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Abstract 

Recent years have seen both a fresh knowledge of cancer and impressive advancements in its treatment. However, 
the clinical treatment paradigm of cancer is still difficult to implement in the twenty-first century due to the rise in its 
prevalence. Radiotherapy (RT) is a crucial component of cancer treatment that is helpful for almost all cancer types. 
The accuracy of RT dosage delivery is increasing as a result of the quick development of computer and imaging 
technology. The use of image-guided radiation (IGRT) has improved cancer outcomes and decreased toxicity. Online 
adaptive radiotherapy will be made possible by magnetic resonance imaging-guided radiotherapy (MRgRT) using 
a magnetic resonance linear accelerator (MR-Linac), which will enhance the visibility of malignancies. This review’s 
objectives are to examine the benefits of MR-Linac as a treatment approach from the perspective of various cancer 
patients’ prognoses and to suggest prospective development areas for additional study.
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Introduction
One crucial method of treating tumors is radiotherapy 
(RT). Statistics show that radiotherapy is required for 
more than 50% of cancer patients [1]. Therefore, the 
advancement of radiation will be crucial in enhancing 
patients’ prognoses and minimizing adverse effects. Both 
volumetric modulated arc therapy (VMAT) and inten-
sity-modulated radiotherapy (IMRT) are currently used 
in conventional radiotherapy techniques that achieve uni-
form radiation dose distribution. However, image guid-
ance is required to achieve correct dose transmission and 
increase treatment accuracy [2]. Cone beam computed 

tomography (CBCT) is the most common image-guided 
radiation (IGRT) technique used in radiotherapy [3]. 
However, there are some drawbacks to CBCT imaging, 
including excessive scattering, poor image quality, ioniz-
ing radiation, and more [4, 5].

Magnetic resonance imaging (MRI) has the benefits 
of high soft tissue contrast [6–8] and no ionizing radia-
tion compared to computerized tomography (CT) and 
CBCT, which can improve the accuracy of tumor target 
delineation and obtain biological information and func-
tional data of tumor and normal tissues. MRI has devel-
oped into a crucial tool for identifying clinical targets 
and organs in danger. MR and linear accelerator have 
currently been coupled to create a magnetic resonance 
accelerator (MR-Linac) [8], a novel piece of radiation 
equipment that is directed by MR [9, 10]. In addition to 
offering superior target pictures than CBCT, MR can 
raise the target dose and improve the robustness [11] of 
adaptive radiotherapy to obtain a high tumor cure rate. 
According to several studies [12, 13], MR-guided radia-
tion (MRgRT) is possible, effective, and considerably 
improves patient prognosis when used to treat tumors 
[14]. This article mostly reviews the development of 
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MRgRT research in the management of various cancer 
types.

Clinical practice
The most common cancers that are currently being 
treated with MR-Linac are listed in Table 1, together with 
information about the treatment, patient count, median 
follow-up period, overall survival rate, and advanced tox-
icity. There is a discussion of the thorough descriptions of 
several malignancies.

Head and neck tumors
As opposed to the chest, abdominal, and pelvic organs, 
which are more susceptible to motion errors, MR images 
have advantages in identifying brain tissue, muscle, and 
nerve. As a result, the target area can be defined using 
the MRI’s superior soft tissue contrast [15, 16]. In a com-
parison of patients with retropharyngeal lymph node 
(RPLN) metastases, MRI was found to be more sensi-
tive to detect lymph nodes than CT (74% vs. 65%) [17]. 
MRI was useful for evaluating dura mater, intracranial, 
and orbital invasion in nasopharyngeal cancer, and it 
considerably improved the detection rate of intracranial 
and pterygopalatine fossa invasion compared to CT [18, 
19]. Particularly crucial for radiation for head and neck 
malignancies, MRI has a high rate of detection for dis-
tant metastases associated with poor prognosis. The size, 
shape, and number of targets [20], which correlate to the 
tumor stage and have a direct impact on the effectiveness 
of radiation, are the primary factors that determine how 
malignant a tumor is. By repeating MRI, the use of MR-
Linac during radiotherapy can more clearly demonstrate 

the tumor response and target changes and enhance the 
therapeutic impact [21]. The frequency of persistent dys-
phagia in oropharyngeal cancer (OPC) patients treated 
with MRgRT fell by 11% compared to intensity-mod-
ulated radiation, and the average dosage to the parotid 
gland was reduced by 3.3 Gy [22], effectively protecting 
OARs and minimizing adverse effects. According to Ding 
et  al., 50% of OPC patients who had MRgRT experi-
enced complete remission [23, 24]. Another study found 
that patients with nasopharyngeal cancer (NPC) treated 
with MRgRT had a 2-year disease-free survival rate of 
93.6%, compared to intensity-modulated radiotherapy’s 
87.5%. Acute toxicity did not differ significantly [25]. As 
a result, it is possible to apply MRgRT to head and neck 
malignancies [26, 27], which can not only successfully 
control the growth of tumors but also lessen the side 
effects that patients experience [28, 29]. The intra- and 
inter-fractional movement of head and neck tumors are, 
however, rather limited when compared to other lesions 
[30], therefore a proper benefit ratio analysis is crucial to 
gauge the effectiveness of the current and future treat-
ments for MR-Linac in head and neck tumors.

Chest tumors
Radiotherapy for chest malignancies is primarily influ-
enced by respiratory exercise. Respiratory gating, abdom-
inal control, and employing a CT simulator (4D-CT) to 
monitor the overall amplitude of the goal movement are 
the main techniques for controlling respiratory move-
ment in different fractions [31]. The inability of 4D-CT 
to show intra- and inter-fraction anatomical changes of 
the target in real-time during treatment makes target 

Table 1  Main types of cancer treated with MR-Linac

F fractions

Tumor sites Author Time period Reference Treatment No. of patients Median 
follow-up 
(months)

Overall 
survival

Toxicity 
rates (≥ 3) 
(%)

Nasopharyngeal 
carcinoma

Fu S et al 4/2018–1/2020 [25] 70.4 Gy/32F 130 25 100% (2 years) 1.5

Lung tumor Finazzi T et al 2016–2018 [41] 60 Gy/8F 
(n = 28), 
55 Gy/5F 
(n = 23), 
54 Gy/3F (n = 2), 
60 Gy/12F 
(n = 1)

54 21.7 88.0% (1 years) 8

Breast cancer Nachbar M et al 1/2019 [50] 40.05 Gy/15F 1 3 – 0

Pancreatic 
cancer

Chuong MD 
et al

2018–2021 [62] 50 Gy/5F 62 18.6 40% (2 years) 4.8

Cholangiocarci-
noma

Luterstein E et al 5/2015–8/2017 [69] 40 Gy/5F 17 15.8 46.1% (2 years) 5.9

Prostatic cancer Bruynzeel AME 
et al

10/2019–1/2020 [78] 35 Gy/5F 25 – – 0
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definition more challenging. The error in the treatment 
process is increased for low-fractionated or ultra-low-
fractionated stereotactic radiation (Stereotactic Body 
Radiation Therapy, SBRT), hence accuracy is a require-
ment for radiotherapy [32, 33]. The target coverage 
and OARs dose limitation can be greatly enhanced by 
utilizing the real-time gating technology of MR-Linac 
and SBRT, which allows for a more precise evaluation 
of intra- and inter-step changes in anatomy and func-
tion [34]. The accuracy of radiation can be consider-
ably improved by MRgRT, which is more useful for chest 
cancers that are most impacted by respiratory move-
ment. It can both shrink PTV and enhance dose [35]. 
The PTV delineated with gating and online adaptation 
on MR-Linac was found in a study of early peripheral 
non-small cell lung cancer (NSCLC) lesions to be 53.7% 
smaller than that based on 4DCT [36], demonstrating 
that MRgRT can not only lower the dose to normal tissue 
but also improve the accuracy of target coverage when 
compared to CT-guided radiotherapy. In 22 patients with 
lower lobe lung cancer, a retrospective analysis revealed 
that MRgRT was superior to VMAT in terms of target 
dosage uniformity and OARs dose limiting [37]. Chest 
malignancies respond well to MRgRT in terms of toxic-
ity and side effect reduction, and the radiation dose to 
OARs is also greatly reduced [38]. The likelihood of toxic 
events will be considerably raised when radiotherapy 
for a chest tumor is administered because the bronchus, 
esophagus, heart, and main blood vessels, as well as the 
brachial plexus, spinal cord, phrenic nerve, and recurrent 
laryngeal nerve, are nearby structures [39]. According 
to Machtay et  al.’s meta-analysis report, the biologically 
effective dose (BED) has a 4% survival advantage with 
each increment of 1 Gy [40], Other research revealed that 
the MR-Linac treatment for lung cancer had 12-month 
local control rates of 95.6%, overall survival rates of 
88.0%, and disease-free survival rates of 63.6%. There 
were no toxicities rated 4–5 found [41]. It is indicated 
that MR-Linac is a potent tool for treating locally pro-
gressed diseases that can safely raise the effective dose.

When used in breast cancer radiotherapy, MR-Linac is 
superior to a traditional accelerator in terms of display-
ing breast tissue, targets, and postoperative changes [42, 
43], clearly displaying carcinoma in situ, reducing radia-
tion exposure, quickly adjusting the daily schedule, and 
offering patients individualized treatment plans [44]. 
However, the Lorentz force of the magnetic field will 
deflect the secondary electrons, alter the distribution of 
the tissue dose, increase the dose in the skin and chest 
wall of the radiation field, cause adverse reactions like 
skin radioactive ulcers, and lower the quality of life for 
patients [45–47]. Studies have demonstrated that MRgRT 
is more efficient at irradiating breast cancer before 

surgery because it uses the signal difference between the 
tumor and the surrounding glandular tissue to more pre-
cisely define the target [48, 49]. A 1.5 T Elekta MR-Linac 
investigation of adjuvant partial breast irradiation (PBI) 
revealed only grade 1 toxicity in the breast [50]. Another 
study contrasted the MR-Linac and VMAT’s differing 
dosimetric properties. The outcomes demonstrated that 
MR was more successful in defending the ipsilateral 
breast and chest wall [51]. There are, however, not many 
reports on the use of MR accelerators in radiotherapy for 
breast cancer. The effect of the electron cyclotron effect 
in breast cancer radiation should be taken into considera-
tion by MR accelerators due to the influence of magnetic 
fields on electrons, and steps should be taken to avoid 
extra side effects.

Abdominal tumors
Pancreatic cancer is difficult to detect early and has a low 
survival rate [52]. Although surgical resection is a crucial 
component of early pancreatic cancer treatment, more 
than 80% of patients already have advanced pancreatic 
cancer at the time of their diagnosis [53]. One of the treat-
ments for pancreatic cancer that cannot be operated on is 
neoadjuvant radiation. But the pancreas inhabits a very 
intricate anatomical setting, and its vital organs move 
considerably when breathing. The common bile duct 
and the duodenum are both close to the head of the pan-
creas. The jejunum, stomach, kidney, spleen, and major 
blood arteries are close to the pancreas’ neck, body, and 
tail. Patients’ intestines and stomachs may react poorly to 
high-dose radiation [54]. To prevent severe toxic effects, 
the acceptable dose of the surrounding tissues and organs 
should be taken into account when planning and admin-
istering radiation. The MR-Linac is appropriate for dose 
enhancement of tumor targets because of its high pic-
ture quality and online adaptive planning capability [55], 
especially for tumors with significant abdominal and pel-
vic mobility [56]. The adaptive plan may be noticed in the 
MR imaging of the MR-Linac, which not only optimizes 
the target coverage area but also successfully lowers the 
dose of OARs [57, 58]. In a study using MR-Linac, the 
toxicity was found to be significantly reduced in patients 
with locally advanced pancreatic cancer. Over the median 
follow-up of 13  months, only one incident of grade 1 
toxicity and no advanced toxicity were recorded, which 
was a significant reduction from the usual criterion [59]. 
Since other retrospective investigations have produced 
comparable findings, using adaptive radiation can reduce 
adverse effects and enhance patient prognosis [60, 61]. 
Chuong MD et al. discovered that the 2-year local con-
trol rate and 2-year OS rate of patients getting high-
dose treatment in MRgRT were, respectively, 87.8% and 
45.5% via a median follow-up of 17 months for pancreatic 
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cancer patients who received radiotherapy. The 2-year 
overall survival rate was statistically higher compared to 
other cohorts [62]. MRgRT is utilized to modify the radi-
ation plan in real-time for more precise dose distribution 
to lower toxicity, increase efficacy, and lower the likeli-
hood of recurrence in the treatment of pancreatic cancer.

The similarity of the electron density in the abdominal 
cavity makes it more challenging to use CBCT for radia-
tion planning because of the movement of the diaphragm 
and changes in organ volume during the course of liver 
cancer treatment [63, 64]. MRI has excellent soft tissue 
resolution [65], which makes it useful for locating tumor 
targets and delivering more precise and effective care. 
The target dose might be impacted by the mobility of 
OARs in the abdominal cavity. Through real-time view-
ing, MRgRT can improve the flaws in present abdomi-
nal radiation [66, 67]. MR imaging meets the standards 
for dose transfer precision and provides a better display 
effect on 77% of abdominal tumor targets and OARs than 
normal CBCT imaging [68]. A patient with acute grade 
3 gastrointestinal toxicity was detected in the trial of 17 
patients with unresectable locally advanced cholangio-
carcinoma treated with MRgRT, which was much better 
than the 10–26% grade 3 gastrointestinal toxicity shown 
by meta-analysis [69, 70]. MRgRT has dosimetric advan-
tages in target coverage and OAR protection for primary 
or metastatic liver lesions [71, 72]. All things considered, 
MRgRT is safe and practicable for patients with abdomi-
nal malignancies.

Genitourinary system tumors
External radiation therapy for prostate cancer com-
monly causes dysuria, frequent urination, diarrhea, and 
rectal urgency among its acute adverse effects. Urinary 
stricture, cystitis, proctitis, and sexual dysfunction are 
long-term adverse effects [73, 74]. Therefore, the key to 
raising patients’ quality of life following radiotherapy is 
to lessen the toxicity and side effects of prostate cancer. 
When treating prostate cancer, MR-Linac can adjust to 
structural changes as the disease progresses and reduce 
movement-related errors following intestine and blad-
der filling [75, 76]. According to a study, prior to actual 
radiation treatment, the pelvic organs would shift as a 
result of the course of image acquisition and planning 
adjustments, changing the PTV. As a result, it is required 
to modify the radiotherapy plan to take into account 
the altered anatomical structure. Therefore, an essential 
method of ensuring the use of an exact dose to decrease 
toxicity during radiation is the motion monitoring mech-
anism of the MR-Linac [77]. The incidence of grade 2 or 
higher acute genitourinary toxicity was found to be 23.8% 
in a prospective study [78] of 101 patients with moder-
ate or high risk localized prostate cancer treated with 

MRgRT. This is significantly less frequent than the like-
lihood of toxic reactions when using conventional accel-
erators [79, 80]. The findings from a different study were 
comparable. Early prostate cancer patients experienced 
5% grade 2 gastrointestinal toxicity, but no grade 3 tox-
icity [81]. When compared to CT-guided radiotherapy, 
Ma TM et  al. discovered that MR-guided radiotherapy 
for prostate cancer dramatically reduced acute genitouri-
nary toxicity and improved urine and intestinal function 
[82]. These findings support the notion that MRgRT can 
be used to treat prostate cancer more effectively clinically 
[83]. We can lower the dose of OARs and further reduce 
side effects for patients by responding to the changes in 
intestinal and bladder position by using the changes of 
target and OARs observed on daily MRI and the online 
adaptive therapy offered by MR-Linac [84]. Overall, 
radiation advantages can be increased by safe, efficient 
treatment with a low hazardous burden. Daily adaptive 
Mr-guided SBRT is a viable and accurate treatment strat-
egy for prostate cancer [85].

MRI offers superior soft tissue contrast to conven-
tional imaging techniques [86] and has taken over as 
the primary way of staging cervical cancer [87]. The use 
of MRI in extracorporeal radiation (EBRT) for gyneco-
logical malignancies can prevent missing beams in the 
target area [88]. Numerous experimental findings have 
demonstrated that IGRT can enhance patient progno-
sis, increase survival rate, and decrease therapeutic tox-
icity [89–92]. In order to create a breakthrough in the 
treatment of gynecological malignant tumors, MRgRT 
combines the benefits of both approaches. The goal of 
MRgRT is to reduce therapeutic toxicity and optimize 
treatment by performing online adaptive radiotherapy 
based on the anatomical structure of the day, shrinking 
the scope of GTV, monitoring anatomical changes during 
treatment, and increasing the target dosage. Compared 
to CBCT-guided radiation, the daily online adaptive plan 
employing MR-Linac can increase the target dose [93]. 
In their investigation, Cree An et al. discovered that the 
combined therapy had a reported incidence of adverse 
events (grade 3) as low as 3.7% and a 5-year survival rate 
of 78.5% for 1322 patients with endometrial cancer [94]. 
As a result, MRgRT is secure and successful in treating 
gynecological cancers.

Prospect
The clinical use of MRI in conjunction with radiother-
apy is discussed in this study for the treatment of can-
cer. Radiation oncology is using MR-Linac as one of its 
key instruments. The use of MRgRT, which combines 
the imaging benefits of MRI with RT and has significant 
potential for treating tumors, advances the field of radia-
tion. Large amounts of imaging data acquired during 
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MRgRT can be used to extract a variety of data sources, 
which can then be coupled with machine learning and 
artificial intelligence to incorporate new MRI features 
[95, 96]. The development of radiation dosage individu-
alization and re-irradiation can be accelerated by the use 
of MRI in the future [97]. It can also be used to meas-
ure patients’ risk classification and prognosis, enhance 
patient prognosis, lower complications, and boost over-
all survival. It can qualitatively enhance the therapeutic 
impact on cancer patients [98].

Given the clinical and technical issues raised, MRgRT’s 
future research should concentrate on advancing imaging 
technologies and bolstering the high-dimensional quan-
tization of pictures. Biomarkers of pictures are utilized 
to direct the intensification or de-enhancement of radia-
tion, systemic, and surgical techniques in regions like the 
abdomen and pelvis. To get better results, it would be 
ideal if this study used a multicenter approach to general 
data analysis. Clinical investigations should be carried 
out following pre-treatment evaluation in order to make 
sure that the edge of the target that should be included 
in the conventional PTV will not be missed, even though 
MRgRT can increase treatment accuracy and decrease 
PTV. Since PET/MRI imaging is still in its infancy, it is 
possible to examine the potential synergy of the two in 
the use of MRgRT technology by using better imaging 
techniques. Radiomics can be used to enhance the clini-
cal outcome of patients receiving MRgRT by enhancing 
image guidance methods and utilizing functional imag-
ing biomarkers [99].

Artificial intelligence (AI) advancement has altered 
our lives in recent years. With the help of AI, radiomics 
has benefited from significant advancements, includ-
ing the ability to automatically draw regions of inter-
est (ROI), the introduction of neural networks (NN) 
that can directly infer image features from ROI, and 
the advancement of machine learning (ML) and deep 
learning (DL) algorithms [100] to streamline predic-
tive models to inform treatment decisions [101, 102]. 
The widespread use of AI in RT has enormous prom-
ise and can significantly advance numerous processes, 
from diagnosis to treatment [103, 104]. The effective-
ness of the MR-Linac online adaptive program is ham-
pered by the lengthy treatment times, hence there is an 
urgent need for manual process automation to reduce 
the treatment times [105, 106]. The field of RT is under-
going revolutionary changes as a result of the develop-
ment of AI. To reach the goal of a reduced treatment 
time, it offers a DL-based system that can produce 
electronic density (ED) maps one by one voxel [107, 
108]. In order to increase the precision of dose distri-
bution, AI is expected to work in collaboration with 
MR-Linac to make a significant contribution to the 

study of dosage augmentation. Nearly 90% of the cases 
in the study of 203 individuals with nasopharyngeal 
cancer utilizing the DL approach didn’t require expert 
manual re-editing [109]. Chen et al. processed the mag-
netic resonance images of 20 patients with abdominal 
tumors using a type of automated deep learning-based 
abdominal multi-organ segmentation (ALAMO). The 
outcomes demonstrate that most organs can be seg-
mented accurately, and the therapy takes around 18  s, 
which is completely compatible with online operation 
[110]. All things considered, the incorporation of AI 
may considerably raise the level of MRgRT treatment 
over the course of the next few years and be crucial 
to the development of customized cancer treatment. 
However, the proper use of AI in radiation oncology 
is also a significant problem, and all participants must 
learn new procedures while receiving irradiation under 
the supervision of experts [111, 112].

As of right now, this technology is still in its infancy, 
the full potential of AI has not yet been realized, the 
clinical data are not yet mature, and there are still certain 
issues, including the standard of MRgRT workflow, that 
need to be further resolved by academics. In the future, 
we’ll investigate the true potential of online adaptive radi-
otherapy, gradually advance the clinical use of MR-Linac, 
demonstrate the viability of MR-based radiotherapy, and 
identify the patients who will profit from it the most.

Conclusion
In conclusion, MRgRT has played a significant role in 
the evolution of radiotherapy. The clinical outcomes 
of MR-guided radiotherapy will be closely monitored 
throughout the coming years, which will advance the 
new knowledge of tumor therapy.
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