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Abstract

The metaverse integrates physical and virtual realities, enabling humans and their avatars to 

interact in an environment supported by technologies such as high-speed internet, virtual reality, 

augmented reality, mixed and extended reality, blockchain, digital twins and artificial intelligence 

(AI), all enriched by effectively unlimited data. The metaverse recently emerged as social media 

and entertainment platforms, but extension to healthcare could have a profound impact on clinical 

practice and human health. As a group of academic, industrial, clinical and regulatory researchers, 

we identify unique opportunities for metaverse approaches in the healthcare domain. A metaverse 

of ‘medical technology and AI’ (MeTAI) can facilitate the development, prototyping, evaluation, 

regulation, translation and refinement of AI-based medical practice, especially medical imaging-

guided diagnosis and therapy. Here, we present metaverse use cases, including virtual comparative 

scanning, raw data sharing, augmented regulatory science and metaversed medical intervention. 

We discuss relevant issues on the ecosystem of the MeTAI metaverse including privacy, security 

and disparity. We also identify specific action items for coordinated efforts to build the MeTAI 

metaverse for improved healthcare quality, accessibility, cost-effectiveness and patient satisfaction.

The metaverse has been a major focus of interest from both industry and academia in recent 

years, as extensively documented in scientific review articles such as refs.1,2, spanning the 
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years 1991 to 2022. The term ‘metaverse’ was originally coined in the 1992 science fiction 

novel Snow Crash3. According to the Oxford English Dictionary, which first listed the term 

in 2008, a metaverse is “[a] computer-generated environment within which users can interact 

with one another and their surroundings, a virtual world”4. Although the definition is easy 

to understand, it does not capture the richness of this evolving concept. The metaverse 

is often misrepresented as merely an extension of computer gaming and social media, or 

sometimes is dismissed as an overhyped rebranding of virtual reality (VR) and augmented 

reality (AR)5. To realize its widely promised benefits, the metaverse needs to integrate 

the full capabilities of supporting technologies (high-speed internet involving 5G/6G, VR, 

AR, mixed reality (MR), extended reality (XR), digital twins, haptics, holography, secure 

computation and artificial intelligence (AI)) on a massive social and economic scale, 

enabling people to interact among themselves and with avatars, AI agents and algorithms, 

as well as medical devices and facilities. As a parallel experiential dimension, the metaverse 

is intended to enhance the physical world, and our actions and decisions in it, rather than 

replacing it. Here, we envision a ‘medical technology and AI’ (MeTAI) ecosystem, rendered 

in Fig. 1, including key elements such as virtual comparative scanning with digital twins 

of scanners on individualized patient avatars, ubiquitous and secure medical data access 

including raw tomographic data sharing, an enhanced regulatory framework to accommodate 

this transformation, and ‘metaversed’ medical intervention for unprecedented accessibility 

and superior performance. We believe that now is the time to develop the MeTAI metaverse, 

well beyond current medical VR, AR and telemedicine6–9.

Our proposed MeTAI metaverse has a number of precursors. In 1983, Vannier, a co-author 

of this Perspective, was among the first to generate three-dimensional (3D) computed 

tomography (CT) visualizations of the human skull for surgical planning10. ‘Medicine 

Meets Virtual Reality’ conferences were held from 1996 to 201611. Among the most 

influential participants was R. Satava, who led the effort to improve combat casualty 

care at the Telemedicine and Advanced Technology Research Center of the US Army12. 

Other conferences include the Medical Imaging and Augmented Reality series13. In 2012, 

a virtual environment was developed on the Second Life platform for the advanced X-ray 

CT facility at Virginia Tech14 to facilitate immersive training of nano-CT users (Fig. 2a). 

(This was one of many non-entertainment-oriented primitive virtual worlds on Second Life 

and similar platforms15.) In 2010, a Laparoscopic Adjustable Gastric Banding Simulator was 

prototyped at Rensselaer Polytechnic Institute in collaboration with Brigham and Women’s 

Hospital (Fig. 2b), synergistic to the Advanced Multimodality Image-Guided Operating suite 

(AMIGO)16.

Although the above and other precursors contributed value, the MeTAI metaverse should 

ideally facilitate improving and integrating isolated individual systems into a unified 

healthcare infrastructure. As the technologies enabling the metaverse advance, novel 

aspects of the metaverse will emerge to redefine biomedicine and society. We envision 

the benefits of a biomedical metaverse as analogous to those provided by computer-aided-

design software in aerospace system engineering, where digital avatars of aircraft and 

spacecraft are rigorously tested and improved before fabrication in the physical world17. 

These technologies offer the ability to interrogate, compare and improve complex systems 
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efficiently and effectively to consider a broader spectrum of alterations, unhindered by the 

requirement to build and test each option before making a design choice.

The next section envisions important metaverse opportunities that are either novel or expand 

the scope of current instantiations. We then consider some of the important technical, social 

and ethical issues associated with the development of a healthcare metaverse, and how these 

may be addressed. As the metaverse is still in its infancy, it is hoped that our opinions will 

stimulate imaginations, and spur actions towards an optimal realization of the metaverse of 

this type.

MeTAI applications

Given the revolutionary role that the metaverse can play in the healthcare domain, four 

important applications, with an emphasis on medical imaging, are identified that exemplify 

MeTAI: virtual comparative scanning, raw data sharing, augmented regulatory science and 

metaversed medical intervention. Although there are precursors to these applications, the 

novel aspects of these are exciting in terms of scope, scale, depth, and mechanisms of 

integration.

Virtual comparative scanning

The continued development of advanced computer models of the human body and the 

machines that image them18 has culminated in the digital twin computing paradigm, 

which integrates data from physical and virtual objects19. To leverage these innovations 

further for medical imaging, we need to build vendor-specific virtual tomographic scanners, 

individualized computational avatars with anatomical properties resolvable by the scanners, 

and AI-enabled graphical tools to insert, remove and modify diseases in these avatars20. If 

a patient has a heart problem and is referred for a CT scan, potential pathologies can be 

simulated within the patient’s avatar and scanned using each virtual CT scanner type. The 

images can be virtually reconstructed using competing deep reconstruction methods21 and 

analysed using AI diagnostic tools22. In addition, physical avatars23 can be 3D-printed and 

scanned to emulate the real scans and improve the associated models and analyses. One 

advantage of MeTAI-deployed XR over isolated XR is the availability of a workflow based 

on large-scale collaboration so that various brands of hardware and software can be fairly 

compared and refined, with vivid and timely interactions between patients and professionals.

The above scenario will bring clear clinical benefits. First, every patient can be matched 

to the best-performing imaging resource and most appropriate imaging protocol. With 

virtual scanning capabilities, comprehensive performance assessments will strongly drive 

improvements in imaging and AI technologies. The resultant hybrid datasets, residing in 

the cloud, will support much larger virtual and mixed clinical trials to evaluate imaging 

devices and algorithms in terms of accuracy, robustness, uncertainty and generalizability. 

Furthermore, a patient avatar allows a ‘fantastic voyage’ to view any pathology identified 

by human or AI radiologists, as demonstrated in ref.24. This can help physicians explain 

medical issues and interventional options, which in turn helps reduce the anxiety of patients 

and improves their outcomes. As an analogy, it is unlikely that individuals would invest 

as much in cosmetics to enhance their superficial appearance without the availability of 
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mirrors. The healthcare metaverse has the capability to visually inform an individual of 

the current and future health conditions—an internal mirror to focus attention inwards25. 

MeTAI coupled with activity trackers could engage people into living healthier lifestyles. 

Eventually, patients facing multiple options will launch parallel worlds to assess their 

outcomes. These projections should elevate the level of trust in a prescribed treatment and 

facilitate compliance.

Raw data sharing

The main source of medical imaging data is medical tomographic scanners, which generate 

a large amount of multi-dimensional measurements that are reconstructed into images using 

sophisticated algorithms. Lack of research access to tomographic raw data such as CT 

sinograms has been a long-standing problem for researchers and becomes more detrimental 

in the era of AI-based medical imaging. The need for raw data was recognized decades 

ago, because not all information in raw data can be preserved after tomographic image 

reconstruction, and the raw data are needed for algorithmic optimization. Furthermore, 

efforts were recently made by several groups on the so-called end-to-end deep learning 

workflow from raw data to diagnostic findings, which is also referred to as ‘rawdiomics’26, 

demanding access to raw data.

Magnetic resonance imaging vendors democratized raw data in the International Society 

for Magnetic Resonance in Medicine (ISMRM) format in 201627. Vendor-agnostic public 

software for image reconstruction is available28 and promoted by industry29. However, these 

and other data-sharing and open-source efforts have not yet gained much traction in many 

cases. For example, projection-domain CT datasets remain generally unavailable outside CT 

manufacturing companies, except for their academic collaborators. There are two types of 

CT raw dataset: the ‘raw’ detector measurements that require corrections, and the corrected 

datasets that can be directly used for image reconstruction. The situation is even more 

complex with photon-counting spectral CT scanners currently under development, which 

suffer from tremendous inhomogeneity and nonlinearity across detector elements. From an 

industrial perspective, the main challenge to sharing measurement data is the unwillingness 

to expose proprietary information. For example, each CT vendor has developed its own 

approach for system calibration and data correction. Without these proprietary steps, raw 

data cannot be reconstructed into images. One solution for CT raw data sharing is for 

vendors to publish the post-correction data. To do this, a standard should be defined for 

what corrections are to be performed on raw data30. One limitation for this solution is 

that after the corrections some of the original information may be lost. In some studies, 

researchers would like to turn on or off certain correction steps. To resolve these issues, 

academic–industrial partnerships are needed to define data sharing and conversion protocols.

In MeTAI, the virtual twins of all physical CT scanner models can scan digital patients 

to produce virtual ‘raw’ data. AI analyses can be then performed in the virtual data and 

image domains. Without disclosing vendor-specific sensitive information, such realistically 

simulated data should be easier to share than the original data from a real machine. 

Currently, the application of image-domain modelling and simulation methods, such as 

HeartFlow31, has provided valuable diagnostic information. Synergistically, deep learning-
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based rawdiomics in the raw data domain may provide further information. For example, 

coronary artery stenoses may be better quantified in the sinogram domain, because motion 

artefacts could contaminate reconstructed images due to high and irregular heart rates from 

atrial fibrillation32. In this regard, MeTAI can be a great facilitator to enable deep learning-

based analyses on real and realistically simulated raw data directly or in dual domains (data 

and images).

Augmented regulatory science

AI, especially deep learning, has greatly advanced medical imaging, testing the limits of 

regulatory science applied in the pre-market review of such AI-enabled medical devices. It 

has become widely recognized that deep neural networks often have generalizability issues 

and are vulnerable to adversarial attacks. These challenges must be addressed to optimize 

benefits and safety. Last year, the Food and Drug Administration (FDA) published an action 

plan for furthering the oversight of AI-based software as medical devices (SaMDs)33. An 

action underlined in the plan is “regulatory science methods related to algorithm bias and 

robustness”. Diverse, high-quality and cost-effective big datasets are needed to optimize 

the overall workflow from data acquisition, through image reconstruction and analysis, to 

diagnostic finding. In practice, it is costly to obtain large clinical datasets. In this context, the 

aforementioned virtual and emulated scans will be invaluable.

As a proof of concept of the value of digital twin technology, an FDA team simulated the 

Virtual Imaging Clinical Trial for Regulatory Evaluation (VICTRE) study, in which 2,986 

in silico patients were created to evaluate the performance of digital breast tomosynthesis 

(DBT) as a replacement of full-field digital mammography for breast cancer screening34. 

The entire imaging chain was simulated and validated, including virtual patients with and 

without breast cancer, the 2D and 3D X-ray mammographic image acquisition processes 

(shown in Fig. 3), and image interpretation. The increased lesion detectability of DBT in the 

VICTRE trial was consistent with the results from a comparative trial using human patients 

and radiologists that was submitted to the FDA in a pre-market application for approval 

of a DBT device34. The study demonstrated that simulation tools may be viable sources 

of evidence for regulatory evaluation of imaging devices. Another example is the Living 

Heart Project led by Dassault Systemes, in collaboration with the FDA and other leading 

research groups35 to examine the use of heart simulation as a source of digital evidence for 

cardiovascular device approval.

To increase confidence in the use of computational modelling in regulatory submissions, the 

FDA issued a draft guidance for ‘Assessing the Credibility of Computational Modeling and 

Simulation in Medical Device Submissions’36. Also, the FDA launched the ‘Medical Device 

Development Tools’ (MDDT) programme. Non-clinical assessment models such as animal 

or computational models and datasets can be qualified as MDDTs. Medical device vendors 

and developers can use qualified tools within the specified context to support the pre-market 

review of their products, without further validation evidence. Along this direction, MeTAI 

can generate datasets more comprehensively from patients, their avatars and phantoms (such 

as what was mentioned in the first application), integrate these datasets seamlessly, share 

the information broadly and enable dynamic evaluation of AI-based SaMDs. Furthermore, 
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MeTAI can synergize datasets for multi-tasking and systems biomedicine. The use of 

computational methods in an unprecedented hybrid environment such as MeTAI might be 

more informative, more robust and less burdensome than a traditional clinical trial, either 

real or virtual, to evaluate the performance of medical devices.

Metaversed medical intervention

A most profound impact of MeTAI will be on how practitioners and patients use medical 

data and apply tools to understand diseases, select therapies and perform interventions. 

For example, such a virtual world allows us to plan complex cases in surgery and other 

therapies. When practiced virtually, the trial-and-error method can be repeated to rehearse 

procedures. This is synergistic with current surgical systems, such as da Vinci (https://

www.davincisurgery.com), which allow a surgeon to work either from an adjacent room 

or across the globe via high-speed internet. In MeTAI, surgeons can attempt different 

approaches (for example, plastic surgery) on avatars. Radiotherapy is another example. 

Treatment plans are already routinely optimized via patient-specific computer simulations, 

a practice that MeTAI would expand to all medical interventions. Biological responses to 

radiation delivery could also be simulated before and during a course of therapy to optimize 

the treatment response based on the patient’s genetic information and previous patients’ 

response data. Currently, computational limitations and uncertainties in biological models 

make this approach impractical for routine treatment planning. In the future, harm to organs 

at risk during radiation therapy could be substantially reduced by leveraging repositories 

of simulators and clinical knowledge that are rendered immediately useful through their 

incorporation in the metaverse.

None of these potential benefits comes for free, and busy practitioners could be stressed 

or distracted by MeTAI in the early phases of adoption37. As MeTAI is developed and 

deployed, a need to train and certify practitioners will emerge. A surgeon or interventional 

radiologist might initially find it awkward to use unfamiliar tools or robots. This is 

analogous to the danger that is posed by an aircraft that incorporates new types of 

automation, which could lead an untrained pilot to catastrophe. Surgical robotic simulators 

and curricula were developed to aid the introduction of new systems38. Some medical 

schools are introducing cadaver-less anatomy education initiatives using VR and AR 

platforms39. Also, human–computer interaction in the metaverse has stimulated computer 

scientists to assemble a Metaverse Knowledge Center (https://metaverse.acm.org/). Some 

companies are making progress in this area. For example, OSSO VR is developing means 

to learn new surgical procedures using VR (https://www.ossovr.com/). Naturally, MeTAI 

is compatible with collaborative and continuous learning and multi-institutional projects, 

and convenient for team training and co-development through metaversed interactions 

comparable to those in the real world.

Of special interest is embodied AI40, in which AI agents learn not only from data but 

also through interactions. Avatars in MeTAI can be upgraded to embodied AI agents, 

facilitating the bidirectional value alignment so that avatars may have preferences of 

radiation dosage, medical cost and the side-effect profiles of various therapeutic options41,42. 
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Such avatar personalities also enable metaverse-based surveys, policymaking and interest 

group formation.

MeTAI ecosystem

In the same way that social media became ubiquitous, as the above and other use cases 

are realized, MeTAI can become a transformative backbone of healthcare. Importantly, 

the MeTAI ecosystem is differentiated from other medical imaging simulation pipelines 

by the incomparable number and diverse types of datasets, its massive social scale, and 

its emphasis on user immersion, interaction and collaboration. As such, the metaverse 

requires an architecture and infrastructure that harmoniously integrates patients, physicians, 

researchers, algorithms, devices and data. Given the revolutionary nature of MeTAI, there 

are clearly foreseeable challenges that call for our prompt actions to chart an optimal course 

for development of the MeTAI metaverse.

Privacy and security

Privacy and confidentiality are of critical importance for MeTAI. Some medical data 

acquired in the metaverse must be protected by existing or future privacy legislation, such 

as the Health Insurance Portability and Accountability Act (HIPAA) in the United States. 

Secure computation techniques, including blockchains, are important tools in a zero-trust 

environment43,44. A well-designed MeTAI system with secure computing can utilize raw 

data without disclosing sensitive or private information. With federated learning as an initial 

step45–47, many further opportunities can be explored to preserve the integrity of patients’ 

data and utilize this information to advance clinical practice and healthcare. We advocate 

that the patients take control of their own data and avatar(s), supported by the blockchain 

technology, so that their own digital healthcare properties can be shared as they wish.

There would, at least initially, be heterogeneous and hierarchical dataset structures and 

accessibility options. For example, many de-identified datasets are already or will eventually 

be publicly available, such as datasets used in various deep imaging challenges. However, 

some high-value or sensitive datasets may be shared only within a consortium, a healthcare 

system or a multi-institutional project, between which some paywalls may be feasible and 

beneficial. New sharing models are already emerging. For example, companies such as 

Segmed currently sell anonymized patient data to AI developers (https://www.segmed.ai). 

Our proposed MeTAI should facilitate evolution of different paywalls, such as subscription, 

pay per use, and limited trial. Non-fungible tokens are also a viable option48. Just as for 

software and services, digital properties can be priced using algorithms49.

Cybersecurity is a well-established field50 that continues evolving to address a constant 

barrage of new challenges. Social metaverses have already encountered harassment issues. 

In MeTAI, harassment can manifest as adversarial attacks on algorithms, modifications 

to avatars and conventional human misbehaviours. These are inherent in all metaverses. 

Methods and rules are being developed to address these problems. For example, Meta 

established a four-foot personal zone to deter VR groping51. For adversarial defence in 

medical imaging, recently we published two papers to stabilize image reconstruction neural 

networks by synergizing analytic modelling, compressed sensing, iterative refinement and 
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deep learning (ACID)52,53. Also, it was reported that the trustworthiness of AI model 

explainability could be vulnerable to subtle perturbations in the input54. MeTAI is subject 

to the same safety concerns as any other software or hardware products. However, we are 

optimistic that all these issues can be gradually addressed. The promise is that the quality of 

the evidence derived from MeTAI will rapidly improve, and the resultant digital evidence, 

once validated, will facilitate clinical translation of various innovations.

Management and investment

When metaverse-based interactions and interventions using XR and other tools are 

available, our envisioned metaverse-based applications and new scenarios will bring 

additional responsibilities and operational overheads. Eventually, healthcare savings will 

be realized, and these, combined with the monetization of some MeTAI data through 

paywalls (as discussed above), will compensate for the augmented workflow. As AI 

becomes more advanced, the need for human review of MeTAI-derived images and 

analyses may be reduced or obviated, and the information provided by MeTAI will become 

essential to guide healthcare. Distributed, cloud and edge-computing systems are well 

suited to accommodating diverse and massive datasets. The current Medical Imaging and 

Data Resource Center (MIDRC) effort (https://www.midrc.org/), which was funded with 

over US$20million to build a COVID-19 dataset of tens of thousands of cases, is an 

excellent example to follow for other diseases and imaging modalities. Making use of the 

infrastructure, data structures and AI tools already developed by the MIDRC, it is estimated 

that the cost for building a future dataset of comparable size would be far less, roughly in 

the range of US$3 million to US$6 million—not as large a sum of money as one might 

think. Legislation relating to data sharing and metaverse development will be needed. As an 

example, stipulations that a dataset or an algorithm cannot be deleted within a well-defined 

term may be required. The blockchain technology, often regarded as a highly desirable 

component of the metaverse, is still under active development. Its issues with computational 

efficiency will be addressed55. In a blockchain platform, data provenance can be established 

by developers and interested users via proof of work, proof of stake or proof of history56. 

It is yet to be seen how this ecosystem will evolve. However, we do not consider the 

blockchain technology as indispensable to MeTAI.

The adoption of MeTAI will require investment in software, hardware and infrastructure. 

One question is how MeTAI development will be funded. It is envisioned that the 

development and adoption of MeTAI will proceed in phases, each of which could be 

financed differently. First, in the exploratory phase, many technologies to enable MeTAI 

will need to be developed by companies and universities. At this phase, funding would 

mainly come as grants from government and industry. Once the feasibility is established, 

MeTAI enters an early adoption phase, where applications of MeTAI that offer incremental 

improvements with evident benefits could be adopted to enable cost savings. Due to 

its immediate value and potential financial savings, established companies and venture 

capitalists will have strong incentives to fund MeTAI development. In the next phase, more 

MeTAI technologies would be adopted to have high potential payoff, but possibly with risks. 

Such efforts are likely to be funded through venture capital. Technology innovators and 

early adopters will develop, test and demonstrate benefits to justify and attract investment57. 
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The assessment methods developed for other situations58,59 can be adapted to determine the 

value of MeTAI.

Disparity reduction

The aforementioned application of identifying the optimal scanner might not be relevant 

to patients in regions where there is only one machine available. However, the imaging 

data acquisition, reconstruction and post-processing parameters can still be optimized for 

the patient on the available scanner. Academia and industry should rise to this disparity 

challenge by working towards an equitable healthcare. Cost-effective scanners, such as 

low-cost CT, low-field magnetic resonance imaging and tablet-based ultrasound systems, are 

under active development60, along with additional software for scanner fleet management. 

Medical imaging companies will continue addressing device accessibility, as demonstrated 

by the specific design and marketing of super-value products in countries such as India 

over the past 15 years61. The relevant research and development require iterations, and 

MeTAI provides an ideal environment with prompt feedback paths. As MeTAI is likely to 

boost the performance of low-cost scanners further, the resultant disparity reduction can be 

expected. Currently, scanners are still physically operated by technologists. MeTAI provides 

a venue to share high-quality resources and expertise. In MeTAI, AI models and experts 

can supervise the use of imagers anywhere. On the therapy side, the efforts improving 

global health over the past decades have dramatically enhanced software and hardware in 

low- and middle-income countries, although the need for providing human expertise to best 

utilize these remains challenging. MeTAI will potentially help overcome these barriers. It 

is predicted that knowledge obtained from MeTAI will make the evolution of devices and 

algorithms a faster, cheaper and better process. Our hope is that disparities in healthcare will 

be eventually eliminated in the future, with MeTAI as part of the driving force.

Conclusion

The metaverse is the confluence of rapid and profound technical and sociological 

developments. It contains avatars that represent us and duplicate many objects around 

us such as medical imaging equipment, and has the potential to encompass many 

disciplines62–64. In addition to entertainment and social networking, metaverse applications 

include professional training, K-12 (from kindergarten to 12 years of basic education) and 

college education, supply chains, real estate marketing, and MeTAI as envisioned here. The 

38-fold growth in telemedicine during the COVID-19 pandemic65 suggests how quickly 

elements of a metaverse can gain traction. This indication is strongly supported by the latest 

perspectives on medical applications of the metaverse66,67. We are confident that MeTAI, the 

healthcare metaverse, will eventually become a reality. It is high time to initiate collective 

efforts to pioneer such a metaverse. These efforts include but are not limited to harvesting 

low-hanging fruits such as advanced XR-based healthcare experience, demonstrating the 

feasibility of new metaverse applications such as virtual comparative scanning and raw data 

sharing, developing MeTAI to be cost-effective, user friendly, high performance, reliable, 

safe, equitable and ethical, while moderating ‘metaverse hype’ with expectations that are 

both measured and measurable.
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Fig. 1 |. MeTAI ecosystem with four major healthcare applications.
a, Virtual comparative scanning (to find the best imaging technology in a specific situation). 

b, Raw data sharing (to allow controlled open access to tomographic raw data). c, 

Augmented regulatory science (to extend virtual clinical trials in terms of scope and 

duration). d, ‘Metaversed’ medical intervention (to perform medical intervention aided by 

metaverse). In an exemplary implementation of the MeTAI ecosystem, before a patient 

undergoes a real CT scan, his/her scans are first simulated on various virtual machines to 

find the best imaging result (a). On the basis of this knowledge, a real scan is performed. 

Then, the metaverse images are transferred to the patient’s medical care team, and upon the 

patient’s agreement and under secure computation protocols, the images and tomographic 

raw data can be made available to researchers (b). All these real and simulated images and 

data as well as other medically relevant information can be integrated in the metaverse and 

utilized in augmented clinical trials (c). Finally, if it is clinically indicated, the patient will 

undergo a remote robotic surgery aided by the metaverse and followed up in the metaverse 

for rehabilitation (d). Each of the four applications is further described in the main text.
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Fig. 2 |. Two precursors to the metaverse.
a, The Second Life Aided Training and Education (SLATE) system at Virginia Tech. b, 

The Laparoscopic Adjustable Gastric Banding Simulator at Rensselaer Polytechnic Institute. 

Panel a reproduced with permission from ref.14, IOS Press. Panel b courtesy of Dr Suvranu 

De with FAMU-FSU College of Engineering.
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Fig. 3 |. Representative results from the FDA’s VICTRE study.
a–c, A virtual breast model (a), and the corresponding mammography (b) and DBT (c) 

images simulated with a digital twin of a clinical X-ray imaging device.

Wang et al. Page 15

Nat Mach Intell. Author manuscript; available in PMC 2023 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	MeTAI applications
	Virtual comparative scanning
	Raw data sharing
	Augmented regulatory science
	Metaversed medical intervention

	MeTAI ecosystem
	Privacy and security
	Management and investment
	Disparity reduction

	Conclusion
	References
	Fig. 1 |
	Fig. 2 |
	Fig. 3 |

