used for the polishing.

In silico Genome Digestion and Bionano Optical Mapping
The polished genome assembly was first in silico digested 
using Bionano Access software (v1.2.1) to evaluate whether 
the nicking enzyme (Nb.BspQI), with recognition sequence 
GCTCTTC, and the non-nicking enzyme DLE-1, with recog
nition sequence CTTAAG, were suitable for optical map
ping in the genome. An average of 13.6 nicks/100 kbp 
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with a nick-to-nick distance N50 of 13,734 bp was expected 
for Nb.BspQI, while DLE-1 was found to induce 22.2 nicks/ 
100 kbp with a nick-to-nick distance N50 of 8,054 bp. The 
values were in line with manufacturer’s requirements.

For the direct label and stain (DLS) protocol, the DNA sam
ple was labeled using the Bionano Prep DNA labeling kit-DLS 
(cat. no. 80005) according to manufacturer’s instructions. In de
tail, 750 ng of purified gDNA was labeled with DLE-1 labeling 
mix and subsequently incubated with proteinase K (Qiagen, 
cat. no. 158920) followed by drop dialysis. After the clean-up 
step, the DNA was prestained, homogenized, and quantified 
using a Qubit Fluorometer to establish the appropriate amount 
of backbone stain. The reaction was incubated at room tem
perature for at least 2 h. For the nick label repair and stain 
(NLRS) protocol, the DNA sample was labeled using the 
Bionano Prep DNA labeling kit-NLRS according to the manu
facturer’s instructions (Bionano Genomics, cat. no. 80001). In 
detail, 300 ng of purified gDNA was nicked with Nb.BspQI 
(New England BioLabs, cat. no. R0644S) in NEB Buffer 3. The 
nicked DNA was labeled with a fluorescent- deoxyuridine tri
phosphate (fluorescent-dUTP) nucleotide analog using Taq 
DNA polymerase (New England BioLabs, cat. no. M0267S). 
After labeling, nicks were ligated with Taq DNA ligase (New 
England BioLabs, cat. no. M0208S) in the presence of deoxynu
cleotide triphosphates (dNTPs). The backbone of fluorescently 
labeled DNA was counterstained overnight with YOYO-1 
(Bionano Genomics, cat. no. 80001). DLS and NLRS labeled 
DNA samples were loaded into a nanochannel array of a 
Saphyr Chip (Bionano Genomics, cat. no. FC-030-01) and run 
by electrophoresis each into a compartment. Linearized DNA 
molecules were imaged using the Saphyr system and associated 
software (Bionano Genomics, cat. no. 90001 and CR-002-01). 
BioNano row molecule data are available in supplementary 
table S3, Supplementary Material online.

Assembly of Optical Maps and Hybrid Scaffolding
The de novo assembly of the optical maps was performed 
using the Bionano Access (v1.2.1) and Bionano Solve 
(v3.2.1) software. The assembly type performed was the 
“Saphyr data”, “nonhuman”, “nonhaplotype” with “extend 
and split” and “cut segdups”. Default parameters were ad
justed to accommodate the genomic properties of the 
Brassica incana genome. Specifically, the “initial P-value” 
cutoff threshold was adjusted to 1 × 10−10 and the 
P-value cutoff threshold for extension and refinement 
was set to 1 × 10−11 according to manufacturer’s guidelines 
(default values are 1 × 10−11 and 1 × 10−12, respectively). 
Dual-enzyme hybrid scaffolding was then performed using 
the same software suits with default parameters. This 
dual-enzyme hybrid scaffolding used the Bionano optical 
maps to scaffold polished (PacBio and Illumina) contigs.

Genome Annotation
Repeat sequences in the de novo assembled genome were 
predicted using RepeatScount (v1.0.6). Predicted repeat 
sequences and known transposable elements in Brassica 
oleracea were masked using RepeatMasker (v4.1). Gene 
model prediction was performed using maker (v3.01.03). 

In detail, ab initio gene prediction was performed using 
AUGUSTUS with the pretrained parameter set for 
Arabidopsis. Protein and cDNA sequences of B. oleracea 
(ensemble release 42) were aligned to the assembled gen
ome and used as supporting evidence for gene prediction. 
For functional annotation, prediction protein sequences 
were compared to the SwissProt database (release 
2019_03) using blastp (v2.6.0), and the InterPro database 
using interproscan (v5.32–71.0). For BLASTP comparison 
against SWISSProt we used an E-value cutoff of 1 × 10−6. 
The best hit, if existed above the E-value cutoff, was used 
to annotate the corresponding Brassica incana genes.

Genomic Characterization of 21 Populations Using a 
Pool-Sequencing Approach
In spring 2018, we collected leave tissue from, on average, 28 
individuals per population (median = 30 plants, max = 30 
plants, min = 15 plants, i.e., a total of 590 samples) in 
1.5 mL Eppendorf tubes. The samples were stored during 
the field day in dry ice and moved into a −80 °C freezer 
at the end of field day. The DNA extraction was performed 
in the fall of 2018 by grinding samples using two beads, cool
ing them down in liquid nitrogen, and crushing them with 
30 vibrations/second three times 30 s. We extracted DNA 
using the sbeadex maxi plant kit from LGC Genomics in 
Kingfisher Flex Purification Systems (Thermo Scientific), a 
magnetic-particle robot at the genetic diversity center 
Zürich platform. We added 250 µL of lysis buffer in all 
homogenized samples. After homogenization (2–3 s on 
vortex, and 20 reversing tubes), we incubated our samples 
for 20 min at 65 °C. We added 1.12 µL of RNAse (940 U/mL) 
and reversed tubes ten times. We incubated the samples for 
ten more minutes at 65 °C. After centrifuging at 2.5 × 1,000 
rcf for 10 min at 20 °C, we transferred 200 µL of the lysate in 
deep 96-well plates with 520 µL of binding buffer and 60 µL 
of sbeadex particles suspension. The samples were incorpo
rated into the Kingfisher robot for the DNA purification. 
After bringing magnets into contact with the tubes for 
1 min, the supernatant was removed and discarded. 
400 µL of wash buffer PN1 was added to each sample and 
mixed by pipetting to resuspend the pellet. After 10 min 
of incubation and agitation at room temperature, the mag
nets were brought into contact with the tubes for 1 min. 
The supernatant was removed and discarded, and a second 
round of washing was performed adding 400 µL of wash 
buffer PN2 in each sample, incubating 10 min at room tem
perature, and bringing the magnets into contact with tubes. 
The supernatant was removed and discarded. 100 µL of elu
tion buffer PN was added to the pellet and mixed by pipet
ting. The solution was incubated at 55 °C for 10 min, and 
finally, the magnets were brought into contact with tubes 
for 3 min until the sbeadex formed a pellet and stayed on 
the magnets. The eluate of the samples was transfered to 
a new 96-well plate and stored in the fridge.

The DNA concentration of all samples was measured 
using ddDNA Qubit assay measurement on plate reader 
Spark M10 (excitation wavelength = 485 nm, emission 
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wavelength = 535 nm). Eight samples with too low DNA 
concentration were discarded. In total 582 samples were 
used for the pooled sequencing with a DNA concentration 
superior to 1.5 ng/µL (average = 12.68 ng/µL, median =  
10.18 ng/µL, max = 61.09 ng/µL). For each of the 21 popu
lations, the individuals were pooled together equimolarly, 
with an average of 27.7 individual per pool (median = 29 in
dividuals, minimum = 15 individuals, maximum = 30 indi
viduals). We proceeded with the pool-sequencing as 
previously described in the methods for the de novo refer
ence genome sequencing using Illumina sequencing.

Freebayes Variant Calling
Multi-samples frequency-based (-F 0.05) variant calls 
(−use-best-n-alleles four-pooled-continuous) were gener
ated using the freebayes-parallel script in freebayes 
(v1.2.0-4-gd15209e, Garrison and Marth 2012), with 16 
threads of freebayes running in parallel across regions of 
100 kb in the de novo polished genome assembly (PacBio, 
Illumina, and Bionano). SNPs with variant quality above 
Q20 were retained using bcftool (v1.9) for downstream ana
lysis and were annotated with de novo predicted gene mod
els using SnpEff (v4.2). The final dataset was composed of 
6,899,774 SNPs across the 21 natural populations of B. incana.

Data Filtering
The matrix of population allele frequencies was trimmed 
using VCFtools (Danecek et al. 2011) and following 
Frachon et al. (2018). We kept only biallelic loci (391,671 
SNPs discarded) and removed the indels (7,960 SNPs dis
carded). We discarded SNPs with a minimum mean read 
depth lower than six, and higher than 100 (143,710 SNPs 
discarded). We removed all SNPs with missing values in 
more than two populations (613,387 SNPs discarded). 
We finally kept only 139 super-scaffolds (203,955 SNPs dis
carded). The final allele read count matrix included 
5,530,708 SNPs for 21 populations.

Genome-Environment Association Analysis on 33 
Ecological Variables
We performed a GEA analysis using a pool-sequencing ap
proach between the 5,530,708 SNPs and 15 variables de
scribing pollinator communities (11 functional categories 
of pollinators, and four B. incana—pollinator network indi
ces), three climatic variables, and 15 edaphic variables. 
Genome scans were based on a Bayesian hierarchical model 
implemented in Baypass software (Gautier 2015). 
Considering the covariance matrix of allele frequencies 
among populations, this model allowed to correct poten
tial effect of demographic histories (Gautier 2015). As de
scribed in Frachon et al. (2019), we used the core model 
to estimate the Bayesian factor (BFis in dB called later 
BFdB) between the allelic frequencies along the genome, 
and different descriptors of pollinator communities as 
well as abiotic variables. The core model was repeated three 
times due to the importance of sampling algorithms, and 
the final Bayesian Factor was estimated by averaging the 

three models. Considering the large amounts of SNPs 
used, we subsampled the procedure to estimate the matrix 
of population allele frequencies (Ω) as in Frachon et al. 
(2018), by dividing the full data set into 19 subdatasets of 
∼ 254,785 SNPs each. The GEA for each trait and each sub
data set were performed in parallel and merged again after 
analyzes. Finally, we corrected the BFdB obtained by using a 
local score approach to consider the linkage disequilibrium 
(Bonhomme et al. 2019). This allows for the detection of the 
accumulation of similar P-values in the same region increas
ing the power of genomic analyzes. To do this, we artificially 
created P-values by ranking the BFdB values from highest to 
smallest and divided the rank by the total number of SNPs. 
The parameter ξ was fixed at three for the local score meth
od (Bonhomme et al. 2019; Libourel et al. 2021). We used 
upset plots to detect shared SNPs and candidate genes 
among the 33 ecological variables considering 0.05% SNPs 
with highest association score after applying the local score 
method (R package UpSetR, Gehlenborg et al. 2019). Due to 
the geology of Southern Italy, we observed a Northwest– 
Southeast axis of variation for type of soil (tuff vs. lime
stone), potentially matching the demographic history. 
We estimated the genomic variation among the population 
using a SVD of the matrix of raw allele frequency (without 
population structure correction). A strong significant cor
relation between the genomic variation from SVD and en
vironmental variables could lead to a decrease in the power 
of the GEA analysis.

Putative Signatures of Selection
We performed a genome-wide scan of the spatial genomic 
differentiation index (XTX) among the 21 populations 
(Günther and Coop 2013; Gautier 2015). This index con
sidered the standardized allele frequencies of a given 
SNP, a measure of the variance of allele frequencies across 
21 natural populations. This method has been demon
strated to be successful for natural populations (Frachon 
et al. 2018, 2019). As described above, we also implemen
ted the local score approach to correct the XTX fixing par
ameter ξ = 3 (Fariello et al. 2017; Bonhomme et al. 2019). 
Finally, we estimated the enrichment in spatial genomic 
differentiation index (XTX) by testing whether the SNPs 
with the highest association scores with environmental 
variables (0.05% upper tail of the BFdB corrected by local 
score method) were significantly enriched in the 0.05% ex
treme upper tail of XTX distribution (Brachi et al. 2015; 
Frachon et al. 2018, 2019). The significance of the enrich
ment was tested using the method described by 
Hancock et al. (2011) by running 10,000 null circular per
mutations of the 0.05% SNPs with the highest association 
score with 33 environmental variables.

Identification of Candidate Genes
To identify candidate genes involved in putative signals of 
B. incana adaptation to pollinator communities and abiot
ic variables, we retrieved genes within the significant zone 
identified by the GEA analyzes and corrected by the local 
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score approach, and down and upstream genes of these 
zones as in Libourel et al. (2021). Only significant zones 
containing more than three SNPs were kept. The functions 
of the genes were predicted using the SwissProt database 
(release 2019_03).

Supplementary Material
Supplementary data are available at Molecular Biology and 
Evolution online.
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