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Abstract 

Background  Unrevealing the interplay between diet, the microbiome, and the health state could enable the design 
of personalized intervention strategies and improve the health and well-being of individuals. A common approach to 
this is to divide the study population into smaller cohorts based on dietary preferences in the hope of identifying spe-
cific microbial signatures. However, classification of patients based solely on diet is unlikely to reflect the microbiome-
host health relationship or the taxonomic microbiome makeup.

Results  We present a novel approach, the Nutrition-Ecotype Mixture of Experts (NEMoE) model, for establishing asso-
ciations between gut microbiota and health state that accounts for diet-specific cohort variability using a regularized 
mixture of experts model framework with an integrated parameter sharing strategy to ensure data-driven diet-cohort 
identification consistency across taxonomic levels. The success of our approach was demonstrated through a series 
of simulation studies, in which NEMoE showed robustness with regard to parameter selection and varying degrees of 
data heterogeneity. Further application to real-world microbiome data from a Parkinson’s disease cohort revealed that 
NEMoE is capable of not only improving predictive performance for Parkinson’s Disease but also for identifying diet-
specific microbial signatures of disease.

Conclusion  In summary, NEMoE can be used to uncover diet-specific relationships between nutritional-ecotype and 
patient health and to contextualize precision nutrition for different diseases.
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Background
The human body is home to complex microbial commu-
nities, collectively known as the microbiome, which is 
mostly made up of prokaryotes (bacteria) and archaea [1]. 
Considerable evidence has emerged indicating that the 
microbiome is an important contributor to an individu-
al’s health [2]. This has been illustrated by links between 
the gut microbiome and numerous diseases, including 
irritable bowel syndrome [3], Crohn’s disease [4], type 2 
diabetes [5], cardiovascular disease [6], and Parkinson’s 
disease (PD) [7]. The gut microbiome is known to change 
throughout our lives as a result of various environmental 
influences. Diet, being one of these factors, has the greatest 
known long-term interaction with the gut microbiome [8]. 
Thus, a deep understanding of the relationship between 
diet and the gut microbiome and the consequential impact 
on disease processes holds promise for developing per-
sonalized dietary intervention strategies to modulate and 
maintain a healthy microbiome population [9, 10].

Diet has a direct impact on the microbial community in 
the gut, which governs the activity of the intestinal ecosys-
tem and can have considerable implications for an individ-
ual’s health [11, 12]. This is conceptualized in Fig. 1 where, 
for illustration purposes, the macronutrient intake is sepa-
rated into three perfectly distinct subcohorts with different 
associations between microbiome composition and PD. In 
practice, several studies have demonstrated that variations 
in nutrient intake, such as different ratios of protein, carbo-
hydrate [13], or dietary fiber [14] intake, can influence the 
host-microbiome association. These discoveries are gener-
ally based on an elaborate experimental design using model 
organisms [13] or dietary interventions [15–17]. Recent 
observational studies suggest that long-term diets could be 
associated with the microbiome [18], and this can further 
affect overall health. In a similar context, our recent study 
of the gut microbiome in PD showed that when partition-
ing individuals based on carbohydrate intake, the predictive 
performance of the microbiota profile to indicate PD was 
increased [19, 20]. Together, these studies suggest that die-
tary differences can impact relationships between microbi-
ome composition and host health/disease status.

To uncover complex heterogeneous relationship struc-
ture between diet, microbiome, and host health, it is 
important to identify homogeneous subcohort or latent 
structure in data that can be explained by a set of fea-
tures. This is similar to the concept of “ecotype”, which is 
commonly used to refer to a variant which has observa-
ble phenotypically difference in a local environment [21]. 
Hence, using a data-driven approach, it is able to divide 
a population into multiple subcohorts with distinct 
microbiological signatures for health that can be best 
described by nutrient combinations, resulting in what 
we term “nutritional-ecotypes.” These subcohorts can be 

thought of as diet-based latent classes where they capture 
interaction between the constraints imposed by nutrient 
intake of individuals on the community dynamics of their 
microbiomes [22, 23].

Methods to discover such diet-based latent classes 
could be hypothesis-driven based on prior knowledge 
[24, 25] or guided by an unsupervised statistical learning 
method, such as clustering [26], followed by latent class 
analysis [27]. Although these methods identify nutrient-
classes with an altered overall nutritional profile, one 
limitation is that the defined cohorts may not reflect the 
heterogeneous microbiome-host health relationship: the 
drivers of “diet x microbiome” outcomes, “diet x host” 
outcomes, and “host x microbiome outcomes” are over-
lapping, but not perfectly congruent. Consequently, clas-
sification models built within a subcohort defined just by 
diet (or microbiome) will not necessarily improve predic-
tion of the health/disease state [28].

Similar concepts of identifying cohort heterogeneity to 
improve prediction performance have been developed in 
other omics settings and for other diseases [29, 30]. How-
ever, simple adaptations of methodologies developed for 
other omics platforms remain challenging as these do not 
account for the hierarchical taxonomic structure observed 
in the study of the diet-microbiome-host interaction. That 
is, each individual should be in the same diet-specific 
cohort across all taxonomic levels to keep hierarchi-
cal fidelity of the microbial community, i.e., a consistent 
nutrition class across Phylum, Class, Family, Genus, etc.

To this end, we propose a novel Nutritional-Ecotype Mix-
ture of Experts (NEMoE) approach for uncovering associa-
tions between the gut microbiome profile and the health 
state of an individual that takes into account diet-specific 
cohort heterogeneity (Fig.  1 and Supplementary Fig.  1 
and 2). This is achieved by using a regularized mixture of 
experts model to simultaneously optimize the separations 
between nutritional-ecotypes, classification performance 
of microbiota, and the health state. The mixture of experts 
models has been widely used in integrating different types 
of data. Kim and colleagues [31] have used it for combin-
ing clinical data and genomics data. However, this work 
does not use sparse regularization and lacks interpretabil-
ity, i.e., unable to identify unique markers in each experts 
network. NEMoE also integrates a model parameter shar-
ing strategy to account for the taxonomic information con-
tained in microbiome data, ensuring coherent nutritional 
classification is maintained across all taxonomic levels. We 
show through empirical computational simulation research 
that NEMoE is robust to parameter changes. We also apply 
NEMoE to real microbiome data from a PD cohort and 
show that the model outperforms existing approaches of 
predictive performance and is able to uncover candidate 
diet-specific microbiome markers of complex disease.
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Results
NEMoE, a novel method for jointly identifying 
nutritional‑ecotype and for modeling the relationship 
between microbiota and health state
NEMoE identifies nutritional-ecotypes that represent dif-
ferential dietary intake as well as the relationship between 
microbiome structure and host health (Fig.  1 and Sup-
plementary Fig.  1). This approach has two distinct 

components: first, a gating network aimed at estimating 
latent classes shaped by nutritional intake, and second, 
an experts network aimed at modeling the relationship 
between the microbiota composition and the health state 
within each latent class [31, 32]. The input of the gating 
network is a nutrition matrix, with each variable being 
the nutrients intake of the individual and the correspond-
ing microbiome measurements are used as input of the 

Fig. 1  Illustration of NEMoE: a, b The input matrix of NEMoE: n samples with q nutrient features and p microbial features. c A conceptual workflow 
of NEMoE, where the joint optimization is achieved by EM algorithm to maximize the regularized likelihood function. d A toy example showing a 
nutritional-ecotype in the microbiome PD study. The nutrient intake is clustered into K latent classes. e In each latent class, the microbial signatures 
of PD are different, which is reflected by the coefficients in the experts network
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experts network. Similar to non-regularized mixture 
of experts (MoE) models, fitting NEMoE involves esti-
mating the parameters via maximum likelihood estima-
tion to simultaneously optimize the separations among 
nutritional-ecotypes, microbiome classification perfor-
mance, and the health state (Supplementary Fig. 2). The 
optimization procedure is usually achieved by an expec-
tation maximization (EM) algorithm. However, the MoE 
model does not extend to a large number of feature vari-
ables (p) and small sample size (n) framework, which 
often occurs in diet and microbiome data where there are 
many more features than observations. Instead, NEMoE 
adopts a regularization component to the MoE (RMoE 
[33]) by adding elastic net penalties [34] on both the 
gating function and the experts network (details in the 
Methods section). Next, NEMoE employs a parameter 
sharing strategy that involves a shared gating network 
for the microbiome relative abundance matrices across 
taxonomic levels, to ensure coherent latent classes across 
all taxonomic levels. Compared with a latent class using 
purely nutritional intake, our nutritional-ecotype has two 
advantages: (i) it takes the relationship between microbi-
ome and health outcome into account and is beneficial 
for identifying diet-specific microbial signatures (Supple-
mentary Fig. 1). (ii) It incorporates the taxonomic struc-
ture in the latent class and keeps hierarchical fidelity of 
the microbial community.

NEMoE is able to accurately identify nutritional latent 
classes shared across different taxonomic levels
We evaluated the efficiency of NEMoE in determining 
nutritional-ecotypes based on microbiota across different 
taxonomic levels using both simulated and experimental 
data. In our simulation study (see Supplementary Notes), 
we created a four-level dataset of 500 samples with 
shared latent structure, where each individual belonged 
to a nutritional-ecotype and the relationship between 
microbiota and health status differed between two sim-
ulated nutritional-ecotypes. The adjusted rand index 
(ARI), a cluster comparison statistic, was used to com-
pare the estimated nutritional-ecotypes and the underly-
ing simulated latent classes (Fig. 2a). We discovered that 
by incorporating hierarchical taxonomy information in 
our NEMoE approach, the estimated nutritional class 

was cohesive and performed better (higher ARI = 0.80) 
than nutritional-ecotypes estimated from a single taxon-
omy level (ARI = 0.75). NEMoE achieved this by sharing 
information across taxonomic levels and the estimated 
latent class incorporated information from all levels.

Next, we applied NEMoE to our in-house data from 
a gut microbiome PD study . A scatter plot from the 
first two components of a principal component analysis 
(PCA) of scaled nutrient intake (see Methods section) 
from all individuals is shown in Fig.  2b, with the two 
nutritional-ecotypes best described as “high protein”–
“low carbohydrate” (PROT-carb; shown in red) and “low 
protein”–“high carbohydrate” (prot-CARB; blue). The 
corresponding loadings show that these two ecotypes 
have very different ratios of protein to carbohydrate 
intake: Sugars and %EC (percentage of energy intake 
as carbohydrate) showed negative coefficient (γ < 0); 
P:C, Moisture and %EP (percentage of energy intake as 
protein) showed a positive coefficient of the gating net-
work (γ > 0). Based on the meaning of these variables, 
we described the groups as “PROT-carb” and “prot-
CARB,” with capital letters indicating the variable with 
a positive coefficient. Figure 2c and d illustrate that the 
relationships between gut microbiota and PD status are 
different between these two nutrition-ecotypes, PROT-
carb, and prot-CARB. It is important to note that two 
identified subcohorts are significantly different to clus-
ters identified by unsupervised clustering, such as sub-
cohorts estimated by the k-means algorithm (ARI ~ 0, 
Supplementary Fig. 3).

We further established the generalizability of NEMoE 
by examining its impact when applied to data with dif-
ferent levels of heterogeneity. Here, we created synthetic 
datasets with four different degrees of separation (Fig. 3a, b 
and Supplementary Notes) and demonstrated that NEMoE 
performs better than other existing approaches in detecting 
latent classes and this difference was more evident in chal-
lenging situations where the true separation between latent 
classes was small (Supplementary Fig. 4). This implies that 
NEMoE has potential to perform well in many observa-
tional studies where nutrient intake patterns are mixed or 
difficult to separate, and hence the NEMoE approach can 
be applied broadly to human disease datasets with diverse 
dietary intake.

Fig. 2  Identification of nutritional-ecotype by NEMoE. a Boxplot comparing NEMoE and single-level NEMoE in estimating shared latent classes. The 
ARI (x-axis) is calculated by comparing the estimated latent class and the true latent class from the data-generating model. In all settings, NEMoE 
using multiple-level information performs better. b PCA plot of scaled nutrient intake for subjects colored by the two nutrition classes as estimated 
by NEMoE. Estimated coefficients of the gating network showed high coefficients for sugar, protein:carbohydrate, and moisture. We denote the two 
nutrition classes as prot-CARB and PROT-carb with low protein-high carbohydrate intake and vice versa. c Scatter plot of genera Fusicatenibacter 
and Anaerostipes. Left panel shows that Parkinson’s disease and healthy controls in the prot-CARB subcohort roughly separate but there is no such 
separation in the PROT-carb right panel. d Scatter plot of genera Erysipelotrichaceae UCG-003 and [Ruminococcus] torques group showed a different 
relationship between Parkinson’s Disease and Healthy Controls in two nutritional-ecotypes

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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NEMoE outperforms existing supervised methods 
in predicting Parkinson’s disease state
We evaluated the predictive performance of NEMoE 
using both simulation and real data based on leave-one-
out cross-validation (LOOCV; see Supplementary Notes) 
to the area under the receiver operating characteristics 
curve (AUC) for the various models described in Table 1. 
In simulation studies, we showed that under all compari-
son settings, NEMoE was able to achieve higher predic-
tion accuracy (Supplementary Fig.  4), which implies 

NEMoE is robust to different parameter settings, such 
as n and p. Figure  3c highlights that when NEMoE was 
applied to our in-house dataset from a gut microbiome 
PD study [20] with 2 latent classes (AUC = 0.78), it out-
performed all other approaches, with the next best being 
random forest (AUC = 0.71). Supplementary Fig. 6 fur-
ther highlights that increasing the number of latent 
classes for this data did not improve the overall AUC.

NEMoE’s ability to detect meaningful subcohorts via its 
joint optimization approach is a key driver of this increase 

Fig. 3  Comparison of NEMoE on simulation dataset and real dataset. a An illustration of a non-separable case where nutrition intake does not show 
a difference between two nutritional-ecotypes, but each subcohort shows a different relationship between microbiome taxa and health state. b An 
illustration of a separable case where nutrition intake is significantly different between two nutritional-ecotypes and relationships in each model are 
similar to the illustration in a. Simulation studies showed that NEMoE can identify both case a and case b. c Receiver operating characteristics curve 
of different methods (see Table 1) in predicting Parkinson’s disease using LOOCV. NEMoE showed the best LOOCV-AUC (AUC = 0.78). d ROC plot of 
NEMoE at different taxonomic levels using LOOCV. Genus level showed the best predictive performance (AUC = 0.78)
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in accuracy. For example, when comparing to a naive two-
stage model that uses unsupervised clustering to identify 
latent classes before fitting two independent models, the 
performance of NEMoE is considerably better, as indicated 
by the large difference in AUC (NEMoE = 0.78, sLR II= 
0.6). We further assessed NEMoE’s capabilities on enter-
otype-separated subcohorts [35] within our PD dataset. 
Enterotype, a widely used concept in microbiome research, 
refers to the categorization of an individual’s microbiomes 
by the variance in composition [2, 36]. It is widely accepted 
that enterotype captures stable compositional features of 
individuals and differences in community-type prevalence 
across populations with different long-term diets. In this 
study, we classify 87 samples as Enterotype B, 81 samples 
as Enterotype F, and no samples as Enterotype P. The clus-
ter memberships between the subcohorts determined by 
NEMoE and by enterotype had no more overlap than pure 
chance (ARI = 0). Furthermore, building a different clas-
sifier for each of the two enterotypes had a much lower 
(LOOCV-AUC = 0.65) predictive ability than NEMoE 
(LOOCV-AUC = 0.78). This suggests that NEMoE allows 
the model to focus more on each latent class and increases 
prediction performance by more precisely identifying sub-
cohorts with differential microbiome-PD relationships.

Identification of informative taxonomic levels 
and consensus candidate microbial PD signatures 
in multiple independent cohorts
In our in-house gut microbiome PD investigation, 
NEMoE provided a natural criterion to examine which 
of the taxonomic levels (Phylum, Order, Family, Genus, 
and ASV) was most informative with respect to different 

nutrient intakes. We achieved this by evaluating predic-
tive performance for PD at each taxonomic level to deter-
mine the most informative. Figure  3c shows that genus 
was most predictive compared to the other taxonomic 
levels, with an LOOCV-AUC of 0.78.

Next, our NEMoE model determined a separate set 
of PD microbial signatures for each nutritional-ecotype. 
The derived coefficients represent the level of associa-
tion between microbiota and health/disease state in each 
nutritional-ecotype (Fig. 4a and b) and results for all taxa 
are given in Supplementary Data 1. We can broadly group 
the microbiota taxa into five categories based on their coef-
ficient estimates: (i) significant in both classes with differ-
ent directions; (ii) significant in both classes with the same 
direction; (iii) significant in prot-CARB only, (iv) significant 
in PROT-carb only and (v) not-significant in both classes. 
The first category “significant in both classes with differ-
ent directions” represents consistent abundance changes 
in both nutritional-ecotypes (Fig. 4b). It was noted that the 
genera Fusicatenibacter and Blautia showed consistent 
negative coefficients in both PROT-carb and prot-CARB 
nutritional-ecotypes. Such genera may be considered stable 
PD microbial signatures, with several studies showing their 
underrepresentation in PD. [19, 20, 38–42]

The underrepresentation of Fusicatenibacter and Blau-
tia was further validated using data from eight independ-
ent PD microbiome studies (Table 2). We processed the 
publicly available datasets using the dada2 pipeline [49]
(v1.16) and taxonomy reference “silva 138” [48, 50]. The 
relative abundance changes of the genus Fusicatenibacter 
were examined across all datasets, as shown in Fig. 4c. In 
all but one dataset [37], Fusicatenibacter had significantly 

Table 1  Summary of methods for comparison

a Two stage sparse logistic regression fitted with two, three four latent classes were denoted as sLR II, sLR III, and sLR IV
b NEMoE fitted with two, three four latent classes were denoted as NEMoE II, NEMoE III, and NEMoE IV. When not explicitly including the number of latent classes, we 
refer to NEMoE II
c Our NEMoE is easy to extend to partition the population with different types of data. We also investigate the different types of data as input of the NEMoE model. 
Results showed using nutrition to split the population obtained the best performance in our dataset

Method Input data of identified subcohort Input data of modeling within each 
subcohort

Model

sLR Microbiome Sparse logistic regression

SVM Microbiome Support vector machine

RF Microbiome Random forest

sLR Ka Nutrition Microbiome Two-stage sLR with K latent class

SVM II Nutrition Microbiome Two-stage SVM

RF II Nutrition Microbiome Two-stage RF

NEMoE Kb Nutrition Microbiome NEMoE with K latent class

MMMoEc Microbiome Microbiome RMoE

NNMoE Nutrition Nutrition RMoE

MNMoE Microbiome Nutrition RMoE

Comb-MoE Microbiome+nutrition Microbiome+nutrition RMoE
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lower relative abundance among PD individuals. Similar 
results were observed for Blautia (Supplementary Fig. 5), 
verifying NEMoE’s ability to identify consensus microbial 
signatures of PD in multiple independent cohorts.

Identification of the microbiome that are differentially 
represented in specific nutritional classes
We note that taxa categories (i)–(iii) represent differential 
abundance changes that are unique in the two nutritional-
ecotypes prot-CARB and PROT-carb, which indicate 
some microbial signatures of PD are diet-specific (Fig. 4c). 
We discovered that the genus Escherichia-Shigella was 

significantly underrepresented in the prot-CARB nutri-
tional-ecotype but not in the PROT-carb ecotype. This 
genus belongs to the family Enterobacteriaceae (including 
E. coli, Shigella, Salmonella, and Klebsiella), which are fac-
ultative anaerobes and known for utilizing soluble sugars 
as a carbon source. When an individual’s diet has a higher 
intake of sugars (or simple starch) it can be expected that 
the relative abundance of these microbiota will likely 
increase. Recent studies found that Escherichia-Shigella is 
a pathogenic bacteria that potentially reduces short-chain 
fatty acid production and produces endotoxins and neu-
rotoxins [51, 52].

Fig. 4  Results of NEMoE on gut microbiome-PD study. a Coefficients of experts network in NEMoE at different taxonomic levels. The two latent 
classes showed distinctly different microbiome patterns. b Identification of diet-specific microbial signatures of PD. The “Same direction” class 
showed consistent function in different dietary patterns. The “PROT-carb only” and “prot-CARB only” classes tended to be important only with 
specific dietary intake. The “Different direction” class changed their coefficients in different dietary patterns. c Validation of differential relative 
abundance of genus Fusicatenibacter in 11 different datasets. With the exception of one dataset (Jin et al. [37]) all other datasets showed decreasing 
Fusicatenibacter in PD. d Forest plot of 95% confidence interval of selected taxa showed NEMoE is able to identify the species that are differentially 
represented in specific nutritional-ecotypes
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We also found a significant increase in the relative abun-
dance of the genus Akkermansia, but only in the PROT-
carb class (Fig.  4d). These bacteria are known to impact 
immune response and constipation, with many studies 
reporting an overrepresentation in PD [39, 40, 42, 53]. 
Akkermansia breaks down mucins and turns them into 
short-chain fatty acids; further, their relative abundance is 
thought to increase when “diet-specialize bacteria” decline 
as a direct impact of changes in microbially accessible car-
bohydrates (MAC). Generally, a low carbohydrate diet will 
lower MAC, thus lowering the number of diet-specialist 
microbes and allowing Akkermansia to become overrep-
resented, consistent with our discovery.

Most importantly, neither of these two genera (Escher-
ichia-Shigella, Akkermansia) was discovered in our pre-
vious analysis using the ALDE model [54], where both 
classes were combined for microbiome biomarker iden-
tification (Escherichia-Shigella: p-value 0.14, Akkerman-
sia: p-value 0.55) [20]. This highlights the relevance and 
importance of nutritional-ecotypes identification in 
microbiome marker discovery.

Discussion
The aim of this study is to investigate and unravel the 
complex interaction between diet, the microbiome and 
an individual’s health. We achieve this by exploring 
the effects of dietary pattern (or composition) on the 

relationship between the microbiome and host health 
and by developing a method called NEMoE that detects 
such heterogeneity. Through a series of simulation stud-
ies, NEMoE shows strong prediction performance when 
the underlying data show heterogeneity explained by 
different nutrient intake. Furthermore, we illustrate the 
practical performance of NEMoE on a gut microbiome 
PD study in which nutritional-ecotypes and microbial 
signatures of disease are found. We show that NEMoE 
outperforms the predictive accuracy of previous models 
(higher AUC) and identifies multiple known PD microbi-
ome markers. Two different nutritional-ecotypes are also 
identified within our data with distinct protein-to-carbo-
hydrate intake ratios and novel candidate signatures that 
were indicative of a diet-specific cohort.

While we focus on the discovery of microbial signa-
tures of PD by splitting the population based on dietary 
profile, the architecture of NEMoE means its flexible 
algorithm can take different types of data for subcohort 
detection (data used for gating networks) or biomarker 
identification (data used for expert networks). Therefore, 
an alternate research question could be to identify nutri-
ents as disease markers for diverse microbiome profiles, 
and the NEMoE system can readily adapt to this new 
problem by changing the input of the gating network and 
experts network. Often, clinical knowledge or interest 
guides the decision on question formulation. However, 

Table 2  Summary of eight publicly available Parkinson’s disease microbiome studies used for validation of the NEMoE model

Studies Lubomski_0, Lubomski_6, and Lubomski_12 were part of the same longitudinal data set by Lubomski and colleagues [2] and they represent samples that 
were measured at 0, 6, and 12 months, respectively

Studies Aho (baseline) and Aho (follow-up) were part of the same longitudinal data set by Aho and colleagues [44]. The same subjects were measured twice, at 
baseline and then later at follow-up, which was on average 2.25 years apart

Studies Wallen_1 and Wallen_2 were part of two large cohort studies set by Wallen and colleagues [38]

Study Design Country Sample size Sampling DNA extraction 16S region ENA Accession 
Number

Lubomski_0 [19, 39]
Lubomski_6
Lubomski_12

Longitudinal Australia 74PD, 74HC Home collection, 
stored at −80 °C

MP Biomedicals 
FastDNATM SPIN Kit

V3-V4 PRJNA808166

Wallen_1 [36] Cross-sectional USA 323PD, 184HC Home collection, 
swabs, stored at −20 °C

MoBio PowerSoil DNA 
Isolation Kit

V4 PRJNA601994

Wallen_2 [36, 43] Cross-sectional USA 197PD, 130HC Swabs, delivered at RT MoBio PowerMag 
Soil kit

V4 PRJNA601994

Aho (baseline) [44]
Aho (follow-up)

Longitudinal Finland 64PD, 64HC Home collection, DNA 
stabilizer, stored in 
fridge

PSP-Spin Stool Kit V3-V4 PRJEB27564

Weis [45] Cross-sectional Germany 34PD, 25HC MED AUXIL fecal col-
lector set

FastDNA Spin Kit V4-V5 PRJEB30615

Pietrucci [46] Cross-sectional Italy 80PD, 72HC Home collection, DNA 
stabilizer

PSP-Spin Stool Kit V3-V4 PRJNA510730

Scheperjans [47] Cross-sectional Finland 72PD, 72HC Home collection, DNA 
stabilizer, stored in 
fridge

PSP-Spin Stool Kit V1-V3 PRJEB4927

Jin [48] Cross-sectional China 72PD, 68HC NA NA V3-V4 PRJEB588834
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if we consider both the dietary and microbiome profiles 
to be equivalent proxies for one’s nutrition system, then 
performing NEMoE in two different ways allows us to 
empirically compare the effectiveness of nutritional sig-
natures versus microbial signatures and provides us with 
insight into the natural heterogeneity in the microbiome 
and in nutritional intake.

NEMoE is designed to partition samples based on their 
associated nutrient intake and can be viewed as a data-
driven strategy for subcohort or latent class identification. 
An alternative option is to investigate a knowledge-driven 
strategy to achieve the same goal and one example is the 
use of “enterotype.” Similar to unsupervised learning, 
stratifying samples based on “enterotype” while providing 
an alternative way to stratify samples, does not explicitly 
take disease prediction performance into account. As a 
result, the aggregate predictive ability of the three sepa-
rate enterotypes is lower than the nutritional-ecotypes 
division discovered by the NEMoE approach.

The proposed NEMoE method is based on diet-
microbiome-host health interaction. However, it is not 
restricted to diet and microbiome data. Our method can 
be expanded to other multi-omics studies to identify sub-
cohorts determined by the heterogeneity in relationships 
between covariates and response. One potential appli-
cation is in the clinical heterogeneity of the relationship 
between multi-omics and host health. In such scenarios, 
the subcohorts are determined by their clinical index 
while the omics data are used to model the relationship 
between host health and information from a specific 
molecular platform.

In summary, we present NEMoE, a novel statisti-
cal method to model heterogeneity of diet and the gut 
microbiome in disease. NEMoE identifies nutritional-
ecotypes based on a maximum likelihood framework and 
using an Expectation-Maximization step to estimate the 
model parameters. Our proposed framework also ena-
bles identification and then accounts for multiple levels 
of structure in the feature set, a unique characteristic in 
microbiome data, where we are able to estimate a shared 
latent class for each individual at different taxonomic 
levels. Effectiveness of NEMoE is validated at three lev-
els. First, we demonstrate through a series of extensive 
simulation studies the model’s ability to accurately iden-
tify latent classes and to increase microbiome predict-
ability. Second, we validate the performance of NEMoE 
on a real disease dataset and show that this method out-
performs existing two-stage methods. Finally, the down-
stream impact and practical importance of NEMoE is 
further demonstrated by the discovery of diet-specific 
PD microbiome markers, such as Escherichia-Shigella 
and Akkermansia, which are not identified by the ALDE 
model [54].

Methods
Data collections
In‑house studies
Our in-house gut microbiome PD data collection 
includes stool samples from 101 PD patients and 83 
healthy controls across three timepoints (0-, 6-, and 
12-month time points). The samples were collected 
and 16S rRNA V3–V4 amplicon sequencing was per-
formed on an Illumina MiSeq platform. Details of the 
experimental setting can be found in Lubomski et  al. 
[19, 20]. We denoted data corresponding to each time-
points as Lubomski_0, Lubomski_6, and Lubomski_12, 
respectively.

PD‑diet
Dietary information was collected by a comprehensive 
Food Frequency Questionnaire and resulted in a table of 
nutrient intake with 23 macronutrients, presented ear-
lier [43]. Details of the sample information and sequence 
processing can be found in Lubomski et al. [19, 20].

Public validation (PV) studies
We curated a series of datasets from eight different pub-
licly-available microbiome studies [37, 38, 44–46, 51] to 
further validate results from NEMoE. All the datasets 
were processed using the dada2 pipeline [49] (v1.16) and 
microbiome taxa were annotated using taxonomy refer-
ence “silva 138” [48, 50]. Samples with low sequence reads 
(<1000) were excluded from the analysis. More informa-
tion on these datasets can be found in Table  2. For the 
longitudinal datasets Aho [44], the data for baseline and 
follow-up, which were collected after 2.5 years, are denoted 
as Aho (baseline) and Aho (follow-up) respectively.

Data processing
PD‑microbiome data processing
We excluded 7 samples with extremely large energy 
intake (>20,000 kJ per day), one subject with low micro-
bial read counts (total counts < 10,000), and two samples 
with missing nutrition measurements, resulting in 175 
samples (75 HC individuals and 100 PD individuals). 
Raw counts from microbiome data were first normal-
ized by total sum scaling, i.e., the counts (totals) were 
normalized into a composition proportion. Then core 
microbial features were kept and further transformed: 
Features that had more than 30% zeros in the n samples 
and features which had sample variance smaller than 
10−5 were filtered out at each taxonomic rank resulting 
in the core microbial features of 7 Phylum, 19 Order, 
27 Family, 41 Genus, and 101 ASVs, and 3,152,746 total 
reads were kept from 6,024,011 reads; variance stability 
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transformation, i.e. an arcsin square root transforma-
tion, was performed on taxa proportion [47, 55]; the 
arcsin transformed data were further standardized to 
have mean zero and unit variance (z-score). We also per-
formed z-score and central log transformation and the 
corresponding result are shown in Fig. S7.

PD‑diet features construction
In addition to the nutrients intake values, we calcu-
lated the percentage of energy intake as protein (%EP), 
percentage of energy intake as fat (%EF), percentage of 
energy intake as carbohydrate (%EC), and protein intake 
and carbohydrate intake ratio (P:C) as additional vari-
ables. These transformations of nutritional features are 
widely used in nutri-omics studies [56, 57]. All of the 27 
nutritional features were z-scored.

Nutrition‑ecotype mixture of expert (NEMoE) model
The development of NEMoE was inspired by a mix-
ture of experts approach to model heterogeneous data 
as shown in Supplementary Fig.  2a. In machine learn-

ing, the concept of “gate” [58] can be thought of as a 
decision-making component given some input. Our 
approach consists of two key components, a “gating net-
work” that is set up to determine which nutritional-class 
the sample belongs to and a “k-experts network” of size 
k to build classifiers for each nutritional-class. NEMoE 
uses a regularized MoE (RMoE) model, which adds 
elastic-net penalties to both the gating network and the 
experts network. Regularization is needed here because 
a non-regularized MoE does not extend to a large p 
small n framework [59] where the number of features (p) 
is much larger than the number of samples (n). This data 
characteristic often occurs in diet and microbiome data 
where there are many more microbial features (p) than 
individual samples (n). NEMoE further incorporates the 
taxonomic information into RMoE by jointly optimizing 
RMoE models from all taxonomic levels with the added 
constraint that all RMoE share the same gating network 
(Supplementary Fig. 2b).

Mathematical formulation of NEMoE
For a transformed microbiome data at taxonomic level 
l, we use the matrix Xn×pl

(l) to denote the relative abun-
dance in n samples of pl taxa. The corresponding diet 
information, measured as a nutrients intake matrix, is 
denoted as Wn × q, where the q columns are the nutrient 

metrics for the same n samples Let Yn denote the binary 
response of the health outcome, with Y = 1 and Y = 0 rep-
resenting individuals with and without disease, respec-
tively. NEMoE models the heterogeneous relationship 
between the microbiome and the health outcome by a 
mixture distribution, i.e.

where πk =
exp(Wγk )
K
i=1 exp(Wγi)

 is the nutrition class mixing 

weight of shared components determined by nutrients 
intake, and where γk and βk are the corresponding effect 
size for the gating network and the experts network, 
respectively, and K denotes the predetermined number of 
nutrition classes.

NEMoE estimates the regularized sum of all levels of 
the log-likelihood function in Equation (1), where the 
regularization term consists of elastic net penalties for 
both the gating network and the experts network:

where φ(�,α,β) = �

[

α|β| + 1
2 (1− α)�β�22 ] is the elastic 

net penalty function and λ1k
(l), α1k

(l), λ2, α2 are the corre-
sponding parameters for penalties in the experts network 
and in the gating function.

The regularized LL can be maximized through a proxi-
mal Newton Expectation Maximization algorithm [59]. 
Details of the optimization procedure can be found in the 
reference manual of the NEMoE package https://​sydne​
ybiox.​github.​io/​NEMoE .

Performance evaluation
Comparison methods
Table  1 contains a summary of all methods used in the 
comparison study. We included the most commonly used 
methods in microbiome analysis as well as a naive two-
stage approach. All of the comparisons were performed 
on simulation datasets and on in-house data on the 
Genus level.

Naive two‑stage approach
The approach first clustered the nutrition data using 
unsupervised learning methods such as k-means. 
Then, based on the clustering result, samples in 
each cluster were used to build a classification 
model of microbiome and health state. The choice 

(1)

Pl

(

Y = 1|X (l),W
)

=
∑K

k=1
πk

exp
(

X (l)βk
(l)
)

1+ exp
(

X (l)βk
(l)
) ,

(2)rLL =
∑L

l=1

∑K

k=1

{∑n

i=1
log

[
P
(
Yi|Xi

(l),Wi

)]
− �

(
�1k

(l), �1k
(l), �k

(l)
)}

− �
(
�2, �2, �

)
,

https://sydneybiox.github.io/NEMoE
https://sydneybiox.github.io/NEMoE
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of classification models we used in our simulation 
includes sparse logistic regression (glmnet v4.1-2), 
support vector machine (e1071 v1.7-11), and random 
forest (randomForest v4.6-14).

Differential abundance
We compared differential relative abundance between PD 
and HC in all datasets. The comparison was based on a 
non-parametric bootstrapping procedure. We resampled 
the data with replacement, then calculated the difference 
of the average relative abundance between PD and HC. 
This procedure was repeated 10,000 times for each taxon 
and the 95% confidence interval of the differential relative 
abundance was calculated.

Simulation framework
Our simulation first generated independent data of 2n 
samples from the procedure described above, then the 
first n samples were used for training and another n 
samples were used to calculate the predicted accuracy. 
The details of parameter settings in each simulation are 
described in Table 3.

Implementation

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40168-​023-​01475-4.

Additional file 1: Supplementary notes. Supplementary Fig. 1. Illustra-
tion of NEMoE and two-stage model. Supplementary Fig. 2. Graphical 
model representation of NEMoE. Supplementary Fig. 3. Nutrition classes 
determined by k-means do not show an informative relationship between 
microbiome and PD. Supplementary Fig 4. Simulation results of NEMoE 
and other methods under different settings. Supplementary Fig 5. 
External validation of consensus taxa Faecalibacterium and Blautia. Sup‑
plementary Fig 6. Prediction performance of different types of input for 
NEMoE. Supplementary Fig 7. ROC curves for different standardization 
methods of microbiome composition data analysis.
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