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BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are persistent and ubiquitous chemicals associated with risk of adverse birth out-
comes. Results of previous studies have been inconsistent. Associations between PFAS and birth outcomes may be affected by psychosocial
stress.
OBJECTIVES: We estimated risk of adverse birth outcomes in relation to prenatal PFAS concentrations and evaluate whether maternal stress modifies
those relationships.
METHODS: We included 3,339 participants from 11 prospective prenatal cohorts in the Environmental influences on the Child Health Outcomes
(ECHO) program to estimate the associations of five PFAS and birth outcomes. We stratified by perceived stress scale scores to examine effect modi-
fication and used Bayesian Weighted Sums to estimate mixtures of PFAS.

RESULTS: We observed reduced birth size with increased concentrations of all PFAS. For a 1-unit higher log-normalized exposure to perfluoroocta-
noic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS), we observed
lower birthweight-for-gestational-age z-scores of b= − 0:15 [95% confidence interval (CI): −0:27, −0:03], b= − 0:14 (95% CI: −0:28, −0:002),
b= − 0:22 (95% CI: −0:23, −0:10), b= − 0:06 (95% CI: −0:18, 0.06), and b= − 0:25 (95% CI: −0:37, −0:14), respectively. We observed a
lower odds ratio (OR) for large-for-gestational-age: ORPFNA =0:56 (95% CI: 0.38, 0.83), ORPFDA = 0:52 (95% CI: 0.35, 0.77). For a 1-unit
increase in log-normalized concentration of summed PFAS, we observed a lower birthweight-for-gestational-age z-score [−0:28; 95% highest
posterior density (HPD): −0:44, −0:14] and decreased odds of large-for-gestational-age (OR=0:49; 95% HPD: 0.29, 0.82). Perfluorodecanoic
acid (PFDA) explained the highest percentage (40%) of the summed effect in both models. Associations were not modified by maternal per-
ceived stress.

DISCUSSION: Our large, multi-cohort study of PFAS and adverse birth outcomes found a negative association between prenatal PFAS and
birthweight-for-gestational-age, and the associations were not different in groups with high vs. low perceived stress. This study can help inform policy
to reduce exposures in the environment and humans. https://doi.org/10.1289/EHP10723
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Introduction
Per- and polyfluoroalkyl substances (PFAS) are a group of syn-
thetic chemicals used in nonstick and stain- and water-resistant
consumer products, as well as in industrial processes. PFAS are
persistent in the environment and in the human body.1 Pathways
of human exposure include ingestion of contaminated drinking
water and food, and inhalation.2,3 As a result, PFAS are widely
detectable in human biomonitoring studies, including studies
showing that nearly 100% of pregnant women studied have meas-
urable levels of PFAS in their bodies.4 Reported human health
associations include carcinogenicity (kidney and testicular
cancers),5 cardiovascular effects (dyslipidemia6), pregnancy-
induced hypertension,7 impaired renal function,8,9 endocrine
disruption (thyroid disease and altered age at menarche),10,11
obesity,12 and immune effects (immunotoxicity and decreased
antibody production).13–15

PFAS have been associated with adverse effects on fetal de-
velopment in both animal and human studies.16,17 Reductions in
birthweight have been reported with higher exposure to perfluor-
ooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA),
and perfluorononanoic acid (PFNA).18–31 A systematic review
and meta-analysis of animal and human research found sufficient
evidence for an inverse association between PFOA and birth-
weight.16 Fewer studies have examined PFAS in relation to pre-
term birth; however, a recent review and meta-analysis found
maternal PFOS was associated with increased risk of preterm
birth.32 Only one study examined PFAS in relation to large-for-
gestational-age, and it reported no association.33

Psychosocial stressors and responses to stress during pregnancy
are associated with perinatal outcomes and may also contribute to
the persistence of disparities in adverse birth outcomes by socioeco-
nomic status and racial and ethnic groups.31,34 Experiences of psy-
chosocial stress during pregnancy may be more prevalent among
women of lower socioeconomic status as indicated by lower educa-
tion or income level.35 Perceived stress may also be higher among
women of color because of racial and gender-based discrimina-
tion.36–38 Environmental chemical exposures can co-occur with
chronic psychosocial risk factors during pregnancy.39,40 This com-
binationmay have a greater impact than each individual factor alone
and result in amplified risk of adverse pregnancy outcomes.40–42
Furthermore, these environmental and psychosocial stressors
may operate via similar biological systems and mechanisms
(i.e., endocrine or metabolic disruption, inflammation, and epi-
genetic changes).41

The Environmental influences on Child Health Outcomes
(ECHO) program is a National Institutes of Health initiative to
address pediatric outcomes with high public health impact.43
ECHO comprises 69 cohorts from across the United States and
includes over 57,000 mother–child dyads.44 The program is well
powered to analyze environmental exposures in a demographi-
cally and geographically diverse study population including 56
cohorts with chemical biomonitoring data for mothers and chil-
dren.45 The present study estimates associations using ECHO
data from 11 pregnancy cohorts to examine the extent to which
prenatal exposure to PFAS is associated with increased risk of
adverse birth outcomes and whether these associations are modi-
fied by stress.

Methods

Overview
ECHO cohorts were invited to participate based on consent for
data sharing with ECHO of the mother–child pairs46 and were
harmonized and pooled for analysis. Mothers were required to
have either extant prenatal PFAS data or at least one serum or

plasma biospecimen collected during pregnancy that was avail-
able for assessment of PFAS concentration. Data on child birth-
weight or gestational age at birth were required for participation,
and the study population was restricted to singleton births and
included 3,339 mother–child pairs from 11 cohorts between 1999
and 2019 (Figure S1). Cohorts submitted data to the ECHO Data
Analysis Center for analysis. Cohort was not considered when
determining inclusion for this analytic data set. All cohorts had
institutional review board approvals from their local institutions.
Written consent to participate in the ECHO study was obtained
for all participants. Participants received various stipends for their
time according to the individual cohort.

PFAS
Laboratory methods varied by cohort (Table S1). PFAS were meas-
ured (in nanograms permilliliter) in plasma or serum at three labora-
tories: the California Department of Toxic Substances Control,34

the Centers for Disease Control and Prevention (CDC),30,47,48 and
the Wadsworth Human Health Exposure Analysis Resource
Laboratory.49 All laboratories participated in the CDC’s quality
assurance program to test interlaboratory comparisons. The number
of PFAS measured in each cohort varied from 8 to 14 (Table S2).
PFAS were included in the present analysis if more than 60% of
values were above the method limit of detection (LOD) and no
cohort had <40% below the LOD (Table S2). Five PFAS met
these criteria: PFOA, PFOS, PFNA, perfluorohexane sulfonic
acid (PFHxS), and perfluorodecanoic acid (PFDA). If a cohort
had separate sums of branched and linear chain isomers for
PFOA or PFOS, the two were summed as total PFOA or PFOS.50

Distributions of PFAS were examined by cohort, year, and per-
ceived stress scale (PSS; Table S3). LOD varied between labs
and within cohorts owing to batches performed years apart
(Table S3). For those observations that were below the LOD, we
imputed exposure values as the LOD divided by the square root
of 2. PFAS measures were nonnormally distributed, and, thus,
were natural log transformed (Figure S2). Most cohorts collected
prenatal biospecimens during the second trimester (9 cohorts,
n=2,531, Table S1). For three cohorts (n=565) with PFAS
measured at multiple time points, concentrations above the LOD
were averaged. We tested the correlations between the different
PFAS and each PFAS across different trimesters of exposure.
Spearman correlations of PFAS concentrations measured multi-
ple times during pregnancy were strong (q>0:8), with one
exception, which was moderately correlated [PFDA in the first
and third trimesters (q=0:53)] (Table S4). We compared PFAS
concentrations to those measured by the National Health and
Nutrition Examination Surveys (NHANES) during the study pe-
riod (Table S5).

Prenatal Stress
We examined maternal stress as an effect modifier of the relation-
ship between PFAS and birth outcomes. For a subset of cohorts
(8 of 11, N =2,032), maternal stress was assessed using the PSS
administered in the prenatal period; the PSS measures perceptions
of life as uncontrollable, unpredictable, and overwhelming.51 The
PSS is a widely used self-report instrument for measuring stress
perception and is available in three versions, with 4, 10, or 14 items
[PSS-4 (1 cohort, n=402), PSS-10 (5 cohorts, n=1,148), and
PSS-14 (2 cohorts, n=459), respectively], each containing items
rated on a five-point Likert scale. Psychometric data support reli-
ability and validity of the PSS-10 in comparison with the PSS-14
and perceived helplessness (r=0:85) and perceived self-efficacy
(r=0:82) scales, respectively.52 In addition, the PSS-4 has been
validated in pregnant women and correlated strongly (q=0:71)
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with the Assessment of Stress portion of the Prenatal Psychosocial
Profile andwas valid in predictingmaternal depression (Edinburgh
Postnatal Depression Scale, r=0:67), and quality of life (mental
health component of the Short-Form-12, r= − 0:62).53 Cohorts
were administered one version of the PSS (Table S1), and item
response theory was used to harmonize PSS to a t-score metric by
the ECHO Patient-Reported Outcomes Core [ECHO PRO Core
Data Harmonization Group, ECHO-wide Cohort Protocol
(version 2.0), Harmonization Technical Report (version 5.2, 24
March 2021)].54 PSS scores were unavailable for participants in
three cohorts (the Project Viva cohort, the Kaiser Permanente
Research Bank Pregnancy Cohort, and the New Hampshire Birth
Cohort) and partially missing in other cohorts except for Illinois
Kids Development Studies, which had complete data on PSS
[N =2,009 (60%) of 3,339].

Birth Outcomes
Outcomes included gestational age at birth (completed weeks), pre-
term birth (birth <37 vs. ≥37 wk gestation), term low birthweight
(birthweight <2,500 vs. ≥2,500 g among births at ≥37 wk gesta-
tion), birthweight-for-gestational-age and sex-specific z-scores,
and both small- and large-for-gestational-age (<10th percentile
and >90th percentile, respectively) using a 2017 referent popula-
tion in the United States.55 Birth outcomes and covariates were
obtained according to the protocol for each cohort (from medical
records or self-report).

Statistical Analysis
We analyzed two continuous and four dichotomous birth outcomes
using linear and logistic regression, respectively, in relation to sin-
gle PFAS exposures. Covariates selected as potential confounders
a priori based on a directed acyclic graph (Figure S3) included
cohort (base model), maternal age at delivery (<25, 25–29, 30–34,
≥35 y), parity (0, ≥1), maternal educational attainment [<high
school; high school degree, General Educational Development
(GED), or equivalent; some college, no degree; bachelor’s degree
and above], and maternal race/ethnicity (non-Hispanic White,
non-Hispanic Black, non-Hispanic Asian/Pacific Islander, non-
Hispanic other, and Hispanic). Race/ethnicity was included as a
social construct and proxy for racism and discrimination. The non-
Hispanic other category included Native Hawaiian or other Pacific
Islander, American Indian or Alaska Native, multiple race, or any
other race group not included in a more specific category. We
examined race/ethnicity in relation to PSS scores because we
hypothesized racism and discrimination might be associated with
perceived stress. Our study was restricted to participants with non-
missing data on these covariates. Factors related to the outcome
and to stress but not PFAS (e.g., maternal tobacco use, prenatal
secondhand smoke exposure) were considered in sensitivity analy-
ses. Additional covariates were considered potential mediators
[e.g., maternal bodymass index (BMI), gestational diabetes, gesta-
tional hypertension, and preeclampsia] and were not considered
confounders and not included in analytic models. We performed
stratified analyses by PSS scores, which were dichotomized at the
median of the t-scores and examined the p-value of the interaction
term to determine potential effect modification (results with
p<0:1were noted).

We estimated the effect of summed concentrations of five
PFAS (PFOA, PFOS, PFNA, PFHxS, and PFDA) using Bayesian
Weighted Sums, a recent Bayesian approach that provides the
effect of the mixture of PFAS, as well as the percentage contribu-
tion of each of the PFAS. This approach allows the data and
model to estimate the weights56 and uses a Dirichlet prior that
restricts values of the weights to sum to 1 and restricts individual

values to a 0–1 range.57 These analyses were similarly adjusted
for the covariates and stratified by PSS. We provide 95% highest
posterior density (HPD) intervals as opposed to 95% credible
intervals.

We performed several sensitivity analyses to assess the
robustness of our results and explore additional effect modifiers
and confounders. We performed a stratified analysis by infant sex
to identify potential sex-specific associations of PFAS and birth
outcomes and examined the p-value of the interaction term to
determine potential effect modification (results with p<0:1 were
noted). We conducted a trimester-stratified analysis to compare
results by timing of PFAS measurements during pregnancy.
Because results may be sensitive to inclusion of specific cohorts,
we conducted leave-one-out analyses, excluding each cohort from
calculation of the main effects of PFAS. We examined quartiles of
exposure in relation to the outcomes to assess the linearity of the
exposure–response relationship. We performed the birthweight-
for-gestational-age z-score analysis with cohort as a random effect
in mixed effects models to determine if our main findings were
impacted by cohort heterogeneity. We adjusted for prenatal
tobacco smoke exposure (indicators of either any maternal smok-
ing or secondhand smoke during pregnancy) as an additional
potential confounder for birthweight-for-gestational-age z-score
and large-for-gestational-age. Last, we provided estimates of the
association between non–log-transformed PFAS and continuous
birth weight (adjusted for gestational age) given the difficulty of
interpreting log-transformed values of PFAS in relation to z-scores
of birthweight-for-gestational-age and the potential that log trans-
formation may bias the results. We chose not to correct for multi-
ple comparisons given the few a priori tests and our preference to
present actual observations.58 Primary statistical analyses were
conducted using Stata (version 17.0; StataCorp), and correlation
maps and Bayesian mixtures analyses were conducted in R (ver-
sion 4.1.0; R Development Core Team) using the JAGS software
program (version 4.3.1). Software code to recreate results of this
work is maintained by the ECHO Data Analysis Center (https://
dcricollab.dcri.duke.edu/sites/echomaterials/SitePages/Home.aspx).

Results
This study included 3,339 mother–child pairs from 11 cohorts in
ECHO. Mothers were demographically and racially/ethnically
diverse, with about half non-Hispanic White (53.8%) and having a
bachelor’s degree or higher educational attainment level (53.0%)
(Table 1). The mean age of mothers at delivery was 30:9± 5:8 y.
The years of birth for all cohorts ranged from 1999 through 2019
(Table S1).

Four PFAS were detected in 96%–100% of participants
(PFOS, PFOA, PFNA, and PFHxS) and concentrations were
lower than those measured in NHANES (Table S5). Most PFAS
were moderately positively correlated with Spearman correlations
between q=0:14 (PFDA and PFHxS) and q=0:83 (PFOA and
PFOS) (Figure S4). PFAS concentrations were highest among
participants from older cohorts, although not monotonically, and
PFAS decreased across years except for PFHxS, which increased
between 2015 and 2019, although levels were not as high as ear-
lier (1999–2003) (Table S3).

As compared with participants who were white, a higher pro-
portion of participants who were Asian and other race/ethnicity
had above-median levels of PSS. A lower proportion of partici-
pants who were Hispanic or unknown race/ethnicity had above-
median levels of PSS, and levels of PSS were similar among par-
ticipants who were Black (Table S6).

We estimated the associations between eachPFAS and birth out-
come with adjusted linear and logistic regression models (Table 2).
We observed lower birthweight-for-gestational-age z-scores with
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increasing concentrations of all PFAS. For a 1-unit higher log-
normalized exposure to PFOA, PFOS, PFNA, PFHxS, and PFDA,
we observed a lower birthweight-for-gestational-age z-score of
b= − 0:15 [95% confidence interval (CI): −0:27, −0:03],
b= − 0:14 (95% CI: −0:28, −0:002), b= − 0:22 (95% CI: −0:33,
−0:10), b= − 0:06 (95% CI: −0:18, 0.06), and b= − 0:25 (95%
CI: −0:37, −0:14), respectively. Positive point estimates for PFAS
and risk of small-for-gestational-age were consistent for all PFAS,
with ORs ranging from 1.06 to 1.29, although 95% CIs for all esti-
mates included the null. We observed lower odds ratios (ORs) of
large-for-gestational-age, with estimates for PFNA and PFDA
excluding the null: ORPFNA =0:56 (95% CI: 0.38, 0.83), and
ORPFDA = 0:52 (95% CI: 0.35, 0.77). Point estimates for all PFAS
showed increased risk of term low birth weight, with ORs ranging
from 1.13 to 2.24, although 95% CIs included the null. All PFAS
showed increased risk of preterm birth and decreased gestational
age at birth, although all but one estimate included the null in fully
adjusted models (bPFOA = − 0:22; 95% CI: −0:43, −0:01) with the
exception of PFHxS (Table 2).

When stratified by PSS, associations between some PFAS
and birthweight-for-gestatonal-age z-scores were stronger (i.e.,
larger decreases) among those who reported below-median levels
of perceived stress, although tests did not show evidence of sta-
tistical interaction (Table 3). Similar results were observed for
large-for-gestational-age with stronger decreased risk among those
with lower perceived stress (Table 3). Three estimates had interac-
tion terms with p<0:1, although not in a consistent direction; PFOS
was associated with increased risk of small-for-gestational-age
among those with lower perceived stress (OR=1:57; 95% CI: 0.73,
3.38), PFHxSwith increased risk of large-for-gestational-age among
those with higher perceived stress (OR=1:13; 95% CI: 0.51, 2.49),

Table 1. Characteristics of the study population among selected ECHO
cohorts (N =3,339).

Characteristic
N (%) or
mean±SD

Maternal race/ethnicity
Hispanic/Latina 653 (20.8)
Non-Hispanic White 1,687 (53.8)
Non-Hispanic Black 509 (16.2)
Non-Hispanic Asian 193 (6.2)
Non-Hispanic other 96 (3.1)
Unknown 201
Maternal educational attainment
<High school 312 (9.5)
High school degree, GED, or equivalent 530 (16.1)
Some college, no degree 702 (21.4)
Bachelor’s degree and above 1,742 (53.0)
Unknown 53
Maternal age at delivery (y)
<25 497 (15.7)
25–29 672 (21.3)
30–34 1,124 (35.6)
≥35 867 (27.4)
Unknown 179
PSS scale
PSS t-score category 49:8± 9:9a

<Median (50.6) 1,003 (49.9)
≥Median (50.6) 1,006 (50.1)
Unknown 1,330
Gestational age (wk) 38:9± 1:9
Preterm birth (<37 wk)
Yes 252 (7.5)
No 3,087 (92.5)
Birthweight (g) 3,337:4± 563:3
Low birthweight (<2,500 g)
Yes 182 (5.5)
No 3,157 (94.5)
Size for gestational ageb

Small-for-gestational-age 357 (10.7)
Appropriate-for-gestational-age 2,623 (78.6)
Large-for-gestational-age 359 (10.8)
Child sex
Male 1,643 (49.2)
Female 1,696 (50.8)
Parity prior to indexed birth
0 1,783 (53.4)
≥1 1,556 (46.6)

Prenatal tobacco use
Yes 200 (7.2)
No 2,573 (92.8)
Unknown 165
Prenatal secondhand smoke
Yes 1,386 (64.0)
No 781 (36.0)
Unknown 1,172
Prepregnancy BMI (kg=m2) 26:1± 6:3c

Gestational diabetes
Yes 321 (10.5)
No 2,722 (89.5)
Unknown 296
Gestational hypertension
Yes 154 (8.5)
No 1,667 (91.5)
Unknown 1,518
Preeclampsia
Yes 104 (5.6)
No 1,751 (94.4)
Unknown 1,484
Year of birth
1999 28 (0.8)
2000 330 (9.9)
2001 310 (9.3)
2002 170 (5.1)
2003 4 (0.1)

Table 1. (Continued.)

Characteristic
N (%) or
mean±SD

2009 9 (0.3)
2010 122 (3.7)
2011 225 (6.7)
2012 283 (8.5)
2013 243 (7.3)
2014 204 (6.1)
2015 278 (8.3)
2016 287 (8.6)
2017 283 (8.5)
2018 286 (8.6)
2019 98 (2.9)

Cohort
Chemicals in Our Bodies (CiOB) 402 (12.0)
Illinois Kids Development Studies (IKIDS) 184 (5.5)
Project Viva 842 (25.2)
Healthy Start 652 (19.5)
New Hampshire Birth Cohort Study (NHBCS) 324 (9.7)
Markers of Autism Risk in Babies Learning Early Signs
(MARBLES)

39 (1.2)

Emory (Atlanta) 424 (12.7)
Maternal And Developmental Risks from Environmental
and Social Stressors (MADRES)

347 (10.4)

Pregnancy and EnvironmenT And Lifestyle Study
(PETALS)

124 (3.7)

Rochester 35 (1.0)
Kaiser Permanente Research Bank Pregnancy Cohort
(KPRB-PC)

13 (0.4)

Note: BMI, body mass index; ECHO, Environmental influences on Child Health
Outcomes; GED, General Educational Development; PSS, perceived stress scale; SD,
standard deviation.
an=2,009.
bSmall-, appropriate-, and large-for-gestational-age were defined, respectively, as sin-
gleton infants with weight <10th percentile, 10th–90th percentile, and >90th percentile
of birthweight-for-gestational-age and sex using a 2017 U.S. reference population.
cn=3,219.
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and PFDA with increased risk of term low birth weight among
those with higher perceived stress (OR=5:25; 95% CI: 1.08,
25.64) (Table 3). Some associations were stronger in the sub-
sample with PSS scores, including increased PFHxS and lower
birthweight-for-gestational-age, increased PFOA and lower risk
of large-for-gestational-age, and increased PFOA and PFNA
and increased risk of preterm birth (Table 3).

Bayesian Weighted Sums results were largely consistent with
the main findings (Table 4). The change in birthweight-for-
gestational-age z-scores for a 1-unit increase in the sum of logged
PFAS was −0:28 (95% HPD: −0:44, −0:14). The odds of small-
and large-for-gestational-age associated with summed PFAS were
1.13 (95% HPD: 0.68, 1.83) and 0.49 (95% HPD: 0.29, 0.82),
respectively. The percentages of the summed effect for birthweight-
for-gestational-age z-scores and large-for-gestational-age explained
by PFDA were 40%. The percentages of the summed effect
explained by each PFAS for small-for-gestational-age were approx-
imately equal to one another (Table 5). Odds of preterm birth and
term low birth weight were both elevated for the summed effect of
PFAS: 1.45 (95% HPD: 0.82, 2.55) and 1.04 (95% HPD: 1.00,
1.07), respectively. Among those with low PSS, associations
between PFAS and each birth outcomewere consistent and stronger
than for those with high PSS, although all 95% HPD included the
null (Table 4).

Associations between most PFAS and birth outcomes were
stronger among female compared with male infants. Eight of 30
interaction terms had p<0:1, and three of those with p<0:05 are
noted here. Among female infants, PFOA, PFOS, and PFNA
were associated with decreased birthweight-for-gestational-age
(bPFNA = − 0:29; 95% CI: −0:46, −0:12). Decreased odds of
large-for-gestational-age were also stronger in females for several
PFAS (ORPFOA = 0:54; 95% CI: 0.31, 0.93; ORPFNA =0:38; 95%
CI: 0.22, 0.66; ORPFDA = 0:39; 95%CI: 0.22, 0.69) (Table 6).

When stratified by trimester of exposure, some results were
stronger in the first trimester for PFNA and PFDA and birthweight-
for-gestational-age (Table S7). The estimates were less precise,
and study populations differed between trimesters, with fewer par-
ticipants in the third trimester.

When each cohort was removed from the pooled analysis at a time,
most of the results were similar (Figure S5). In some cases, excluding
the Project Viva, Atlanta, orMaternal And Developmental Risks from
Environmental and Social Stressors cohorts influenced the results in
various directions, but the resultswere overall consistent.

In general, associations of PFAS quartiles were consistent with
the continuous main results for birthweight-for-gestational-age
z-scores and risk of large-for-gestational-age. Quartile analyses
showed associations with increased odds of preterm birth when
exposed to the highest quartile of PFOA (OR=2:87; 95% CI: 1.28,
6.44) and PFNA (OR=1:74; 95% CI: 1.05, 2.89) (Figure S6, Table
S8), where continuous associations were in the same direction with
95% CIs that included the null (Table 3). When using a mixed effects
model, allowing for random effects by cohort, we not see notable
changes in either point estimates or CIs (Table S9). Results did not
differ when adjusted for prenatal exposure to tobacco smoke, which
includedmaternal smoking and secondhand smoke during pregnancy
(Table S10). Estimates of changes in birthweight (in grams) associ-
ated with an interquartile increase in PFAS (not log transformed)
showed consistent results in terms of directionality of the association
(Table S11). The largest decrements in birthweight were associated
with increases in PFNA (b= − 15:99; 95% CI: −29:77, −2:22) and
PFDA (b= − 15:76; 95%CI:−26:81,−4:71) (Table S11).

Discussion
This is the largest study, to the best of our knowledge, in the
United States of pregnancy exposures to PFAS and adverse birthT
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outcomes. We found that higher levels of several PFAS were
associated with lower birthweight-for-gestational-age z-scores
and lower risk of being large-for-gestational-age. Associations
between PFAS and preterm birth and term low birth weight were
also observed, although results were less robust.

Associations between PFAS and birth outcomes were not
modified by perceived stress. These findings were unexpected
because of our hypothesis that exposure to chemical and social
stressors would result in stronger associations; however, given
the known associations between stress and birthweight, the addi-
tional effect of PFAS may be minimal.59

The ECHO study population for this analysis included preg-
nancies from 11 cohorts in seven states across the United States.
This unique and demographically diverse study population
enabled us to examine five PFAS measured prenatally and their
association with continuous and categorical birth outcomes
related to gestational age and birthweight. Statistical power
allowed for stratified analyses to explore potential effect modi-
fiers and sensitivity analyses to explore potential bias stemming
from timing during pregnancy, assumptions of linearity or thresh-
old effects, additional confounders, and influence by different
cohorts spanning time and place.

In our study, birth years of the children spanned 21 years
(1999–2019), during which time there was an overall decrease in
exposures to PFAS owing to the phase-out of some PFAS.
Correlations were generally high across trimesters, providing evi-
dence that PFAS levels remain relatively consistent across preg-
nancy. Our analysis removing one cohort at a time showed that a
few cohorts deviated from the pattern, but overall they were nota-
bly consistent. Their results were published previously,30 as were
results for several other individual cohorts, including Chemicals
in Our Bodies, Illinois Kids Development Studies, and Healthy
Start.31,60–62

Our findings of lower birthweight-for-gestational-age
z-scores confirm previous studies wherein PFAS were associ-
ated with lower birthweight-for-gestational-age, intrauterine
growth restriction, and small-for-gestational-age, and reduced
fetal growth.16,27,32,60 Ourfindings overall support a shift in the dis-
tribution of birthweight toward decreased birth sizemeasured contin-
uously (i.e., birthweight-for-gestational-age z-scores) and
categorically (i.e., large-for-gestational-age) and are suggestive of
increased risk of preterm birth.

Despite some inconsistencies in previous studies and meta-
analyses, our findings confirm the recent report from the National
Academy of Science (NAS) stating there is sufficient evidence of
an association between PFAS and decreased infant and fetal
growth, which weighted evidence based on low risk of bias.63 For
example, two meta-analyses of birthweight in relation to PFOA64

and PFOS65 found decreases in birthweight, which is consistent
with our results; notably, when restricted to studies earlier in preg-
nancy, associations in these meta-analyses were null. In contrast,
results of our study show stronger associations between increased
PFOA in the first trimester and lower birthweight-for-gestational-age
z-scores and increased risk of term low birth weight and small-
for-gestational-age. There are several possibilities as to why
these meta-analyses may differ, such as the inclusion of studies
that did not adjust for gestational age and/or parity, were cross-
sectional in design, were conducted in study populations outside
of the United States, or were driven by a single study.64,65

Among samples with PFAS exposures at multiple times in preg-
nancy in our study, concentrations were strongly correlated across
trimesters (Table S4). Glomerular filtration rate (GFR) has been
suggested as a confounder of trimester-specific associations of
PFASwith birth outcomes; however, a recent systematic analysis of
the PFAS literature by the NAS found that the available evidence ofT
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PFAS on GFR were insufficient to determine a relationship.63
Further, the Project Viva cohort included in this study previously
found that GFR did not confound the relationship between PFAS
and birth outcomes.30 GFR levels were not available for other
cohorts; however, if GFR were to confound the PFAS-birthweight
relationship, it would be expected to do so later in pregnancy. Our
trimester-specific analysis did not support this potential confound-
ing or reverse causality. Finally, effects on birthweight have been
found in multiple animal species including mouse, rat, zebrafish,
and fruit flies.66

Our study found an association between PFOS and preterm
birth consistent with prior work,30,67,68 including a recent review
and meta-analysis showing a linear positive association between
PFOS and risk of preterm birth32; however, our results were not
as precisely estimated. Given that preterm birth is a multifactorial
outcome and PFAS may contribute to a small risk increase, large
studies (and/or highly exposed participants) are needed to find
such effects.

Our findings are consistent with a previous study in which asso-
ciations between PFAS and birthweight-for-gestational-age z-scores
were stronger among females,27 but they contradict another study
that found stronger associations among males.69 Biological mecha-
nisms by which PFAS may affect birth outcomes are largely
unknown, but research has investigated potential pathways including
endocrine disruption,70 systemic inflammation,71 metabolic dysfunc-
tion,72 placental function,73 and epigenetic changes.74

Despite our large sample size, uncertainties in our estimates
remain. Our study was limited to participants with nonmissing
data on key variables. In addition, some PFAS were not able to
be examined because levels were below the LOD. As legacy
PFAS are phased out and replaced with alternative PFAS, our
studies must be updated with changing levels to be examined in
relation to multifactorial health outcomes. Methodologically,
there is no agreed-upon approach to evaluate the effects of PFAS,
or other chemicals, as a mixture. Our Bayesian Weighted Sums
approach assumes linearity of the summed effect of PFAS, which
appeared defensible based on the results exploring effects of
PFAS by exposure quartiles (Table S8, Figure S6).

Future studies can address some of these limitations. A large
study such as ECHO may be able to better investigate mediation
effects of prepregnancy BMI and maternal conditions, such as
gestational diabetes and hypertensive disorders in pregnancy, that
may be on the causal pathway between PFAS and fetal growth
once more of those data become available. Similarly, future stud-
ies can examine interaction with other environmental chemicals.
Furthermore, birthweight is a single measurement in time, and
further studies are needed to investigate the potential impact of
PFAS on infant and child health outcomes.

In conclusion,we found thatmaternal PFASconcentrations during
pregnancy are associated with lower birthweight-for-gestational-age
z-scores and suggestive of an association with preterm birth.
These associations are consistent with previous studies showing
decreased birth weight/fetal growth. Associations were stronger
among females, although fewer previous studies were able to
confirm these findings. We did not find these associations to dif-
fer between mothers with high vs. low perceived stress. Given
the persistence of PFAS in the environment and human bodies,
ubiquitous exposure, and the transfer of maternal PFAS in utero
and during breastfeeding, disruption of fetal growth remains a
health threat in offspring and needs to be addressed as part of
efforts evaluating interventions and prevention.
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