
Received: March 28, 2022. Revised: May 9, 2022. Accepted: May 10, 2022
© The Author(s) 2022. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Cerebral Cortex, 2023, 33, 2573–2592

https://doi.org/10.1093/cercor/bhac227
Advance access publication date 6 June 2022

Original Article

Young adults who improve performance during
dual-task walking show more flexible reallocation
of cognitive resources: a mobile brain-body imaging
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Introduction: In young adults, pairing a cognitive task with walking can have different effects on gait and cognitive task performance.
In some cases, performance clearly declines whereas in others compensatory mechanisms maintain performance. This study
investigates the preliminary finding of behavioral improvement in Go/NoGo response inhibition task performance during walking
compared with sitting, which was observed at the piloting stage.
Materials and Methods: Mobile brain/body imaging (MoBI) was used to record electroencephalographic (EEG) activity, 3-dimensional
(3D) gait kinematics and behavioral responses in the cognitive task, during sitting or walking on a treadmill.
Results: In a cohort of 26 young adults, 14 participants improved in measures of cognitive task performance while walking compared
with sitting. These participants exhibited walking-related EEG amplitude reductions over frontal scalp regions during key stages
of inhibitory control (conflict monitoring, control implementation, and pre-motor stages), accompanied by reduced stride-to-stride
variability and faster responses to stimuli compared with those who did not improve. In contrast, 12 participants who did not improve
exhibited no EEG amplitude differences across physical condition.
Discussion: The neural activity changes associated with performance improvement during dual tasking hold promise as cognitive
flexibility markers that can potentially help assess cognitive decline in aging and neurodegeneration.
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Introduction
Performance of executive functions requires coordina-
tion across distributed neural networks for both routine
and more complex cognitive processes (Zelazo et al.
1997; Alvarez and Emory 2006; Collette et al. 2006;
Barbey et al. 2012). Yet, there are limits to the number
and complexity of tasks that can be undertaken at the
same time (Marois and Ivanoff 2005). As task demands
increase, behavioral performance may begin to deterio-
rate, indicating a shift towards more effortful cognitive
strategies (Andersson et al. 1998; Klingberg 1998). When
engaging in 2 tasks simultaneously (termed dual-task
performance), this change in cognitive strategy may
manifest as concurrent activation of multiple brain
regions (D’Esposito et al. 1995; Schubert and Szameitat
2003; Collette et al. 2005). Performing cognitive and motor
tasks simultaneously sets the stage for competition
for available neural resources leading to performance
declines in both modalities. This is referred to as

cognitive-motor interference (CMI; Abernethy 1988;
Plummer et al. 2013; Leone et al. 2017; McIsaac et al.
2018). Pairing cognitive tasks with walking can elicit
dual-task decline in gait performance and task-related
behavior, as well as altered patterns of neural activation
in older neurotypical adults (Dubost et al. 2006; Hollman
et al. 2007; Priest et al. 2008; Herman et al. 2010;
Holtzer et al. 2011; Mirelman et al. 2012; Beurskens
et al. 2014; Malcolm et al. 2015; Malcolm et al. 2021;
Protzak et al. 2021; Protzak and Gramann 2021) and
in various patient populations (Cocchini et al. 2004;
Lord et al. 2010; Doi et al. 2013; Stegemoller et al. 2014;
Maidan et al. 2016; De Sanctis et al. 2020). However, in
young adults, the manifestation of decrements in gait
and cognitive task performance is not as clear, and as
such, the neural activity changes detected in this group
reflect interaction but not necessarily interference at
a neural resource level. Some studies have reported
evidence of no deterioration of response accuracy or
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increases in gait variability during dual-task (DT) walking
in young adults (Beauchet et al. 2005; Hollman et al.
2007; De Sanctis et al. 2014; Mirelman et al. 2014; Larson
et al. 2015; Beurskens et al. 2016; Shaw et al. 2018;
Reiser et al. 2020; Protzak et al. 2021; Richardson et al.
2022). These studies suggest that young healthy adults
adapt their gait and task-related behavior during DT
walking and, consistent with this conclusion, report
slower reaction times to stimuli (Beurskens et al. 2016;
Shaw et al. 2018; Reiser et al. 2020; Protzak et al. 2021),
changes in stride length (De Sanctis et al. 2014; Mirelman
et al. 2014; Richardson et al. 2022), and reduced gait
speed and velocity (Beauchet et al. 2005; Hollman et al.
2007; Mirelman et al. 2014). These findings indicate that
young adults adopt a more deliberate approach to both
task responses and walking in order to maintain task
accuracy, and as such, point to strategy changes that will
necessarily involve neural reconfigurations. On the other
hand, there are studies that have reported reductions in
response accuracy (Plummer et al. 2015; Ladouce et al.
2019) and increases in gait variability (Dubost et al. 2008;
Priest et al. 2008; Pizzamiglio et al. 2017; Hoang et al. 2020)
during DT walking in young adults. This discrepancy
suggests that young adults can adopt different strategies
when dual tasking, which might be driven by differences
in the activation of compensatory mechanisms in
response to the increased task demands. Examining the
changes in dual-task-related neural activity can provide
a deeper insight into the reallocation of neural resources
underlying these different cognitive strategies and their
associated compensatory adaptations.

Response inhibition, namely withholding a response
to a thought, emotion, or stimulus, is one of the core
executive functions and a vital component of everyday
living. One often-used approach to studying response
inhibition is the Go/NoGo task using a set of visual
images as stimuli. The task requires pressing a response
button after each novel image is presented (“Go” trial),
but withholding the button press in response to the
second presentation of a repeated image (“NoGo” trial;
Menon et al. 2001; Roche et al. 2004; Rentrop et al. 2008;
Smith et al. 2008; Steele et al. 2013; De Sanctis et al. 2014;
Malcolm et al. 2015; De Sanctis et al. 2020; Francisco
et al. 2020; Wakim et al. 2021). During successful NoGo
trials during which the participant properly withholds a
response, 2 stimulus-locked event-related potential (ERP)
components are typically elicited: the N2 and the P3.
The N2 is a negative voltage deflection that peaks ∼200–
350 ms (Bekker et al. 2005; Kato et al. 2009) post-stimulus-
onset and has a frontocentral scalp distribution. This
topographical distribution reflects its generation by the
anterior cingulate cortex (ACC)—a brain region, which
is key for monitoring inhibitory conflict (van Veen and
Carter 2002a, 2002b; Bekker et al. 2005; Dias et al. 2006).
The P3 is a positive voltage deflection that peaks ∼350–
600-ms post-stimulus-onset and has a broad distri-
bution, extending from centroparietal to frontal areas
(De Sanctis et al. 2014; Guo et al. 2018). During the P3

processing stage, both motor and cognitive components
of inhibition are executed (Smith et al. 2008). In parallel
to the motor inhibitory component of button press can-
cellation, higher inhibitory control is putatively exerted
by lateral prefrontal areas, specifically the dorsolateral
prefrontal cortex (DLPFC), to reduce inhibitory conflict
in ensuing trials and hence improve cognitive task
performance (Carter and van Veen 2007; Mansouri et al.
2009). During unsuccessful NoGo inhibition trials, an ERP
component known as the response-locked event-related
negativity (ERN) is elicited. The frontocentral ERN peaks
∼50 ms after the erroneous motor response (Falkenstein
et al. 2000; O’Connell et al. 2009a, 2009b), and reflects
conflict monitoring in error trials and the source has
been localized to the ACC (Mathalon et al. 2003; Carter
and van Veen 2007; O’Connell et al. 2007).

The effects of walking on the N2 and P3 typically
elicited during successful performance of the Go/NoGo
response inhibition task has been investigated by previ-
ous studies (De Sanctis et al. 2014; Malcolm et al. 2015).
De Sanctis et al. (2014) observed amplitude reductions of
both the N2 and the P3 ERPs during successful inhibitions
while walking, as well as an anteriorization of the P3
distribution suggesting recruitment of frontal cortical
circuits. Furthermore, they found no significant differ-
ences between sitting and walking in terms of response
accuracy and response speed, and no significant changes
in stride-to-stride variability when comparing single-task
(ST) and DT walking in young adults. In the absence
of significant dual-task decrements, these findings were
interpreted as a shift to a less automatic (N2 amplitude
reduction) and more effortful (P3 frontalization) cogni-
tive strategy during walking.

Combining walking with Go–NoGo response inhibition
has been shown to elicit pronounced declines in response
accuracy in older healthy adults (Malcolm et al. 2015)
as well as in adults with neurological disorders such as
multiple sclerosis (De Sanctis et al. 2020) and Parkinson’s
disease (Sosnik et al. 2022). In a recent study, St George
et al. (2022) found that the interference between gait
and concurrent cognitive task performance was higher
when the cognitive task required inhibition. Specifically,
pairing an inhibition task with walking was linked to
enhanced walking speed reduction in young adults, as
well as pronounced response accuracy reduction in older
adults.

Other studies focused on the correlation between neu-
ral activity and several behavioral measures in the con-
text of a Go/NoGo response inhibition task. Falkenstein
et al. (1999) found that young healthy individuals who
had a high rate of unsuccessful inhibitions exhibited a
smaller and later N2 compared to those with a low rate
of unsuccessful inhibitions. Roche et al. (2005) showed
that highly absentminded, young healthy individuals had
larger and earlier N2 and P3 components in successful
inhibition trials and larger error-related components in
unsuccessful inhibition trials compared with less absent-
minded individuals of the same age group. Karamacoska
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et al. (2018) reported smaller P3 amplitudes in young
healthy adults with increased response time (RT) vari-
ability, who were also found to commit more errors,
compared to peers with low RT variability. In each case,
different criteria were used to split the cohort into 2
subgroups, depending on the behavioral variable of inter-
est: Certain studies performed a median split (Hester
et al. 2004; Roche et al. 2005; Steele et al. 2013; Kara-
macoska et al. 2018), others leveraged the bimodality
of the distribution of the behavioral variable and split
the cohort based on the 2 modes (Falkenstein et al.
1999) and studies investigating impulsivity applied the
splitting methodology proposed by Pailing and colleagues
(Pailing et al. 2002; Ruchsow et al. 2008). In the con-
text of collecting pilot data for the present study, data
from 5 young healthy adults were collected. Analysis
of these preliminary data showed that 3 of the pilot
participants improved response accuracy during walking
compared with sitting. Improvement in cognitive task
performance with the addition of walking appeared to
conflict with the CMI hypothesis. Response accuracy was
measured using the d’ score (sensitivity index; Green and
Swets 1966; Macmillan and Creelman 2005), since it is a
bias-free measure that takes into account both the Go
and the NoGo behavior (greater d’ score signifies better
response accuracy). These preliminary data were then
sequestered (see Supplemental Material). The working
hypothesis that young individuals who improve perfor-
mance during walking would differ in their ability to
flexibly allocate neural resources for accomplishing both
the motoric and cognitive tasks, and might also differ
in the consistency of their gait compared to those who
do not improve while walking, was tested in this report.
Participants were divided into 2 subgroups based on the
walking-minus-sitting d’ difference: (i) participants who
exhibited a positive walking-minus-sitting d’ difference
(cognitive task performance improved during walking
compared with sitting—IMPs) and (ii) participants who
exhibited a walking-minus-sitting d’ difference, which
was either negative or not significantly different from
zero (cognitive task performance did not improve during
walking compared with sitting—nIMPs).

The current study examined successful NoGo inhi-
bition trials during the N2 and P3 processing stages
and unsuccessful NoGo inhibition trials during the
ERN stage for walking-related amplitude changes in
neurophysiological activity in the entire young adult
cohort, and subsequently in the IMP and nIMP subgroups.
Gait variability and response speed were additionally
examined for dual-task changes in the same groups,
to test whether improvement in response accuracy
(IMPs) would be accompanied by trade-offs reflected in
other physiological domains; for example whether IMPs
would be more accurate but slower in their responses,
or they would walk more variably. Identifying potential
differences in the way IMPs alter their neural activity in
response to dual-task load compared to nIMPs can shed

light on the underlying neurocognitive mechanisms that
drive their behavioral improvement.

Materials and methods
Participants
Twenty-six-young adults (18–30 years old; age = 22.35 ±
3.27 years; 13 female and 13 male; 23 right-handed
and 3 left-handed) participated in the study. All par-
ticipants provided written informed consent, reported
no diagnosed neurological conditions, no recent head
injuries, and normal or corrected-to-normal vision. The
Institutional Review Board of the University of Rochester
approved the experimental procedures (STUDY00001952).
All procedures were compliant with the principles laid
out in the Declaration of Helsinki for the responsible
conduct of research. Participants were paid $15/h for
time spent in the lab.

Experimental design
A Go/NoGo response inhibition cognitive task was
employed. During each experimental block, images
were presented in the central visual field for 67 ms
with a fixed stimulus-onset-asynchrony of 1,017 ms.
On average, images subtended 20◦ horizontally by 16◦

vertically. The task was coded using the Presentation
software (version 20.1, Neurobehavioral Systems, Albany,
CA, United States). Participants were instructed to press
the button of a wireless game controller using their
dominant hand as fast and accurately as possible if the
presented image was different from the preceding image
(“Go” trial). They were instructed to withhold pressing
the button if the presented image was the same as
the preceding image (“NoGo” trial; Fig. 1). Participants
performed blocks of 240 trials in which 209 (87%) were
Go trials and 31 (13%) were NoGo trials. NoGo trials were
randomly distributed within each block.

Four behavioral conditions of the cognitive task were
defined: (i) correct rejections, defined as the NoGo trials
on which participants correctly withheld their response,
(ii) false alarms, defined as the NoGo trials on which
participants incorrectly pressed the response button and
(iii) hits, defined as the Go trials on which participants
correctly pressed the response button, and (iv)misses,
defined as the Go trials on which participants failed to
press the response button. The behavioral conditions of
interest were the ones that required response inhibition
(regardless of the behavioral outcome), namely correct
rejections and false alarms.

Experimental blocks were performed while the par-
ticipants were either sitting or walking on a treadmill
(Tuff Tread, Conroe, TX, United States), at a distance
of 2.25-m approximately from the projection screen
on which the images were projected (Barco F35 AS3D,
1,920 × 1,080 pxl). A safety harness was worn while
walking to guard against falls (https://youtu.be/HS-5Qk5
tvDE). An experimental session consisted of 16 blocks:
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Fig. 1. Illustration of the Go/NoGo response inhibition experimental
design. Participants are instructed to respond on Go trials and withhold
response on NoGo trials.

1 training block at the beginning, 7 sitting blocks, 7
walking blocks, and 1 ST walking block (walking on
the treadmill without a cognitive task). The order of
sitting and walking blocks was pseudorandomized; no
>3 consecutive walking blocks occurred to prevent
exhausting the participants. Participants were allowed
to take short breaks between the blocks, each of which
lasted 4 min. Most participants took at least 1 break
during the experiment. If a break was requested, typically
it did not last longer than 10 min. Participants were
asked to select a treadmill speed corresponding to brisk
walking for them, starting from the recommended speed
of 4.8 km/h and increasing or decreasing as necessary.
The vast majority of participants (22 out of 26) selected
a speed of 4.8 km/h, whereas 4 participants selected
lower speeds (3 participants walked at 4.2 km/h and 1
participant at 3.9 km/h). In general, the walking speeds
selected corresponded to brisk walking (Piercy et al.
2018).

The pictures used for stimuli were drawn from the
International Affective Picture System (IAPS) database
(Bradley and Lang 2017). The IAPS database contains pic-
tures of varied emotional valence and semantic content.
Positive, neutral, and negative pictures were all used,
however analyzing the emotional valence or semantic
content of stimuli is beyond the scope of this study.

Electroencephalographic (EEG) data were recorded
using a BioSemi Active Two System (BioSemi Inc., Amster-
dam, the Netherlands) and a 64-electrode configuration
following the International 10–20 system. Neural activity
was digitized at 2,048 Hz. Full-body motion capture was
recorded using a 16 camera OptiTrack system (Prime 41
cameras), and Motive software (OptiTrack, NaturalPoint,
Inc., Corvallis, OR, United States) in a ∼37-m2 space.
Cameras recorded 41 markers on standard anatomical
landmarks along the torso, the head and both arms,

hands, legs, and feet at 360 frames per second. Stimulus
triggers from Presentation (Neurobehavioral Systems
Inc., Berkeley, CA, United States), behavioral responses
from the game controller button, motion tracking
data, and EEG data were time-synchronized using Lab
Streaming Layer (LSL) software (Swartz Center for
Computational Neuroscience, University of California,
San Diego, CA, United States; available at: https://github.
com/sccn/labstreaminglayer). Motion capture data were
recorded using custom software written to rebroadcast
the data from the Motive software to the LSL lab recorder.
EEG data were recorded from available LSL streaming
plugins for the BioSemi system. Behavioral event markers
were recorded using the built-in LSL functionality in
the Presentation software. The long-term test–retest
reliability of the mobile brain-body imaging (MoBI)
approach has been recently detailed (Malcolm et al.
2019). All behavioral, EEG and motion kinematic data
processing and basic analyses were performed using
custom MATLAB scripts (MathWorks Inc., Natick, MA,
United States) and/or functions from EEGLAB (Delorme
and Makeig 2004). Custom code from this study will be
made available on GitHub (https://github.com/CNL-R)
upon publication.

Cognitive task performance processing
& analysis
The exact timing of each button press relative to
stimulus-onset, the participant’s RTs, were recorded
using the Response Manager functionality of Presenta-
tion and stored with precision of 1/10 ms. The Response
Manager was set to accept responses only after 183-
ms post-stimulus-onset within each experimental trial.
Any responses prior to that were considered delayed
responses to the previous trial and were ignored.
This RT threshold was selected to filter out as many
delayed-response trials as possible, without rejecting
any valid trials for which the responses were merely fast
(Hulsdunker et al. 2019).

Two behavioral conditions of the cognitive task were
interrogated in this study, (i) correct rejections and (ii)
false alarms. For both correct rejections and false alarms,
only trials that were preceded by hits were kept, to ensure
that the inhibitory component was present.

Two behavioral measures were calculated: (i) the d’
score (sensitivity index) and (ii) mean RT during (cor-
rect) Go trials, namely hits. D’ is a standardized score
and it is computed as the difference between the Gaus-
sian standard scores for the false alarm rate (percentage
of unsuccessful NoGo trials) and the hit rate (HR; per-
centage of successful Go trials; Green and Swets 1966;
Macmillan and Creelman 2005). D’ can provide a more
meaningful measure of inhibitory performance than cor-
rect rejection rate (CRR; percentage of successful NoGo
trials), since it removes the bias introduced by adopt-
ing different response strategies. For example, if accu-
racy was assessed using CRRs alone, participants who
tended to adopt conservative response strategies, thereby

https://github.com/sccn/labstreaminglayer
https://github.com/sccn/labstreaminglayer
https://github.com/CNL-R


Eleni Patelaki et al. | 2577

exhibiting high CRRs but also high miss rates (percentage
of unsuccessful Go trials), would be classified as achiev-
ing good inhibitory performance. However, this classifi-
cation would not be accurate, since these participants
would have shifted their response criterion to circumvent
part of the inhibitory conflict by “sacrificing” perfor-
mance in Go trials, and thus they would not actually
engage their inhibitory cognitive resources to a degree
sufficient for them to be classified as performing well in
the inhibition task.

Gait kinematics processing & analysis
Heel markers on each foot were used to track gait kine-
matics. The 3 dimensions (3D) of movement were defined
as follows: X is the dimension of lateral movement (right-
and-left relative to the motion of the treadmill belt), Y
is the dimension of vertical movement (up-and-down
relative to the motion of the treadmill belt), and Z is the
dimension of fore-aft movement (parallel to the motion
of the treadmill belt). The heel marker motion in 3D is
described by the 3 time series of the marker position over
time in the X, Y, and Z dimension, respectively. Gait cycle
was defined as the time interval between 2 consecutive
heel strikes of the same foot. Heel strikes were identified
as the local maxima of the Z position waveform over
time. To ensure that no “phantom” heel strikes were
captured, only peaks with a prominence >0.1 m were
kept (“findpeaks” function in MATLAB, “minimum peak
prominence” parameter was set to 0.1 m).

Stride-to-stride variability was quantified as the mean
Euclidean distance between consecutive 3D gait cycle
trajectories, using the dynamic time warping algorithm
(DTW; Sakoe and Chiba 1978; Berndt and Clifford 1994).
DTW is an algorithm for measuring the similarity
between time series, and its efficacy in measuring 3D
gait trajectory similarity is well-established (Boulgouris
et al. 2004; Engelhard et al. 2016; Switonski et al. 2019). A
more complete description of DTW can be found in the
Supplementary Material.

Gait cycle trajectories with a kurtosis that exceeded
5 standard deviations of the mean were rejected as
outliers. Also, before DTW computation, gait cycle
trajectories were resampled to 100 samples. Since
DTW essentially calculates the sum of the Euclidean
distances between corresponding points of 2 interrogated
trajectories, ensuring that all trajectories are resampled
to the same length helps avoid bias in the algorithm
computations.

The actual measure that was used to quantify each
participant’s stride-to-stride variability is the mean
across DTW distances occurring from all stride-to-stride
comparisons. Right-foot and left-foot stride-to-stride
DTW distances were pooled to calculate the mean DTW
distance per participant.

EEG activity processing & analysis
EEG signals were first filtered using a zero-phase
Chebyshev Type II filter (“filtfilt” function in MATLAB,

passband ripple “Apass”= 1 dB, and stopband attenuation
“Astop”= 65 dB) (Mazurek et al. 2020), and subsequently
down-sampled from 2,048 to 512 Hz. Next, “bad”
electrodes were detected based on kurtosis, probability,
and spectrum of the recorded data, setting the threshold
to 5 standard deviations of the mean, as well as
covariance, with the threshold set to ±3 standard
deviations of the mean (Mazurek et al. 2020). These
“bad” electrodes were removed and interpolated based on
neighboring electrodes, using spherical interpolation. All
the electrodes were re-referenced offline to a common
average reference.

Winkler et al. (2015) have shown that 1–2 Hz highpass
filtered EEG data yield the optimal independent com-
ponent analysis (ICA) decomposition results in terms of
signal-to-noise ratio. In order to both achieve a high-
quality ICA decomposition and retain as much low-
frequency (< 1 Hz) neural activity as possible, after
running Infomax ICA (“runica” function in EEGLAB, the
number of retained principal components matched the
rank of the EEG data) on 1–45 Hz bandpass-filtered data
and obtaining the decomposition matrices (weight and
sphere matrices), these matrices were transferred and
applied to 45-Hz lowpass-filtered data. No highpass
filtering was applied, since there is evidence indicating
that the best way to avoid introducing artifacts into the
ERP waveforms is either to use conservative high-pass
filters (≤ 0.1 Hz) or to avoid high-pass filtering altogether
(Tanner et al. 2015). ICs were labeled using the ICLabel
algorithm (Pion-Tonachini et al. 2019). ICs whose sum
of probabilities for the 5 artifactual IC classes (“Muscle,”
“Eye,” “Heart,” “Line Noise,” and “Channel Noise”) was
higher than 50% were labeled as artifactual and were
thus rejected. The remaining ICs were back-projected to
the sensor space.

Subsequently, the resulting neural activity was split
into temporal epochs. For the correct rejection trials,
epochs were locked to the stimulus-onset, beginning
200 ms before and extending until 800 ms after stimulus-
onset of the trial. Correct rejection epochs were baseline-
corrected relative to the pre-stimulus-onset interval
from −100 to 0 ms. For the false alarm trials, epochs
were locked to the response onset, beginning 500 ms
before and extending until 500 ms after response onset
of the trial. False alarm epochs were baselined-corrected
relative to the pre-response interval from −400 to
−300 ms. Epochs with a maximum voltage greater than
±150 μV or that exceeded 5 standard deviations of the
mean in terms of kurtosis and probability were excluded
from further analysis. Epochs that deviated from the
mean by ±50 dB in the 0–2 Hz frequency window (eye
movement detection) and by +25 or −100 dB in the
20–40 Hz frequency window (muscle activity detection)
were rejected as well. For the sitting condition, on
average 21% of the trials were rejected based on these
criteria, whereas for the walking condition the respective
percentage was 39%. ERPs were measured by averaging
epochs for (2 motor task) × (2 cognitive task) conditions,
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namely 4 experimental conditions in total. The motor
task conditions were (i) sitting and (ii) walking; and the
cognitive task conditions were (i) correct rejections and
(ii) response-locked false alarms.

Statistical analyses
Cognitive task performance

In the entire young adult cohort, d’ score differences
between sitting and walking were assessed using a paired
t-test (the walking-minus-sitting d’ score difference was
subjected to a Shapiro–Wilk normality test (BenSaïda
2014) and the null hypothesis was not rejected). In addi-
tion, mean RTs during Go trials were tested for dif-
ferences between sitting and walking using a paired t-
test (the walking-minus-sitting mean RT difference was
subjected to a Shapiro–Wilk normality test and the null
hypothesis was not rejected).

Participants were subsequently classified on the basis
of whether their d’ score during walking was significantly
higher than when they were seated (their cognitive
task performance improved (IMP) while walking), or
whether they did not improve (nIMP) performance
while walking (either because their d’ scores declined
or were unchanged). The classification criterion was
based on absolute walking-related changes (walking-
minus-sitting) in d’ score, since relative changes (walking-
minus-sitting divided by sitting), which is the most
widely used alternative approach, have been shown to
distort the magnitude of the measured effects, have less
statistical power and follow highly skewed distributions
thus violating the normality assumption (Vickers 2001;
Berry and Ayers 2006; Hochman and McCormick 2011).
Significant walking-minus-sitting d’ score difference was
defined as the difference that lay outside of the 95%
confidence interval of the normal distribution that had
a mean value of zero and a standard deviation equal to
that of the (d’walking–d’sitting) distribution of the entire
cohort.

In the context of the split-group analysis, IMPs and
nIMPs were compared in terms of average d’ score, i.e.
d′walking+d′sitting

2 , using an independent samples t-test (the
average d’ scores of IMPs and nIMPs were subjected to
a Shapiro–Wilk normality test and the null hypothesis
was not rejected for either group). In addition, mean RTs
during Go trials were subjected to a 2 (Group: IMPs and
nIMPs) × 2 (Motor Load: sitting and walking) analysis of
variance (ANOVA) to test for response speed differences
between IMPs and nIMPs, as well as for differences in
how response speed was modulated by the addition of
walking in these groups.

Gait kinematics

In the entire young adult cohort, mean DTW distance
differences between ST walking and DT walking were
assessed using a Wilcoxon signed rank test (the DT-
minus-ST mean DTW distance difference was subjected
to a Shapiro–Wilk normality test and the null hypothesis
was rejected). One participant did not have ST walking

recordings and was therefore excluded from this analy-
sis.

In the context of the split-group analysis, mean DTW
distance was subjected to a 2 (Group: IMPs and nIMPs) × 2
(cognitive load: ST walking and DT walking) ANOVA to
test for stride-to-stride variability differences between
IMPs and nIMPs, as well as for differences in how the
addition of cognitive task performance modulated stride-
to-stride variability in these groups. The participant who
was excluded from the group-level analysis belonged to
the IMP subgroup.

EEG activity

The EEG statistical analyses were performed using
the FieldTrip toolbox (Oostenveld et al. 2011; http://
fieldtriptoolbox.org). To compare ERP waveforms between
sitting and walking, paired t-tests and cluster-based
permutation tests were used (Pernet et al. 2015). As stated
in the Introduction, significant differences between
sitting and walking were hypothesized to be found
in N2 ([200, 350] ms (Bekker et al. 2005; Kato et al.
2009)) and P3 ([350, 600] ms (De Sanctis et al. 2014;
Guo et al. 2018)) latencies and topographies during
correct rejection trials, and in ERN ([−50, 100] ms
(Falkenstein et al. 2000; O’Connell et al. 2009b)) latencies
and topographies during response-locked false alarm
trials. Despite having formulated specific hypotheses
about the latency and the topographies of the effects,
the full set of 64 electrodes and all the epoch timepoints
were included in the analyses, to explore potential effects
that might have been overlooked by previous studies. By
using this approach, both the hypothesis-driven and the
exploratory component of this study are satisfied at once.

First, the mean walking-minus-sitting difference ERP
waveform was obtained for each electrode and for each
subject by subtracting the within-subject mean sitting
ERP waveform from the corresponding mean walking
ERP waveform. Next, 1-sample t-tests were performed
on the mean difference ERP waveforms coming from
all subjects, at each electrode and timepoint. To cor-
rect for multiple comparisons, cluster-based permuta-
tion tests were performed, using the Monte Carlo method
(5,000 permutations, significance level of the permuta-
tion tests a = 0.05, probabilities corrected for performing
2-sided tests) and the weighted cluster mass statistic
(Hayasaka and Nichols 2004; cluster significance level
a = 0.05, parametric cluster threshold). This procedure
was performed separately for each one of the interro-
gated behavioral conditions of the cognitive task (cor-
rect rejection, response-locked false alarm), first for the
entire cohort and, subsequently, for the IMP and nIMP
subgroups. The results of the point-wise t-tests from
all 64 electrodes and all timepoints were displayed as
an intensity plot to efficiently summarize and facilitate
the identification of the onset and general topographical
distribution of walking-related changes in ERP activity.
The x, y, and z axes, respectively, represent time, electrode

http://fieldtriptoolbox.org
http://fieldtriptoolbox.org
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location, and the t-statistic (indicated by a color value) at
each electrode-timepoint pair.

Multiple comparisons correction

The 2-stage step-up false discovery rate (FDR) method
of Benjamini, Krieger, and Yekutieli (Benjamini et al.
2006) was applied on the combined set of all the P-
values occurring from all the cognitive task performance,
gait kinematic and EEG activity statistical tests, both
from the group-level (entire cohort) and the split-group
(IMP/nIMP) analyses. The calculations were conducted
in MATLAB (Groppe 2010). For each paired-sample or
independent-sample test, one P-value was obtained. For
each 2 × 2 (Group × Motor Load) ANOVA, 3 P-values
were obtained: 2 for the main effects and 1 for the
interaction effect. Within each comparison conducted as
part of the EEG activity statistical analysis, cluster-based
statistics revealed no, 1, or >1 clusters of significant
neural effects, each of which had their own cluster P-
value. For FDR calculation purposes, the minimum clus-
ter P-value within each comparison was added to the
abovementioned combined set. In total, this combined
set comprised of 16 P-values. The critical P-value yielded
by FDR procedure was 0.0492 (false discovery rate =
5%). Therefore, all tests whose uncorrected p-values were
found to be less than or equal to 0.0492 were significant
after FDR correction.

Results
Group-level analysis
Cognitive task performance

In previous studies, CRR and HR have been used to assess
cognitive task performance in a Go/NoGo response
inhibition task (De Sanctis et al. 2014). However, CRR
and HR in isolation can be impacted by changes in the
participant’s response criterion. The sensitivity index
(d’) measures the discriminability between the Go and
the NoGo conditions and is independent of the response
criterion. Higher d’ scores indicate an increased ability
to properly detect and respond to both Go and NoGo
stimuli.

In the current cohort, d’ scores during sitting and
walking were calculated and d’ differences between
sitting and walking were examined using a paired t-test.
Overall, d’ scores were higher during walking compared
to sitting (d’sitting = 2.27 ± 1.20, d’walking = 2.50 ± 1.07;
t25 = 2.85, P = 0.0087, Cohen’s d = 0.56) indicating better
performance when participants were walking on the
treadmill (Fig. 2A). This observation appears to be
inconsistent with the hypothesis that there will be
interference between motor and cognitive tasks (CMI)
during dual-task conditions (Leone et al. 2017).

Mean Go RT differences between sitting and walking
were assessed using a paired t-test. No significant differ-
ences were found between sitting and walking mean Go

RTs (mean RT Go sitting = 382 ± 62 ms, mean RT Go walk-
ing = 390 ± 47 ms; t25 = 1.36, P = 0.1862, Cohen’s d = 0.27;
Fig. 2B).

Based on these data, young adults responded more
accurately to task-related stimuli during walking than
while sitting. This behavioral improvement was not
accompanied by response speed costs (i.e. no speed-
accuracy trade-off was observed).

Gait kinematic activity

Walking on a treadmill imposes a fixed walking speed,
and as a result stride time variability may underesti-
mate the impact of cognitive tasks on gait. To evaluate
gait kinematics across the entire gait cycle (stance and
swing phases) and compare 3D trajectories of consecu-
tive strides, a DTW approach was used (details in Meth-
ods).

Using DTW, the variability from one stride to the next
was quantified as DTW distance and, subsequently, the
mean DTW distance of all stride-to-stride comparisons
was extracted per participant (Fig. 3A). Mean DTW
distance was calculated during both ST and DT walking.
One participant did not have ST walking recordings and
was therefore excluded from this analysis, resulting in a
set of 25 participants. Mean DTW distance differences
between ST and DT walking were assessed using a
Wilcoxon signed rank test. Mean DTW distances were
greater during ST compared to DT walking (mean
DTW distance ST = 2.44 ± 0.61 m, mean DTW distance
DT = 2.21 ± 0.52 m; z = 4.02, P = 0.0001, Cohen’s r = 0.57).
As illustrated, walking variability “decreased” when
combined with the response inhibition task compared
to walking in isolation (Fig. 3B).

EEG activity
Correct rejections

Cluster-based permutation tests were used to examine
neural activity differences between sitting and walking
during correct rejection trials. First, 3 midline electrode
locations—a frontocentral midline electrode (FCz), a
central midline electrode (Cz), and a centroparietal
midline electrode (CPz)—were plotted and inspected
for differences (Fig. 4A, latency intervals of significant
differences are highlighted in gray). The selection of
these electrodes was based on previous studies showing
that the N2 amplitude is maximal over frontocentral
midline scalp and the P3 is maximal over centroparietal
midline scalp (Smith et al. 2008; Barry and De Blasio
2013). Reduced ERP amplitudes during walking were
found at FCz and Cz during the N2 latency interval,
and at the Cz and CPz during the P3 latency interval
(Fig. 4A). The cluster-based permutation approach also
allowed for exploring the existence of walking-related
effects on ERPs in the entire electrode set and at all the
epoch timepoints. The effects that this approach revealed
were ERP amplitude reductions during walking (i) over
frontal and frontocentral scalp (yellow in the Fig. 4B
statistical clusterplot) and over parietal and occipital
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Fig. 2. Sitting and walking A) d’ scores and B) mean Go RTs of the entire young adult cohort. Dots represent individual participants. The central mark
of each box indicates the median, and the bottom and top edges indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most
extreme data points not considered outliers. There were no outliers here. D′ scores during walking were higher compared to sitting, indicating better
cognitive task performance during walking in young adults. No significant differences were found in mean go RTs between sitting and walking.

Fig. 3. A) 3D representations of trajectories of a series of strides. Lateral is the dimension of movement right-and-left relative to the motion of the
treadmill belt. Vertical is the dimension movement up-and-down relative to the motion of the treadmill belt. Fore-aft is the dimension of movement
parallel to the motion of the treadmill belt. Perspective (left), top (upper right), and right (lower right) views are provided. Using DTW, the variability from
one stride to the next was quantified as DTW distance (see Methods) and the mean DTW distance of all stride-to-stride comparisons was extracted per
participant. B) Mean DTW distance distribution during ST walking and DT walking; mean DTW distances of individual participants are represented as
dots scattered on the boxes. Mean DTW distance was smaller during DT compared to ST walking. Red “+” symbols indicate outliers.

scalp (blue) during the N2 latency interval, (ii) over left
prefrontal (yellow) and over central and centroparietal
scalp (blue) during the P3 latency interval, and (iii) over
central and centroparietal scalp during latencies beyond
the P3 latency interval, until the end of the epoch (blue).
The topographical distribution of the average (walking-
minus-sitting) neural activity difference during correct
rejection trials is shown for selected timepoints at which
this difference was found to be significant (Fig. 4C, red
dots on the maps show electrodes that exhibit significant
differences).

Response-locked false alarms

Cluster-based permutation tests were used to examine
neural activity differences between sitting and walking
during response-locked false alarm trials. First, the FCz
electrode was plotted and inspected for differences
(Fig. 5A), since the ERN has been shown to have maximal

amplitude over frontocentral midline scalp (Riesel et al.
2013; Nguyen et al. 2016). Reduced ERP amplitudes
during walking were found at FCz during the ERN
latency interval. By exploring the entire electrode set
and all the epoch timepoints, the effects that the cluster-
based permutation approach revealed were frontocen-
tral walking-related amplitude reductions during ERN
latencies, as well as during latencies preceding the ERN
([−130, −50 ms] approximately, corresponding to the
yellow points outside of the black rectangle in Fig. 5B
statistical clusterplot). The latency and topography of
these earlier, pre-ERN differences indicate reduction in
pre-motor neural activity reflected by the premovement
positivity (PMP) ERP (Deecke et al. 1969; Bortoletto et al.
2006). The topographical distribution of the average
(walking-minus-sitting) neural activity difference during
response-locked false alarm trials is shown for selected
timepoints at which this difference was found to be
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Fig. 4. Neural activity differences between sitting and walking during correct rejection trials. A) Grand average sitting and walking ERP waveforms, at
3 midline electrode locations: frontocentral midline (FCz), central midline (Cz), and centroparietal midline (CPz) electrode. The shaded regions around
the ERP waveforms indicate the standard error of the mean (SEM) across participants. The latency interval of significant differences in each electrode is
highlighted in gray. B) Spatiotemporal walking-minus-sitting ERP differences using cluster-based permutation tests. The statistical clusterplot shows the
t-values for the electrode-timepoint pairs at which significant ERP differences between sitting and walking were found. Positive t-values (yellow) indicate
that walking ERP amplitude was greater than sitting ERP amplitude. Significant differences were found (i) over frontal and frontocentral scalp (yellow)
and over parietal and occipital scalp (blue) during the N2 latency interval, (ii) over left prefrontal (yellow) and over central and centroparietal scalp
(blue) during the P3 latency interval, and (iii) over central and centroparietal scalp during latencies beyond the P3 latency interval, until the end of the
epoch (blue). The black rectangles indicate latencies corresponding to the N2 and P3. C) Topographical maps showing the average (walking-minus-sitting)
neural activity difference for selected timepoints at which this difference was found to be significant. The electrodes exhibiting significant differences
are depicted as red dots on the maps. The electrodes to which the ERP waveforms of panel A correspond are circled in black (vertical order matched).

significant (Fig. 5C, red dots on the maps show electrodes
that exhibit significant differences).

Split-group differences based on cognitive task
performance
Cognitive task performance

As shown above, mean d’ scores for the entire cohort
improved when participants were walking on the tread-
mill. This is an indication of cognitive-motor enhance-
ment, rather than the more typically expected CMI often
observed in dual-task paradigms. In other words, the
response inhibition task appears to have gotten easier
when coupled with walking in this young adult cohort.
Several questions arise from this observation: Does each
individual improve? Are there neural patterns that differ
based on behavioral improvement versus nonimprove-
ment while walking? Are there differences in gait vari-
ability for those that improve compared to those that
do not? These questions are addressed below in split-
group analyses that compare those who improved their
performance while walking (IMPs) and those who did not
(nIMPs).

The (d’walking–d’sitting) difference was calculated for
each participant and its significance was subsequently
tested by determining whether it lay outside of the 95%

confidence interval of the normal distribution having
a mean value of zero and a standard deviation equal
to that of the (d’walking–d’sitting) distribution of the
entire cohort. If d’walking > d’sitting, namely the partic-
ipant improved significantly during walking compared
to sitting, they were classified into the IMP subgroup.
If d’walking ≤ d’sitting, namely the participant did not
improve significantly during walking compared with sit-
ting, they were classified into the nIMP subgroup. In
total, 14 participants were classified into the IMP sub-
group and 12 participants into the nIMP subgroup (8
had d’walking ≈ d’sitting, 4 had d’walking < d’sitting), as
shown in Fig. 6A.

In the subsequent analyses, RTs, ERPs, and gait kine-
matic variability were contrasted between IMPs (Fig. 6B)
and nIMPs (Fig. 6C).

No significant differences in average d’ scores were
found between IMPs and nIMPs, as the independent sam-
ples t-test indicated (average d’ IMPs = 2.30 ± 0.70, aver-
age d’ nIMPs = 2.48 ± 1.49; t24 = 0.39, P = 0.7020, Cohen’s
d = 0.15).

The 2 × 2 ANOVA assessing the effects of Group
(IMPs vs nIMPs) and Motor Load (sitting vs walking)
on mean RTs revealed a significant main effect of
Group (F1,24 = 4.86, P = 0.0373, η2 = 0.16). This indicated
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Fig. 5. Neural activity differences between sitting and walking during response-locked false alarm trials (modeled per Fig. 4). A) Grand average sitting
and walking ERP waveforms during response-locked false alarm trials, at a frontocentral midline electrode (FCz). B) Spatiotemporal walking-minus-
sitting ERP differences using cluster-based permutation tests. Significant differences, shown in yellow in the statistical clusterplot, were found over
frontocentral scalp during the ERN latency interval, and over similar frontocentral scalp during pre-ERN latencies. The latter indicated reduction in
the pre-motor positivity (PMP). C) Topographical maps showing the average (walking-minus-sitting) neural activity difference for selected timepoints at
which this difference was found to be significant. The electrode to which the ERP waveforms of panel a correspond is circled in black.

Fig. 6. Sitting and walking d’ scores of A) the entire young adult cohort, B) participants who improved during walking (IMPs), and C) participants who
did not improve during walking (nIMPs). Each line corresponds to one participant.

that IMPs (mean RT sitting = 360 ± 54 ms, mean RT walk-
ing = 372 ± 41 ms) were overall faster than nIMPs (mean
RT sitting = 407 ± 64 ms, mean RT walking = 411 ± 47 ms)
to respond to image presentation. No significant effects
of Motor Load (F1,24 = 1.65, P = 0.2108, η2 < 0.01) or Group/
Motor Load interaction was found (F1,24 = 0.55, P = 0.4649,
η2 < 0.01).

Gait kinematic activity

The effects of Group (IMPs vs nIMPs) and Cognitive
Load (ST vs DT walking) on mean DTW distance
were assessed by means of a 2 × 2 ANOVA. This

ANOVA revealed a significant main effect of Group
(F1,23 = 4.71, P = 0.0406, η2 = 0.14) indicating that IMPs
(mean DTW distance ST = 2.46 ± 0.54 m, mean DTW
distance DT = 2.08 ± 0.36 m) walked less variably than
nIMPs (mean DTW distance ST = 2.82 ± 0.67 m, mean
DTW distance DT = 2.59 ± 0.57 m; Fig. 7B). The significant
main effect of Cognitive Load (F1,23 = 13.48, P = 0.0013,
η2 = 0.07) that occurred is expected, since the same
effect was tested using the Wilcoxon signed rank test
as part of the group-level analysis. Within-group post-
hoc t-tests showed that mean DTW distance decreased
significantly during DT walking in both the IMP (t12 = 2.59,
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Fig. 7. A) 3D representations of trajectories of a series of strides for an IMP (top) and a nIMP (bottom). For both the IMP and the nIMP, perspective (left),
top (middle), and right (right) views are provided in the respective panels. B) Mean DTW distance distribution during ST walking and DT walking, for
IMPs and nIMPs. Mean DTW distance was smaller in IMPs compared to nIMPs.

P = 0.0235, Cohen’s d = 0.72) and the nIMP subgroups
(t11 = 3.35, P = 0.0064, Cohen’s d = 0.97). No significant
Group/Cognitive Load interaction was found (F1,23 = 0.80,
P = 0.3811, η2 < 0.01; Fig. 7B). Of note, the 1 participant
excluded from the corresponding group-level analysis
was an IMP, thus resulting in a set of 13 IMPs and 12
nIMPs entered into this analysis.

Figure 7A shows 3D representations of trajectories of
a series of strides for an IMP (top) and a nIMP (bottom),
to give an example of what a lower-variability series of
strides (IMP) looks like compared to a higher-variability
series of strides (nIMP).

EEG activity
Correct rejections

To compare the spatiotemporal effects of walking on
neurophysiology between IMPs and nIMPs during cor-
rect rejection trials, cluster-based permutation tests were

performed separately for each group to examine dif-
ferences between the sitting and the walking correct
rejection ERP waveform. During correct rejection trials,
IMPs exhibited reduced walking ERP amplitudes over
frontocentral scalp during the N2 latency interval and
over left prefrontal scalp during the P3 latency interval,
whereas nIMPs exhibited no detectable ERP differences
between sitting and walking (Fig. 8B). These walking-
related effects in IMPs were represented by the yellow
cluster in the Fig. 8B statistical clusterplot. By comparing
these walking-related effects to the corresponding group-
level effects shown in the Fig. 4B statistical clusterplot,
it can be observed that the yellow cluster was almost
identical between IMPs and the entire cohort, indicating
that IMPs maintain only the frontal/frontocentral portion
of walking-related effects that were found in the overall
combined cohort. Sitting and walking ERPs of IMPs and
nIMPs during correct rejection trials are depicted at FCz,
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Fig. 8. Walking-minus-sitting ERP differences in IMPs and nIMPs during correct rejection trials. A) Grand average sitting and walking ERP waveforms of
IMPs (left column) and IMPs (right column), at a frontocentral midline electrode (FCz) that exhibits significant differences between the 2 motor load
conditions for IMPs. The latency interval of significant differences is highlighted in gray. B) Spatiotemporal walking-minus-sitting ERP differences in IMPs
(left column) and IMPs (right column), using cluster-based permutation tests. Such differences were found only in IMPs, over frontocentral scalp during
the N2 latency interval and left prefrontal scalp during the P3 latency interval (yellow cluster). C) Topographical maps showing the average (walking-
minus-sitting) neural activity difference for selected timepoints at which this difference was found to be significant in IMPs. Maps are illustrated both
for IMPs and nIMPs, for comparison purposes. The electrode to which the ERP waveforms of panel A correspond is circled in black.

since this electrode belongs to the frontocentral cluster
of significant effects (Fig. 8A). The topographical maps
of Fig. 8C show the scalp distribution of the average
(walking-minus-sitting) neural activity difference in IMPs
and nIMPs during correct rejection trials, for selected
timepoints at which this difference was found to be
significant in IMPs.

Response-locked false alarms

To compare the spatiotemporal effects of walking
on neurophysiology between IMPs and nIMPs during
response-locked false alarm trials, cluster-based per-
mutation tests were performed separately for each
group to examine differences between the sitting and
walking response-locked false alarm ERP waveform.
During response-locked false alarm trials, IMPs exhib-
ited reduced walking-related ERP amplitudes over
frontal/frontocentral scalp during the ERN latency
interval and over central/frontocentral scalp during pre-
ERN latencies (Fig. 9B). Pre-ERN amplitude reductions,
which were not part of our initial hypothesis, were also

encountered in the group-level analysis (Fig. 5B) where
they were interpreted as reduction in the PMP. Here,
even though differential effects started earlier than in
the combined group (−210 vs −130 ms, approximately),
they are still thought to reflect PMP amplitude reduction
during walking based on their latency and topography,
only more pronounced compared to the entire cohort.
No detectable ERP differences between sitting and
walking were found in nIMPs (Fig. 9B). The walking-
related effects in IMPs are represented by the yellow
cluster in the Fig. 9B statistical clusterplot. By comparing
these walking-related effects to the corresponding group-
level effects shown in the Fig. 5B statistical clusterplot,
it can be observed that the yellow cluster manifested
in IMPs was qualitatively similar to the corresponding
cluster of the entire cohort, with the difference that
the IMP cluster had an earlier onset (more pronounced
PMP reduction during walking in IMPs) and it spread
over more electrodes during the ERN latency interval
(more pronounced ERN reduction during walking in
IMPs). This indicates that IMPs in general maintain the
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Fig. 9. Walking-minus-sitting ERP differences in IMPs and nIMPs during the response-locked false alarm trials (modeled per Fig. 8). A) Grand average
sitting and walking ERP waveforms of IMPs (left column) and IMPs (right column), at a frontocentral midline electrode (FCz) that exhibits significant
differences between the 2 motor load conditions for IMPs. The latency interval of significant differences is highlighted in gray. B) Spatiotemporal walking-
minus-sitting ERP differences in IMPs (left column) and IMPs (right column), using cluster-based permutation tests. Such differences were found only in
IMPs, over frontocentral scalp during the ERN latency interval and over central/frontocentral scalp during latencies preceding the ERN (yellow cluster).
The latter indicated reduction in the PMP. C) Topographical maps showing the average (walking-minus-sitting) neural activity difference for selected
timepoints at which this difference was found to be significant in IMPs. Maps are illustrated both for IMPs and nIMPs, for comparison purposes. The
electrode to which the ERP waveforms of panel A correspond is circled in black.

walking-related effects that were found in the overall
combined cohort. Sitting and walking ERPs of IMPs
and nIMPs during response-locked false alarm trials
are depicted at FCz, since this electrode belongs to the
frontocentral cluster of significant effects (Fig. 9A). The
topographical maps of Fig. 9C show the scalp distribution
of the average (walking-minus-sitting) neural activity
difference in IMPs and nIMPs during response-locked
false alarm trials, for selected timepoints at which this
difference was found to be significant in IMPs.

Discussion
CMI (Abernethy 1988) predicts that walking will have
a detrimental effect on cognitive task performance
and/or on gait kinematics due to competition in neural
resource allocation between the 2 concurrent task
components. However, in the current cohort, walking
actually improved performance in more than half of the
participants (14 out of 26). The remaining 12 participants

showed either no change in performance (n = 8) while
walking, or had the expected decline (n = 4). Those who
improved (IMPs) responded more quickly to Go stimuli
and had significantly reduced stride-to-stride variability
compared with those who did not improve (nIMPs).
Behavioral improvement effects while walking were
accompanied by ERP changes during both the correct
rejection trials and the response-locked false alarm
trials. No dual-task-related ERP differences were present
in participants who did not improve performance while
walking. The findings above suggest that IMPs may adjust
their cognitive strategy in response to the increased task
demands, and this adjustment is reflected in the ERP
amplitude reductions during key processing stages of
inhibitory control.

Reduction in stride-to-stride variability during DT
walking compared to ST walking was found both in
the cohort overall and in the IMP and nIMP subgroups,
suggesting that this effect may characterize young
healthy adults in general, independent of cognitive task
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performance. A number of studies have reported findings
similar to this, especially in young adults (Grabiner
and Troy 2005; Lovden et al. 2008; Decker et al. 2016;
Wrightson et al. 2016; Hamacher et al. 2019a, 2019b;
Richardson et al. 2022). One possibility to account for
this pattern is that shifting attention solely to motor
control of walking, a largely automated motor pattern
(Clark 2015), increases susceptibility to endogenous
or exogenous noise, which, in turn, can compromise
walking performance (Beilock et al. 2002; Beilock and
Gray 2012; Hamacher et al. 2019b). In contrast, with the
addition of a cognitive load, attention shifts away from
walking-related motor control, enhancing automaticity
and improving the consistency of the generated walking
patterns (Lovden et al. 2008; Wrightson et al. 2016).
Indeed, a recent paper demonstrated that the addition
of cognitive load, via performance of a Go/NoGo task,
reduced the impact of perturbations in ongoing optic
flow inputs on both gait parameters and EEG outcomes
while participants were engaged in treadmill walking
(Malcolm et al. 2018).

During correct rejection trials, ERP amplitude reduc-
tions during walking were found (i) over frontal, fronto-
central, parietal, and occipital scalp regions during the
N2 latency interval, (ii) over left prefrontal, central, and
centroparietal scalp regions during the P3 latency inter-
val, and (iii) over central and centroparietal scalp regions
during latencies beyond the P3 latency interval, until the
end of the epoch (Fig. 4). From these effects, the walking-
related amplitude reductions of the frontocentral N2
and the centroparietal P3 are consistent with previous
literature (De Sanctis et al. 2014). However, the left
prefrontal amplitude reductions during the P3 latency
interval, along with the late central/centroparietal
amplitude reductions during post-P3 latencies, have
not been reported by previous studies (Fig. 4). The
latter central/centroparietal effect is thought to stem
from differences in the EEG processing pipelines; neural
activity was not highpass-filtered here, allowing more
low-frequency content to be retained. IMPs maintained
the anterior (frontal/frontocentral) portion of effects
found in the combined cohort, namely they exhibited ERP
amplitude reductions during walking over frontal/fron-
tocentral scalp during the N2 latency interval and in left
prefrontal scalp during the P3 latency interval (Fig. 8). In
contrast, nIMPs exhibited no detectable walking-related
effects during correct rejection trials (Fig. 8). Focusing on
the effects found in IMPs, the N2 is thought to reflect the
conflict between the 2 competing response tendencies
(the “Go” and the “NoGo”) and its generation has been
traced to the ACC, a region that plays a key role in
conflict monitoring (van Veen and Carter 2002a, 2002b;
Dias et al. 2003; Botvinick et al. 2004; Dias et al. 2006). The
neural activity differences between sitting and walking
in IMPs during these latencies had a frontal/fronto-
central topographical distribution, which aligns with
ACC engagement (Fig. 8). During the P3 latencies, a
topographical shift of the walking-minus-sitting ERP
differences towards left lateral prefrontal scalp regions

was observed (Fig. 8). This finding too can be interpreted
using the conflict monitoring hypothesis, which predicts
that, once conflict between active representations is
detected by the ACC, a conflict-related signal is relayed
to lateral prefrontal resources, and more specifically
the DLPFC, where inhibitory control is implemented.
In that way, the top-down attentional resources hosted
by the DLPFC are activated towards implementing
behavioral adjustments, to reduce conflict in ensuing
trials (Carter and van Veen 2007). Neuroimaging studies
have shown that that increased left DLPFC activation in
particular is associated with lower activation levels in
conflict-related brain regions in subsequent trials of a
Go/NoGo response inhibition task, thus emphasizing the
central role that the left DLPFC plays in exerting top-
down cognitive control (Fassbender et al. 2009). Taken
together, our neurophysiological findings during correct
rejection trials suggest that successful inhibition in IMPs
during walking is driven by modulation of the conflict
monitoring (N2 stage) and the subsequent control
implementation (P3 stage) neural processes compared
to sitting, with such effects being absent in nIMPs.

During response-locked false alarm trials, ERP ampli-
tude reductions during walking were found over fron-
tocentral scalp regions during the ERN latency interval,
as well as during earlier latencies preceding the ERN,
which were interpreted as PMP ERP effects (Fig. 5).
IMPs exhibited a pronounced version of the walking-
related ERP effects found in the combined cohort,
maintaining the general topography and latency of the
effects, whereas nIMPs exhibited no detectable effects
during the response-locked false alarm trials (Fig. 9).
Focusing on the effects found in IMPs, the ERN is thought
to reflect the conflict between the erroneous motor
response and corrective processes, a few milliseconds
following the motor response (it peaks roughly 50-ms
post-response, in accord with the results shown in
Fig. 9). The source of the ERN has been localized to
the ACC (Mathalon et al. 2003; Carter and van Veen
2007; O’Connell et al. 2009a), same as the N2, consistent
with the frontocentral topographical distribution of the
walking-minus-sitting ERP differences demonstrated in
Fig. 9 during this latency interval. The main difference
compared to the N2 is that here the ACC is activated and
thus conflict is detected after the response instead of
before (Van Veen and Carter 2002b; Carter and van Veen
2007). Therefore, the timing of the activation of the ACC,
which functions as a conflict monitor, plays a critical
role in determining the behavioral outcome. Regarding
the earlier pre-ERN differences, the [−210, −50] ms
latency interval during which they were observed has
been associated with pre-motor processes reflected by
the PMP (Deecke et al. 1969; Bortoletto et al. 2006).
The PMP has been proposed to reflect the “go-ahead”
signal generated by the supplementary motor area
(SMA) and pre-SMA to allow movement execution,
consistent with the central/frontocentral topography
of the walking-minus-sitting ERP differences detected
during these latencies (Fig. 9). Summarizing the findings
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during response-locked false alarm trials, IMPs seem to
manage an unsuccessful inhibition differently during
walking compared to sitting, and this difference was
pinpointed to modulation of the pre-motor neural
processes preceding the erroneous motor response (PMP
stage), as well as of the conflict monitoring neural
processes immediately following the erroneous response
(ERN stage). No such modulation was evident in nIMPs.

The CMI hypothesis proposes that cognitive task-
related and gait kinematic performance decrements
stem from underlying competition in the allocation
of neural resources between the cognitive and the
motor task. The IMP phenotype of improvement in
all interrogated domains clearly contradicts the CMI
hypothesis, suggesting that neural resource competition
is likely absent in this subgroup, or that other factors
are at play. Given that IMPs were found to alter neural
activity during walking compared with sitting, whereas
nIMPs did not, these IMP-specific walking-related neural
activity changes might hold the key to understanding
how IMPs manage to flexibly recalibrate the underlying
neural processes in order to avoid inter-task neural
resource competition. It is proposed that these neural
activity changes manifested by IMPs in response to
motoric load increase hold promise as neural markers
of cognitive flexibility.

One explanation for not observing CMI effects in
IMPs is that the employed task might not have been
sufficiently taxing on their cognitive resources. Walking
is a relatively automatic motor task (Clark 2015), so
it may have sufficed to recruit certain cortical (e.g.
sensorimotor) or non-cortical (e.g. subcortical, brain-
stem, and spinal) neural networks to produce this
automatic walking pattern (Miyai et al. 2001; Wagner
et al. 2012; Seeber et al. 2014; Tattersall et al. 2014;
Takakusaki 2017) without interfering with the neural
resources used by the response inhibition task. Also,
the generally good performance of the IMP subgroup on
the Go/NoGo response inhibition task suggests that this
is not an especially difficult task for them. It will be
interesting to observe in future work whether increasing
the difficulty of the motor and/or the cognitive task
will prompt IMPs to adopt a more effortful cognitive
strategy, and as such, make individuals of this group
manifest effects consistent with CMI. However, IMPs did
not just maintain performance; they actually achieved
better performance when walking. Findings such as
this, although unanticipated based on CMI, have been
reported and interpreted before. There is evidence that
moderate exercise like walking can enhance sustained
attention and facilitate cognitive task performance
(Tomporowski 2003; Davranche and Audiffren 2004; Lam-
bourne and Tomporowski 2010). This facilitatory effect
has been explained using neurotransmitter models,
proposing that moderate exercise induces an increase
in catecholamine levels, which, in turn, boosts the
signal-to-noise ratio during processing by prefrontal
attentional systems (Mesulam 1990; McMorris 2009).
This hypothesis aligns with the present findings, since

the observed modulation in lateral prefrontal neural
activity in IMPs coexisted with reduced conflict-related
ERP amplitudes (N2 in correct rejections and ERN
in response-locked false alarms) during walking, as
shown in Figs. 8 and 9. In addition, attenuated N2 and
ERN amplitudes have been found under conditions
of increased expectancy of the “NoGo” trials, when
reliance on proactive control is thought to be dominant
(Nieuwenhuis et al. 2003; Gajewski et al. 2008; O’Connell
et al. 2009b; Smith et al. 2010). Therefore, this reduc-
tion in inhibitory conflict that IMPs manifest during
walking might stem from a more active and/or efficient
engagement of top-down attentional resources, which
presumably induces a shift to a more proactive cognitive
strategy and hence promotes better anticipation of the
rare “NoGo” events when walking.

Treadmill walking, the approach used here, is likely
to play a role in reducing competition between the cog-
nitive and the motor components of the task. When
paired with a cognitive task, treadmill walking has been
shown to interfere minimally with gait stability as well
as elicit improvement in cognitive task performance in
healthy adults under certain conditions, in contrast to
overground walking, which has been associated with
more pronounced CMI effects (Wrightson and Smeeton
2017; Penati et al. 2020; Wrightson et al. 2020). Even
though it is more predictable and spatially restricted,
which probably is the root cause of the above differ-
ences in observed effects between walking modalities,
treadmill walking can offer consistency of motor load-
ing throughout the experimental procedure. This feature
can be especially useful for designs that are meant to
be translated to older or clinical populations, since it
provides more standardized measurements of dual-task-
related effects on gait and cognitive parameters.

A limitation of this study is that nIMPs were more
variable in terms of d’ scores than IMPs, both for sitting
and walking. Based on Fig. 6, although IMPs all lie within
a range of medium d’ performance, nIMPs were scattered
over the full d’ range, encompassing low, medium, and
high performers. As part of future research, we aim to
collect more nIMP datasets in order to compare IMPs and
nIMPs having d’ scores within similar ranges. Despite this
limitation, the neural signatures of improvement that
this study yielded hold significant potential as cognitive
flexibility markers, which could potentially be translated
to older neurotypical or patient populations to assess
and quantify age-related or neurodegeneration-related
cognitive decline, respectively. As a first step in this
direction, we aim to expand the methodology employed
here to older neurotypical adults to test its efficacy in dis-
tinguishing “super-agers” from older adults that exhibit
normal or aggravated age-related cognitive decline (De
Sanctis et al. 2009). Older adults have been found to
manifest response accuracy decline and absence of
dual-task-related neural activity recalibration when
adding walking to inhibition task performance (Malcolm
et al. 2015), similar to the dual-task-related signatures
of nIMPs. The present study showed that, even within
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the same age group, different behavioral phenotypes can
coexist, each one correlating with different neural activ-
ity patterns. When subjecting older adults to concurrent
walking and inhibitory performance, even though the
dominant phenotype is expected to be the one described
by Malcolm and colleagues (Malcolm et al. 2015), it is
also expected that there will be few older adults who
will exhibit dual-task-related signatures more consistent
with those of IMPs. If such older individuals indeed
exist and can be identified, responding more flexibly
to dual-task load would suggest that their cognitive
resources presumably remain relatively unaffected
by aging processes. As neural circuitry gets further
compromised by degenerative processes, behavior is
anticipated to converge to a phenotype of enhanced dual-
task-related costs.

In conclusion, this study examined differences in
neural activity, stride-to-stride variability and response
speed between (i) young adults who improved in terms
of response accuracy during walking compared to sitting
(IMPs) and (ii) young adults who did not improve (nIMPs)
under the same conditions. This split of the young adult
cohort was motivated by findings at the piloting stage
of the study, where 3 out of 5 young adults performed
better during walking compared to sitting, conflicting
with the CMI hypothesis. During correct rejection trials,
ERP amplitude reductions were found during walking
in IMPs, specifically over frontocentral scalp regions
during N2 latencies and over left prefrontal scalp regions
during P3 latencies. Also, during response-locked false
alarm trials, IMPs exhibited reduced ERP amplitudes
while walking over frontocentral scalp regions, during
ERN and pre-ERN latencies. No detectable differences
were found in the neural activity of nIMPs between
sitting and walking, neither during correct rejection
trials nor during response-locked false alarm trials.
The present findings indicate that IMPs can flexibly
modulate frontal brain activity during walking during
key stages of inhibitory control (conflict monitoring for
N2 and ERN, control implementation for P3, and pre-
motor for pre-ERN), something that nIMPs do not seem
to do. Combining these neurophysiological findings with
findings of faster responses and less stride-to-stride
variability in IMPs, these neural activity differences
were interpreted as neural signatures of behavioral
improvement during DT walking. Future research can
test the potential of these neural signatures as markers
for assessing cognitive flexibility in populations where
it tends to get compromised, for example older adults
who either age normally or have been diagnosed with
neurodegenerative diseases, such as Parkinson’s or
Alzheimer’s disease.

Supplementary material
Supplementary material can be found at Cerebral Cortex
online.
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