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Despite decades of costly research, we still cannot accurately predict individual differences in cognition from task-based functional
magnetic resonance imaging (fMRI). Moreover, aiming for methods with higher prediction is not sufficient. To understand brain-
cognition relationships, we need to explain how these methods draw brain information to make the prediction. Here we applied an
explainable machine-learning (ML) framework to predict cognition from task-based fMRI during the n-back working-memory task,
using data from the Adolescent Brain Cognitive Development (n = 3,989). We compared 9 predictive algorithms in their ability to
predict 12 cognitive abilities. We found better out-of-sample prediction from ML algorithms over the mass-univariate and ordinary
least squares (OLS) multiple regression. Among ML algorithms, Elastic Net, a linear and additive algorithm, performed either similar
to or better than nonlinear and interactive algorithms. We explained how these algorithms drew information, using SHapley Additive
explanation, eNetXplorer, Accumulated Local Effects, and Friedman’s H-statistic. These explainers demonstrated benefits of ML
over the OLS multiple regression. For example, ML provided some consistency in variable importance with a previous study and
consistency with the mass-univariate approach in the directionality of brain-cognition relationships at different regions. Accordingly,
our explainable-ML framework predicted cognition from task-based fMRI with boosted prediction and explainability over standard
methodologies.
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Introduction
Task-based functional magnetic resonance imaging
(fMRI) has been a prominent tool for neuroscientists
since the early 90s (Kwong et al. 1992). One goal of
task-based fMRI is to derive brain-based predictive
measures of individual differences in cognitive abilities
(Gabrieli et al. 2015; Dubois and Adolphs 2016). Yet, the
goal of obtaining a robust, predictable brain-cognition
relationship from task-based fMRI remains largely
unattained (Elliott et al. 2020). Moreover, obtaining a
method with a higher predictive ability may not be
sufficient if we cannot explain how such a method
draws information from different brain regions to make a
prediction. Using an explainable machine-learning (ML)
framework (Molnar 2019; Belle and Papantonis 2021), we
aim at (i) choosing algorithms that extract information
across brain regions to predict individual differences
in cognition from task-based fMRI data with higher
predictive ability and (ii) explaining how these algorithms
draw information to make the prediction. Ultimately, this

explainable, predictive model can potentially be used in
future studies that collect task-based fMRI to predict
individual differences in cognitive abilities, especially
if the model is built from well-powered data. This is
similar to the use of polygenic scores in genetics studies
(Torkamani et al. 2018).

Conventionally, to learn about which brain regions are
associated with individual differences, neuroscientists
use the mass-univariate approach (Friston 2007). Here,
researchers first test many univariate associations
between (i) the fMRI blood-oxygen-level-dependent
(BOLD) signal at each brain region that varies as a func-
tion of task conditions (e.g. high vs. low working memory
load) and (ii) an individual-difference variable of interest
(e.g. cognitive abilities). They then apply multiple com-
parison corrections, such as Benjamini-Hochberg’s false
discovery rate (FDR) (Benjamini et al. 2001) or Bonferroni,
to control for false conclusions based on multiple testing
(Friston 2007). Accordingly, the mass univariate analyses
allow for easy interpretation of the brain-cognition
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association at each brain region. However, this simplicity
may come at a price. Recent findings have challenged
the ability of the mass univariate approach in predicting
individual differences (Kragel et al. 2021; Marek et al.
2022). For instance, in the context of resting-state fMRI
and structural MRI, Marek et al. (2022), showed that mass
univariate analyses had a much poorer ability in pre-
dicting individual differences in cognition, compared to
multivariate analyses, or the techniques involving draw-
ing information across different brain regions simultane-
ously in one model. Additionally, having separate tests for
different brain regions in a mass-univariate fashion rests
on the assumption that these regions are statistically
independent of each other, which seems unrealistic
given what is known about brain function. This focus
on “marginal importance” (i.e. the contribution from
each brain region at a time, ignoring other regions), as
opposed to “partial importance”(i.e. the contribution
from multiple regions in the same model), further
constrains our ability to achieve a holistic understanding
of the relationship between the brain and individual
differences (Chen et al. 2019; Debeer and Strobl 2020).

Multivariate analyses have been suggested as a
potential solution to improve prediction and avoid the
use of multiple comparison corrections (Chen et al. 2019;
Kragel et al. 2020). The ordinary least squares (OLS)
multiple regression is arguably the most widespread
method for predicting a response variable from multiple
explanatory variables simultaneously. For task-based
fMRI, this means simultaneously having all brain regions
as explanatory variables to predict a response variable
of individual differences. In gist, the OLS multiple
regression fits a plane to the data that minimizes the
squared distance between itself and the data points
(James et al. 2013; Kuhn and Johnson 2013). With
uncorrelated explanatory variables, the OLS multiple
regression has the benefit of being readily interpretable—
each explanatory variable’s slope represents an additive
effect on the response variable (Kuhn and Johnson 2013).

However, in a situation where strongly correlated
explanatory variables are present, known as multi-
collinearity, the OLS multiple regression may misrepre-
sent the nature of the relationship between brain activity
and individual differences. For instance, with high
multicollinearity, the OLS multiple regression can give
very unstable estimates of coefficients and extremely
high estimates of model uncertainty (reflected in large
standard errors [SE]) (Graham 2003; Alin 2010; Monti
2011; Vatcheva et al. 2016). Moreover, the direction of
an explanatory variable’s coefficient may also depend
on its relationship with other explanatory variables
thus leading to sign flips (Courville and Thompson
2001; Beckstead 2012; Ray-Mukherjee et al. 2014). For
example, when an explanatory variable has a strong,
positive correlation with other explanatory variables
and by itself has a weak, positive correlation with
the response variable, the OLS multiple regression
can unintentionally show a negative weight for this
explanatory variable. Accordingly, it is crucial to examine

this “suppression” by comparing the directionality of the
relationship estimated from the OLS multiple regression
with those from the mass-univariate analyses (Conger
1974; Ray-Mukherjee et al. 2014).

To improve out-of-sample prediction and to, a certain
extent, mitigate multicollinearity, many researchers
have exchanged the classical OLS multiple regression
for ML algorithms (Dormann et al. 2013). Yet, it is
still unclear how much improvement in prediction ML
algorithms may lead to. ML algorithms include, but are
not limited to, algorithms based on penalized regression
(Kuhn and Johnson 2013), tree-based regression (Breiman
et al. 2017), and Support Vector Machine (SVM) (Cortes
and Vapnik 1995), such as Elastic Net (Zou and Hastie
2005), Random Forest (Breiman 2001), XGBoost (Chen
and Guestrin 2016), and SVM with different kernels
(Cortes and Vapnik 1995; Drucker et al. 1996). These
algorithms usually require hyperparameters that can be
estimated through a cross-validation (James et al. 2013).
The algorithms differ in how the relationships between
explanatory and response variables as well as among
explanatory variables are modeled. Some algorithms,
such as Random Forest, XGBoost, and SVM with certain
kernels (e.g. polynomial and Radial Basis Function, RBF)
(Cortes and Vapnik 1995; Drucker et al. 1996) allow for
nonlinearity in the relationship between explanatory
and response variables as well as interaction among
different explanatory variables. Elastic Net, on the other
hand, extends directly from the linear OLS multiple
regression, but with an added ability to regularize the
contribution of explanatory variables (James et al. 2013;
Kuhn and Johnson 2013). Accordingly, Elastic Net is linear
(i.e. assuming the relationship between explanatory and
response variables to be linear) and additive (i.e. not
automatically modeling interactions among explanatory
variables). It is still unclear whether nonlinear and
interactive algorithms improve the predictive ability
of task-based fMRI over linear and additive algorithms
as well as over the OLS multiple regression and mass-
univariate analyses. Therefore, it is important to compare
the predictive performance across algorithms.

A major drawback of ML algorithms used in the task-
based fMRI (Kragel et al. 2020) is the difficulty to explain
how each algorithm draws information from different
brain regions in making predictions. Fortunately, recent
developments in the explainable ML framework have
provided techniques that can improve explainability for
many algorithms (Molnar 2019). Here we focused on four
aspects of explainability. The first aspect is “variable
importance,” or the relative contribution from each brain
region when an algorithm makes a prediction. Linear
and additive algorithms, such as Elastic Net and the OLS
multiple regression, usually make a prediction based on
a weighted sum of features. Accordingly, an explanatory
variable with a higher coefficient magnitude has a higher
weight in prediction, and thus the coefficient magnitude
can readily be used as a measure of variable impor-
tance. For nonlinear and interactive algorithms, such
as Random Forest, XGBoost, and SVM with polynomial
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and RBF kernels, the prediction is not made based on a
weighted sum of features, and thus we need an addi-
tional “explainer” to compute variable importance. SHap-
ley Additive exPlanation (SHAP) (Lundberg and Lee 2017)
is a newly developed algorithm-agnostic technique for
variable importance. SHAP is designed to explain the con-
tribution of each explanatory variable via Shapley values
(Roth 1988). Based on Cooperative Game Theory, a Shap-
ley value quantifies a fair distribution of compensation to
each player based on his/her contribution in all possible
coalitions where each coalition includes a different sub-
set of players. When applying Shapley values to machine
learning, researchers treat each explanatory variable as a
player in a game, a predicted value as compensation and
subsets of explanatory variables as coalitions. Shapley
values reflect the weighted differences in a predicted
value when each explanatory variable is included vs.
not included in all possible subsets of explanatory vari-
ables. SHAP offers a computationally efficient approach
for estimating Shapley values (Lundberg and Lee 2017).
Using these measures of variable importance, one is able
to demonstrate the similarity in contribution from each
brain region based on different algorithms. Importantly,
we would also be able to examine the consistency in
variable importance across studies with similar fMRI
tasks and individual difference variables.

The second aspect of explainability is “variable
selection” (Heinze et al. 2018). There are existing sta-
tistical methods that could assist us further in selecting
explanatory variables based on their variable importance
and uncertainty around the variable importance, at least
for some algorithms. For instance, for mass univariate
analyses and the OLS multiple regression, a conventional
P-value associated with each coefficient is often used for
variable selection. For Elastic Net, a permutation-based
approach called eNetXplorer (Candia and Tsang 2019)
has recently been proposed. The central idea behind
eNetXplorer is to fit 2 different sets of Elastic Net models,
each set consisting of many realizations of n-fold cross-
validated models. In the first set, Elastic Net models
are fitted to predict the true response variable (target
models), whereas in the second set, the models are fitted
to predict a randomly permuted response variable (null
models). For example, if the observations are participants
in a study, then the target models will try to predict one
participant’s response from the same participant’s set
of explanatory variables (e.g. brain regions), whereas the
null models will try to predict one participant’s response
from another participant’s explanatory variable. Both
the null and the target models are tuned and assessed via
repeated cross-validation. Given that there is no relation-
ship between the shuffled response and the predictors
in the null models, any non-null predictive accuracy and
coefficient estimates in the null models have to be spu-
rious. Comparisons of the magnitude of the coefficient
estimates in target models to null models, as well as
of the frequency of feature selection in target models
to null models, allow for near-exact inference for each
individual explanatory variable (via the permutation

tests) (Winkler et al. 2014; Helwig 2019). While eNetX-
plorer use cases were originally demonstrated for
cellular and molecular “omics” data, this approach is
widely applicable to many other scenarios aimed at
uncovering predictors in a multivariable setting. Indeed,
there is a considerable overlap in the challenges faced
in the analysis of omics and fMRI data (Antonelli et al.
2019), and as such, eNetXplorer may prove a valuable
tool in the latter as well. With eNetXplorer, we can
compare and contrast variable selection between the
OLS multiple regression and Elastic Net with regards
to Elastic Net hyperparameters, the uncertainty of the
coefficients, coefficient magnitude after regularization,
and multicollinearity.

In addition to demonstrating relative contribution
from different brain regions, the third aspect of explain-
ability is to understand the extent to which predictive
values from each algorithm change as a function of fMRI
activity at these regions—in terms of the pattern (i.e.
linearity vs. nonlinearity) and directionality (i.e. positive
vs. negative) of the relationship with the response
variable. It is straightforward to examine the pattern and
directionality of the univariate relationship for mass-
univariate analyses. For instance, a “univariate effects”
plot (Fox and Weisberg 2018) can show a linear fitted line
between fMRI activity at each different region and their
associated predicted values of the response variable.
For multivariate algorithms, we need to consider the
collinearity among explanatory variables that could
distort the pattern and directionality of the influences
from each explanatory variable (Molnar 2019). Accumu-
lated local effects (ALE), a newly developed algorithm-
agnostic explainer, is designed to help visualize how
each explanatory variable in each algorithm impacts
a predictive value on average (Apley and Zhu 2020).
Importantly, ALE is specifically designed to handle data
with moderate collinearity. With univariate effects and
ALE plots, we could examine the similarity in pattern
and directionality across algorithms. This can potentially
reveal “suppression,” allowing us to check whether
multivariate algorithms provide a similar directionality
to the univariate algorithm.

The fourth aspect is to demonstrate the extent
to which the variation of the prediction from these
algorithms depends on the interaction of the explanatory
variables. Some algorithms, including Random Forest,
XGBoost, and SVM with RBF and polynomial kernels,
allow for interactions among explanatory variables.
Friedman’s H-statistic (Friedman and Popescu 2008) is
a metric of the interaction strength between each brain
region and all other brain regions in predicting individual
differences. In the case that interactive algorithms have
higher predictive performance than additive algorithms,
Friedman’s H-statistic can reveal interaction from
certain brain regions that may account for the boost
in prediction.

Our study used a large task-based fMRI dataset in chil-
dren from the Adolescent Brain Cognitive Development
(ABCD) study (Casey et al. 2018). We treated task-based
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fMRI activity during the working-memory “n-back” task
(Barch et al. 2013; Casey et al. 2018) as our explana-
tory variables. fMRI activity during the n-back task has
been shown to correlate well with the performance of
cognitive tasks in children and adults (Rosenberg et al.
2020; Sripada et al. 2020). For our response variables, we
used individual differences in behavioral performance
from 11 cognitive tasks and the g-factor, or the latent
variable that captured the shared variance of behavioral
performance across different cognitive tasks. Using the
explainable ML framework (Molnar 2019), we first identi-
fied algorithms that could achieve good accuracy in pre-
dicting individual differences from task-based fMRI data.
Here we compared widely used 9 algorithms: the mass
univariate with the FDR and Bonferroni corrections, OLS
multiple regression, Elastic Net, Random Forest, XGBoost,
and SVM with linear, polynomial, and RBF kernels. We
especially aimed to compare the predictive ability of lin-
ear and additive multivariate algorithms, including the
OLS multiple regression and Elastic Net, against mass-
univariate analyses and nonlinear and interactive mul-
tivariate algorithms. We then applied various explain-
ers (such as SHAP, eNetXplorer, ALE, and Friedman’s H-
statistic) to explain the extent to which these algorithms
drew information from each brain region in making a
prediction in four aspects: variable importance, variable
selection, pattern and directionality and interaction. We
focused on explaining the models predicting the g-factor,
so that we could (i) examine if our framework can capture
individual differences in cognitive abilities in general (i.e.
not confined to specific cognitive tasks) and (ii) compare
variable importance in our study with that of a previous
study (Sripada et al. 2020).

Materials and methods
Data
We used the data from the ABCD Study Curated Annual
Release 2.01 (Yang and Jernigan 2019). Our participants
were 9–10-year-old children scanned with 3T MRI
systems at 21 sites across the United States, recruited
as reported previously (Garavan et al. 2018). Following
exclusion (see below), there were 3989 children (1968
females). The ethical oversight of this study is detailed
elsewhere (Charness 2018). The ABCD Study provided
detailed data acquisition procedures and fMRI image
processing that are also outlined in previous publications
(Casey et al. 2018; Hagler et al. 2019).

Explanatory variables
The ABCD study applied Freesurfer to parcellate the
brain based on Destrieux (Destrieux et al. 2010) and
ASEG (Fischl et al. 2002) atlases. The parcellation resulted
in data showing fMRI activity at 167 gray-matter (148
cortical surface and 19 subcortical volumetric) regions.
We used fMRI activity at these 167 regions during the
n-back task (Barch et al. 2013; Casey et al. 2018) as
our explanatory variables. In this n-back task, children

saw pictures featuring houses and faces with different
emotions. Depending on the trial blocks, children needed
to report whether the picture matched either: (i) a picture
shown 2 trials earlier (2-back condition), or (ii) a picture
shown at the beginning of the block (0-back condition).
We used fMRI measures derived from the [2-back vs. 0-
back] linear contrast (i.e. high vs. low working memory
load), averaged across two runs.

Response variables
We tested the ability of fMRI during the n-back task to
predict individual differences in cognitive abilities across
all variables available in the dataset. First is the behav-
ioral performance collected from the n-back task during
the fMRI scan. Specifically, we used the accuracy of the 2-
back condition as it is correlated well with the behavioral
performance of other cognitive tasks collected outside
of the scanner (Rosenberg et al. 2020). Nonetheless, pre-
dicting behavioral performance collected from the same
fMRI task may have captured idiosyncratic variance that
is specific to the task and session, not necessarily cap-
turing individual differences in cognitive abilities per
se. Thus, we also used behavioral performance from 10
cognitive tasks (Luciana et al. 2018; Thompson et al.
2019) collected outside of the fMRI session, as additional
response variables.

Children completed the 10 “out-of-scanner” cognitive
tasks on an iPad during a 70-min in-person visit. A
detailed description of these out-of-scanner cognitive
tasks was provided elsewhere (Luciana et al. 2018).
First, the Flanker task measured inhibitory control
(Eriksen and Eriksen 1974). Second, the Card Sort task
measured the cognitive flexibility (Zelazo et al. 2013).
Third, the Pattern Comparison Processing task measured
the processing speed (Carlozzi et al. 2013). Fourth,
the Picture Vocabulary task measured language and
vocabulary comprehension (Gershon et al. 2014). Fifth,
the Oral Reading Recognition task measured language
decoding and reading (Bleck et al. 2013). Sixth, the Picture
Sequence Memory task measured the episodic memory
(Bauer et al. 2013). Seventh, the Rey-Auditory Verbal
Learning task measured auditory learning, recall, and
recognition (Daniel and Wahlstrom 2014). Eight, the List
Sorting Working Memory task measured the working-
memory (Bleck et al. 2013). Ninth, the Little Man task
measured visuospatial processing via mental rotation
(Acker and Acker 1982). Tenth, the Matrix Reasoning task
measured visuospatial problem solving and inductive
reasoning (Daniel and Wahlstrom 2014).

Lastly, in addition to these 11 response variables, we
also derived a general factor of cognitive abilities, called
the g-factor, from out-of-scanner cognitive tasks. Similar
to previous work on fMRI and individual differences in
cognitive abilities in adults and children (Dubois et al.
2018; Ang et al. 2020; Sripada et al. 2020), we applied a
bifactor model of the g-factor using confirmatory fac-
tor analysis (CFA). Here we treated the g-factor as the
general latent variable underlying performance across
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out-of-scanner cognitive tasks that is orthogonal to the
three specific factors: language reasoning (capturing the
Picture Vocabulary, Oral Reading Recognition, List Sorting
Working Memory, and Matrix Reasoning tasks), cogni-
tive flexibility (capturing the Flanker, Card Sort and Pat-
tern Comparison Processing tasks), and memory recall
(capturing the Picture Sequence Memory and Rey Audi-
tory Verbal Learning tasks). We applied robust maximum
likelihood estimation (MLR) with robust (Huber-White)
SEs and scaled test statistics. To demonstrate model
fit, we used scaled and robust comparative fit index
(CFI), Tucker-Lewis Index (TLI), root-mean-squared error
of approximation (RMSEA) with 90% CI of the g-factor.
To implement the CFA, we used lavaan (Rosseel 2012)
(version = 0.6–9) and semPlot (Epskamp 2015).

Exclusion criteria
We followed the exclusion criteria recommended by
the ABCD study (Jernigan 2019). We excluded data with
structure MRI T1 images that were flagged as needing
clinical referrals, having incidental findings (e.g. hydro-
cephalus and herniation) or not passing quality controls
(including IQC_T1_OK_SER and FSQC_QC fields). Second,
we excluded data with fMRI T2∗ images that did not pass
quality controls or had excessive movement (dof > 200).
Third, we excluded data flagged with unacceptable
behavioral performance during the n-back task. Fourth,
we removed all data from a Philips scanner due to a
postprocessing error in Release 2.01. Lastly, we identified
outliers of the contrast estimates for each of the 167
regions using the 3 IQR rule and applied listwise deletion
to remove observations with outliers in any region.

Modeling pipeline
We first split the data into training (75%) and test (25%)
sets. For ML-based algorithms that needed hyperparam-
eter tuning (see below), we implemented a grid search
via 10-fold cross-validation within the training set. Here
each algorithm created model candidates with a differ-
ent combination of hyperparameters, and we considered
the candidate model with the lowest RMSE as the best
model for each algorithm. To prevent data leakage, we
fitted the CFA model of the g-factor to the observations
in the training set and later applied this fitted model to
the test set. Similarly, we separately applied the 3 IQR rule
and data standardization on the training and test sets.

To evaluate predictive performance, we used the test
set and examined the similarity between predicted and
observed (i.e. real) values of each response variable. To
reveal different aspects of the model’s predictive ability,
we used multiple out-of-sample prediction metrics (Pol-
drack et al. 2020).

The first metric is Pearson’s correlation, which was
defined as

cov
(
y, ŷ

)
σyσŷ

, (1)

where cov is the covariance, σ is the standard deviation,
y is the observed value, and ŷ is the predicted value.
Pearson’s correlation ranges from −1 to 1. The high pos-
itive Pearson’s correlation reflects high predictive accu-
racy, regardless of scale. Negative Pearson’s correlation
reflects poor predictive information in the model.

Second, we used traditional r square defined using the
sum-of-squared formulation:

1 −
∑

i

(
ŷi − y

)2

∑
i

(
yi − y

)2 , (2)

where y is the mean of the observed value. Traditional r
square is often interpreted as variance explained, with
the value closer to 1 reflecting high predictive accu-
racy. Like Pearson’s correlation, traditional r square can
be negative in case of no predictive information in the
model.

Third, we defined the mean absolute error (MAE) as

1
n

n∑
i=1

| yi − ŷi |, (3)

MAE measures how far the predicted value is from
the observed value in absolute terms. Unlike Pearson’s
correlation and traditional r square, MAE does not scale
the data, rendering it more sensitive to scaling. Lower
MAE reflects high predictive accuracy.

Forth, we defined the RMSE as

√√√√1
n

n∑
i=1

(
yi − ŷi

)2, (4)

Similar to MAE, RMSE measures how far the predicted
value is from the observed value but uses the square root
of the average of squared differences, as opposed to the
absolute differences. Lower RMSE reflects high predictive
accuracy.

To demonstrate the distribution of the predictive per-
formance across algorithms, we bootstrapped these out-
of-sample prediction metrics on the test set 5,000 times,
resulting in bootstrap distributions of each prediction
metric for each algorithm. To compare predictive per-
formance, we also created bootstrap distributions of the
differences in the predictive performance between each
pair of algorithms. If the 95% confidence interval of the
bootstrap distribution of the differences did not include
zero, we concluded that the 2 algorithms were signifi-
cantly different from each other. We used “tidymodels”
(www.tidymodels.org) for this pipeline.

Modeling algorithms
We tested the predictive performance of 9 algorithms.
The first algorithm was the mass univariate analyses
with the FDR correction. Here we used the simple linear

www.tidymodels.org
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regression with each of 167 regions as the only explana-
tory variable in each model, resulting in 167 different
models in the form of:

yi = (β0 + β1x1) + εi (5)

where x is the explanatory variable, β is the coefficient,
and ε is the error term. β is estimated based on the
minimization of the sum of squared errors following:

β̂ = argminβ

{
n∑

i=1

(
yi − x′

iβ
)2

}
, (6)

where n is the number of observations (i.e. participants)
in the training set. The FDR (Benjamini and Hochberg
1995) corrects for multiple comparisons following:

Pcrit = rank
n_models

α_level, (7)

where Pcrit indicates a criterion in which P-value needs
to be below, rank is the rank of P-values of one model
compared with other models whereas the smallest P-
value leads to rank = 1, n_models is the number of mod-
els, which equals 167 brain regions in our case, and
α_level is the overall type-I error rate, set at 0.05. We
then used the test set to examine the prediction of the
models that passed the FDR correction in the training set
at Pcrit.

The second algorithm was the mass univariate anal-
yses with the Bonferroni correction. The Bonferroni cor-
rection is usually considered more conservative than the
FDR correction (Moran 2003). We used the same simple
regression with the first algorithm, except that here we
applied the Bonferroni correction instead of the FDR
correction. The Bonferroni correction defines Pcrit as

Pcrit = α_level
n_models

, (8)

Note, only the first 2 algorithms were univariate algo-
rithms, using separate models for each explanatory vari-
able. Other algorithms were multivariate algorithms that
included all brain regions as explanatory variables in one
model. Accordingly, when creating bootstrap distribu-
tions of each prediction metric for univariate algorithms
in the test set, we included multiple predicted values per
testing participant based on the number of brain regions
that survived each multiple comparison correction in
the training set. By contrast, bootstrap distributions of
each prediction metric for multivariate algorithms in the
test set were based on one predictive value per testing
participant for each algorithm.

The third algorithm was the OLS multiple regression.
Here, similar to the mass univariate analyses, the OLS
multiple regression uses the same minimization of the
sum of squared errors as the first 2 algorithms. However,

the OLS multiple regression used all brain regions as
explanatory variables in one linear regression model in
the form of

yi = (β0 + β1x1 + · · · + β167x167) + εi, (9)

Note, all other algorithms below beyond the first 3
were ML based that required hyperparameter tuning via
cross-validation.

The fourth algorithm was Elastic Net (Zou and
Hastie 2005). Here, apart from minimizing the sum of
squared errors done in the previous 3 algorithms (see
equation (6)), Elastic Net simultaneously minimizes the
weighted sum of the explanatory variables’ coefficients
(Zou and Hastie 2005; James et al. 2013; Kuhn and
Johnson 2013). As a result, Elastic Net shrinks the
contribution of some explanatory variables closer toward
zero (or set it to zero exactly). The degree of penalty
to the sum of the explanatory variable’s coefficients
is determined by a “penalty” hyperparameter denoted
by λ. The greater the penalty, the stronger shirking the
explanatory variable’s coefficient is, and the more regu-
larized the model becomes. In addition to the “penalty”
hyperparameter, Elastic Net also includes a “mixture”
hyperparameter denoted by α, which determines the
degree to which the sum of either the squared (known
as “Ridge”) or absolute (known as “LASSO”) coeffi-
cients is penalized. The estimates from Elastic Net are
defined by

β̂ =argminβ

⎧⎨
⎩

n∑
i=1

(
yi − x′

iβ
)2 + λ

⎛
⎝α

p∑
j=1

|βj|+(1 − α)

p∑
j=1

β2
j

⎞
⎠
⎫⎬
⎭,

(10)
where p is the number of parameters. In our hyper-
parameter-turning grid, we used 200 levels of penalty
from 10–10 to 10, equally spaced on the logarithmic-10
scale and 11 levels of the mixture from 0 to 1 on the linear
scale.

The fifth algorithm is Random Forest (Breiman 2001).
Random Forest creates several regression trees by boot-
strapping observations and including a random subset
of explainable variables at each split of tree building. To
make a prediction, Random Forest applies “bagging,” or
aggregating predicted values across bootstrapped trees.
Unlike the above algorithms, Random Forest allows for
(i) nonlinearity (i.e. the relationship between explanatory
and response variables does not constrain to be linear)
and (ii) interaction (i.e. different explanatory variables
can interact with each other). Here we used 500 trees and
tuned 2 hyperparameters: “mtry” and “min_n.” “mtry” is
the number of explainable variables that are randomly
sampled at each split. Here we used the integers between
1 and 167 (i.e. the maximum number of brain regions)
in our grid. “min_n” is the minimum number of observa-
tions to allow for a split of a node. In other words, min_n
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puts a limit on how trees grow. We used the integers
between 2 and 2000 for min_n in our grid.

The 6th algorithm is XGBoost (Chen and Guestrin
2016). XGBoost is another regression-tree based algo-
rithm. Like Random Forest, XGBoost also allows for
nonlinearity and interaction. Unlike “bagging” used in
Random Forest that builds multiple independent trees,
“boosting” used in XGBoost creates sequential trees
where a current tree adapts from previous trees. Accord-
ingly, XGBoost has “learning rate” as a hyperparameter,
denoted by η, to control for the speed of the adaptation.
Here we sampled “learning rate” from exponentiation
with a base of 10 and 3,000 exponents ranging linearly
from −10 to −1. XGBoost’s trees are also different
from regular regression trees in many aspects. They,
for instance, require a “loss reduction” hyperparameter,
denoted by γ , to control for the conservativeness in tree
pruning. We sampled “loss reduction” from exponen-
tiation with a base of 10 and 3,000 exponents ranging
linearly from −10 to 1.5. We also tuned “tree_dept,” or
the maximum splits possible using integers from 1 to 15.
Additionally, we tuned “sample_size” or the proportion of
observations exposed to the fitting routine, using 3,000
numbers ranging from 0.1 to 0.99 on the linear scale.
Similar to Random Forest, here we used 500 trees and
tuned “mtry” from 1 to 167 and “min_n” from 2 to 1,000.
To cope with many hyperparameters, we used a Latin
hypercube grid with a size of 3,000.

The 7th to 9th algorithms are SVM for regression, also
known as Support Vector Regression, with 3 different
kernels: linear, polynomial, and RBF (Cortes and Vapnik
1995; Drucker et al. 1996). SVM includes a “margin of
tolerance” hyperparameter, denoted by ε. The “margin of
tolerance” signifies an area around a hyperplane where
no penalty is given to errors following:

min

{
1
2

‖β‖2 + C
n∑

i=1

(
ξi + ξ ∗

i

)}

with constraints:

yi − xT
i β − β0 ≤ ε + ξi

xT
i β + β0 − yi ≤ ε + ξ ∗

i
ξi, ξ ∗

i ≥ 0
, (11)

where ξ are nonzero slack variables that are allowed to
be above (ξi) and below (ξ ∗

i ) the margin of tolerance, and
C is a “cost” hyperparameter. A higher “cost” indicates
higher tolerance to data points outside of the “margin
of tolerance”. Here we sampled the “margin of tolerance”
using 30 numbers from 0 to 0.2 on the linear scale. As for
the “cost,” we sampled it from exponentiation with a base
of 10 and 15 exponents ranging linearly from −3 to 1.5.
To allow for nonlinearity and interaction, researchers can
apply kernel tricks to transform the data into a higher-
dimensional space. Accordingly, in addition to using a
linear kernel, we also applied polynomial and RBF ker-
nels. For the polynomial kernel, we needed to tune 2

additional hyperparameters: “degree” and “scale factor”.
We sampled “degree” from the numbers 1, 2, and 3 and
“scale factor” from exponentiation with a base of 10 and
10 exponents, ranging linearly from −10 to −1. As for the
RBF kernel, we sampled another hyperparameter “RBF
sigma” from exponentiation with a base of 10 and 10
exponents, ranging linearly from −10 to 0.

Explaining the algorithms
We applied different methods to help explain how each
algorithm drew information from 167 brain regions
when making predictions (Molnar 2019). We focused our
analyses on the g-factor, so that we can compare our
modeling explanation with prior findings with a similar
exploratory and response variable in adults (Sripada et al.
2020).

Variable importance: coefficients and SHapley Additive
exPlanation

Variable importance refers to the relative contribution
of each explanatory variable (i.e. brain region) in mak-
ing a prediction. To better understand the similarity in
contribution from each brain region based on differ-
ent algorithms, we calculated Spearman’s correlation
between variable importance of different algorithms. For
the mass univariate analyses, the OLS multiple regres-
sion and Elastic Net, we used the coefficient magni-
tude as a measure for variable importance. Note for the
mass univariate analyses, we did not apply any multiple-
comparison correction when examining Spearman’s cor-
relations in variable importance with other algorithms,
so that the number of explanatory variables stayed the
same across algorithms. For Random Forest, XGBoost and
SVM, we applied SHapley Additive exPlanation (SHAP)
(Lundberg and Lee 2017), to compute variable impor-
tance. We implemented SHAP using the fastshap package
(https://bgreenwell.github.io/fastshap/).

In addition to examining the similarity in variable
importance across algorithms, we also tested how vari-
able importance found in the current study was in line
with prior findings (Sripada et al. 2020). Sripada et al.
(2020) have recently used young adult data from the
Human Connectome Project (HCP) dataset and examined
the multivariate relationship between task-fMRI from
the similar n-back task and the g-factor. They used an
algorithm based on the Principal Component Regression
(PCR) and regressed the g-factor on the first 75 princi-
pal components (PCs). To explain the regions that were
related to the g-factor, they projected all PCs back to the
brain space, weighted by the magnitude of the regression.
Fortunately, Sripada et al. (2020) uploaded this weighted,
PCR brain map on https://balsa.wustl.edu/study/v0D7.

We downloaded and parcellated Sripada et al.’s
(2020) brain map using Destrieux’s for cortical surface
and ASEG for subcortical regions. We then examined
Spearman’s correlations between our variable impor-
tance from different algorithms and Sripada et al.’s
(2020) weighted, PCR brain map. Given the differences in

https://bgreenwell.github.io/fastshap/
https://balsa.wustl.edu/study/v0D7
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the age of ABCD vs. HCP participants and the superiority
of cortical surface in brain registration across ages
(Ghosh et al. 2010), we separately computed Spearman’s
correlations on the cortical surface alone and on
the whole brain (including both cortical surface and
subcortical volume).

Variable selection for variable importance: conventional
P-value and eNetXplorer

Here, we only focused on variable selection methods
designed for algorithms based upon the general linear
model, including mass univariate analyses, the OLS
multiple regression, and Elastic Net. We examined the
variable selection of these algorithms using the training
set. With the mass univariate analyses, we determined
brain regions that were significantly associated with
the g-factor using FDR and/or Bonferroni corrections
(α-level = 0.05). With the OLS multiple regression, we
defined significant regions as those with a P-value < 0.05
coefficient.

With Elastic Net, we selected the best mixture
hyperparameters from the previously run grid search and
applied eNetXplorer (Candia and Tsang 2019) to fit 2 sets
of many Elastic Net models. In one set, the models were
fitted to predict the true response variable (the g-factor;
target models), while in the other set the models were
fitted to predict the same response variable randomly
permuted (null permuted models). We split the data into
10 folds 100 times (100 runs; eNetXplorer default), and
then in each run, the target models were repeatedly
trained on 9 folds and tested on the leftover fold.
Additionally, for each cross-validation run of the target
models, there were 25 permutations of the null permuted
models (eNetXplorer default). We defined the explana-
tory variables’ (brain regions) coefficient for each run, β ′,
as the average of nonzero model coefficients across all
folds in a given run. Across runs, we used an average of a
model coefficient weighted by the frequency of obtaining
a nonzero model coefficient per run. See the detailed
implementation of eNetXplorer in Candia and Tsang
(2019). Formally, we defined an empirical P-value as:

Pval = 1
1+nr ∗ np

⎧⎨
⎩1+

nr∑
r=1

np∑
per=1

Θ
(∣∣βr,per

null

∣∣ −
∣∣∣βr

target

∣∣∣)
⎫⎬
⎭ ,

(12)

where Pval is an empirical P-value, r is a run index, nr
is the number of runs, per is a permutation index, np is
the number of permutations, � is the right-continuous
Heaviside step function and |β | is the magnitude of an
explanatory variable’s coefficient. That is, eNetXplorer
uses the proportion of runs in which the null models
performed better than the target models to establish
statistical significance for each explanatory variable’s
coefficient. We implemented eNetXplorer using the
eNetXplorer package version 1.1.2 (https://github.com/
cran/eNetXplorer).

To demonstrate the differences in variable selection
of the OLS multiple regression and eNetXplorer, we cre-
ated plots to visualize coefficient magnitude and uncer-
tainty estimates as a function of hyperparameters of
Elastic Net and multicollinearity. For uncertainty esti-
mates, we used SE of the coefficients for the OLS multiple
regression and standard deviation (SD) of the permuted
null coefficients from eNetXplorer for Elastic Net. As for
hyperparameters of Elastic Net, we created 3 plots with
different solutions: full Elastic Net (i.e. tuning both the
“mixture” (α) and “penalty” (λ) hyperparameters), Ridge
(i.e. fixing the mixture at 0 and tuning the penalty)
and LASSO (i.e. fixing the mixture at 1 and turning the
penalty). Lastly, we quantified multicollinearity of the
brain regions using variance inflation factors (VIF) cal-
culated from the model fit of the unregularized model
(i.e. the OLS multiple regression).

Prediction pattern and directionality: univariate effects and
accumulated local effects

Here we demonstrated the pattern (i.e. linearity vs. non-
linearity) and directionality (i.e. positive vs. negative) of
the relationship between task-based fMRI activity at dif-
ferent brain regions and the g-factor based on different
algorithms. For mass-univariate analyses, we plotted a
“univariate effect,” a fitted line between fMRI activity at
each different region and their associated predicted val-
ues of the g-factor, using the “effects” package (Fox and
Weisberg 2018). For multivariate algorithms, we plotted
ALE (Apley and Zhu 2020). ALE is defined as follows:

f̂j,ALE(x) = ˆ̃
fj,ALE(x) − 1

n

n∑
i=1

ˆ̃
fj,ALE

(
x(i)

j

)

where

ˆ̃
fj,ALE(x) =

kj(x)∑
k=1

1
nj(k)

∑
i:x(i)

j
∈Nj(k)

[
f
(
zk,j, x(i)

\j

)
− f

(
zk−1,j, x(i)

\j

) ]
,

(13)

First, ALE creates a grid, z, that splits the values of an
explanatory variable, j, into small windows. The differ-
ence between predicted values of xj at the two edges of
each window is the “effect.” The summation of the effects
across data points within the same window, k, is the “local
effect.” The accumulation of local effects from the first
window to the last window then constitutes “accumu-
lated local effects, ALE”. Finally, the value of ALE is mean
centered, such that the main effect of the explanatory
variable at a certain value is compared to the average
prediction (Molnar 2019). Accordingly, with ALE, we could
plot a line to show how a brain region impacted the
prediction of each algorithm on average. We computed
ALE with a grid size of 20 using the FeatureEffect command
from the iml package (https://christophm.github.io/iml/).

https://github.com/cran/eNetXplorer
https://github.com/cran/eNetXplorer
https://christophm.github.io/iml/
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With univariate effects and ALE, we examined the
similarity in the pattern and directionality across algo-
rithms. We picked the top 30 regions with the highest
variable importance across algorithms. More specifically,
we were interested to see which multivariate algorithms
provided the pattern and directionality similar to those
of univariate algorithms.

Interaction: Friedman’s H statistic

Some algorithms, including Random Forest, XGBoost,
and SVM with RBF and polynomial kernels, allow for
interactions among explanatory variables. Here, we used
Friedman’s H-statistic (Friedman and Popescu 2008) to
reveal interaction strength from different brain regions.
Friedman’s H-statistic relies on a partial dependent (PD)
function (Friedman 2001):

PDxs (xs) = 1
n

n∑
i=1

f̂
(
xs, x(i)

c

)
, (14)

where xs is the explanatory variable of interest, and x(i)
c

are actual values for all other explanatory variables.
Accordingly, PD indicates the average marginal effect
for a given value of the explanatory variable xs (Mol-
nar 2019). Friedman’s H-statistic, in turn, is estimated
from

H2
j =

n∑
i=1

[
f̂
(
x(i)

)
− PDj

(
x(i)

j

)
− PD−j

(
x(i)

−j

) ]2/ n∑
i=1

f̂2
(
x(i)

)
,

(15)

where H is the Friedman’s H-statistic. Here f̂ (x(i)) is
the prediction function with all explanatory variables
included. PDj(x

(i)
j ) and PD−j(x

(i)
−j)are PD for an explanatory

variable j, and for those without the explanatory variable
j, respectively. In the case of no interaction, f̂ (x(i)) is
the same with the sum of PDj(x

(i)
j ) and PD−j(x

(i)
−j), which

results in Friedman’s H-statistic of 0. Friedman’s H-
statistic of 1 means that the variation of the prediction is
only due to interaction. Accordingly, a higher Friedman’s
H-statistic indicates a higher interaction strength from a
certain explanatory variable. We computed Friedman’s
H-statistic using the Interaction$new() command from
the iml package (https://christophm.github.io/iml/) and
plotted 20 brain regions with the highest Friedman’s H-
statistic from each algorithm.

Please see our Github page for our scripts and detailed
outputs: https://narunpat.github.io/TaskFMRIEnetABCD/
ExplainableMachineLearningForTaskBasedfMRI.html.

Results
The g-factor
Figure 1 shows the CFA of the g-factor. The bifactor model
of the g-factor shows a good fit: scaled, robust CFI = 0.992,
TLI = 0.983, and RMSE = 0.028 (90% CI = 0.021–0.035).

Predictive performance
Figure 2 shows the bootstrap distributions of predictive
performance across algorithms and response variables.
Overall, the mass univariate analyses, with either
the FDR or the Bonferroni correction, consistently
performed worse than multivariate algorithms across
response variables and prediction matrices. To sta-
tistically compare the predictive ability of linear and
additive multivariate algorithms against nonlinear
and interactive multivariate algorithms along with
mass-univariate analyses, we created the bootstrap
distributions of the differences in predictive performance
by subtracting the performance of the OLS multiple
regression (Fig. 3, Supplementary Fig. 1) and Elastic Net
(Fig. 4, Supplementary Fig. 2) from other algorithms.
Note to highlight the differences between linear and
additive vs. nonlinear and interactive multivariate
algorithms, we created Supplementary Figures 1 and
2 the comparisons without mass univariate analyses.
These comparisons revealed problems with the OLS
multiple regression. For most response variables, the
predictive performance of the OLS multiple regression
was significantly worse than most of the ML algorithms.
Moreover, when the response variables were not-well
predicted (e.g. sequential memory, Flanker, auditory-
verbal, and pattern speed), the predictive performance
of the OLS multiple regression was even worse than
that of mass univariate analyses. By contrast, across
the response variables, the performance of Elastic Net
was either on par with or better than other algorithms.
Lastly, fMRI during the n-back task predicted the g-factor
well, compared to other out-of-scanner cognitive tasks,
especially with multivariate algorithms.

Explaining the algorithms
Variable importance: coefficients and SHAP

Figure 5 shows the variable importance of models
predicting the g-factor across all algorithms. Figure 6
shows Spearman’s correlations in variable importance
among the algorithms. The variable importance of
different algorithms appear to be significantly related
(i.e. ρ with P-value < 0.05), but in varying degrees. For
instance, the variable importance of Elastic Net was
more similar to that of SVM of different kernels (ρ ∼ 0.7)
than that of mass-univariate algorithm (ρ ∼ 0.2). On
the other hand, the variable importance of mass-
univariate algorithms seemed more closely related to
that of Random Forest and XGBoost (ρ ∼ 0.5–0.6) than
other algorithms. Accordingly, this shows that different
algorithms drew information from areas across the brain
differently.

As for the similarity with Sripada et al.’s (2020)
findings, we found significant Spearman’s correlations
(P-value < 0.05) across all but one algorithm, the OLS
multiple regression. These significant correlations were
small in magnitude (ρ ∼ 0.2–0.3 on the cortical surface
and ρ ∼ 0.2 on the whole brain). Still, the OLS multiple

https://christophm.github.io/iml/
https://narunpat.github.io/TaskFMRIEnetABCD/ExplainableMachineLearningForTaskBasedfMRI.html
https://narunpat.github.io/TaskFMRIEnetABCD/ExplainableMachineLearningForTaskBasedfMRI.html
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Fig. 1. CFA of the bifactor model of the g-factor. The number in each line reflects the magnitude of standardized parameter estimates. The dotted
lines indicate marker variables that were fixed to 1. Pic Vocab = Picture Vocabulary; Reading Recog = Oral Reading Recognition; Pattern Speed = Pattern
Comparison Processing task.

regression seemed to be the only algorithm that yielded
inconsistent results with Sripada et al.’ (2020) findings.

Variable selection for variable importance: conventional
P-value and eNetXplorer

Figure 5 plots variable selection for the variable impor-
tance of models predicting the g-factor on the brain.
These plots include mass univariate analyses with FDR
and Bonferroni corrections, the OLS multiple regression,
and Elastic Net with eNetXplorer. Figure 7 plots variable
selection for the OLS multiple regression and Elastic Net
to highlight the differences between the OLS multiple
regression and eNetXplorer in coefficient magnitude and
uncertainty estimates as a function of hyperparame-
ters of Elastic Net and multicollinearity. The OLS mul-
tiple regression selected 23 regions while eNetXplorer
selected 27, 32, and 21 regions for full Elastic Net, Ridge,
and LASSO, respectively (Figs. 7 and 8). Of these selected
regions, only 14 regions were the same regions among
the OLS multiple regression, full Elastic Net, Ridge, and
LASSO, and 20 regions were the same among Elastic
Net, Ridge, and LASSO. Compared to Elastic Net (penalty
at 0.13) and LASSO (penalty at 0.01), Ridge led to the
highest penalty at 0.36, resulting in the smallest coeffi-
cient magnitude. As for uncertainty estimated, we found
that, for the OLS multiple regression, the coefficient SE
linearly increased as a function of the VIF. In contrast, for

eNetXplorer, the changes in the permuted null coeffi-
cient SD as a function of the VIF were less pronounced.

Prediction pattern and directionality: univariate effects and
accumulated local effects

Figure 9 plots univariate effects and ALE of models pre-
dicting the g-factor across all algorithms. They show
the prediction pattern and directionality of the rela-
tionship between predictive values of the g-factor based
on different algorithms and fMRI activity at each brain
region. Across brain regions, most of the multivariate
algorithms, apart from the OLS multiple regression, had
a similar pattern and direction (i) with each other and
(ii) with the univariate effects. ALE of the OLS multi-
ple regression deviated from that of other multivari-
ate algorithms in many regions. Moreover, ALE of the
OLS multiple regression demonstrated a relationship in
an opposite direction to univariate effects in several
regions, such as the left intra-transverse parietal sulcus,
left middle frontal gyrus, left and right middle frontal sul-
cus, right supplementary precentral sulcus, left angular
gyrus, right post ramus of the lateral sulcus, and right
superior parietal gyrus.

Interaction: Friedman’s H statistic

Figure 10 shows interaction plots based on Friedman’s
H-statistic. They show the interaction strength between
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Fig. 2. Bootstrap distributions of predictive performance across algorithms and response variables. The thicker lines reflect 65% bootstrap confidence
intervals and the thinner lines reflect 95% confidence intervals. MAE = the mean absolute error; RMSE = root-mean-square error.

each brain region and all other brain regions for 4 inter-
active algorithms predicting the g-factor, including Ran-
dom Forest, XGBoost, and SVM with RBF and polynomial
kernels. The interaction strength between brain regions
for XGBoost and SVM with polynomial and RBF kernels
accounted for less than 6% of variance explained per
region. Random forest, on the other hand, had 2 explana-
tory variables that accounted for 15% and 20% of vari-
ance explained per region.

Discussion

We applied the explainable ML framework (Molnar
2019; Belle and Papantonis 2021) to predict children’s
cognition from task-based fMRI during the n-back task,
using the ABCD dataset (Casey et al. 2018). We first
compared the performance of nine algorithms in their
ability to predict individual differences in cognitive
abilities across 12 response variables and found better
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Fig. 3. Bootstrap distributions of the differences in predictive performance between the OLS multiple regression and other algorithms. For Pearson’s
correlation and traditional r square, values lower than zero indicates lower performance than the OLS multiple regression. For MAE and RMSE, values
higher than zero indicates lower performance than the OLS multiple regression. The thicker lines reflect 65% bootstrap confidence intervals and the
thinner lines reflect 95% confidence intervals. MAE = mean absolute error; RMSE = root-mean-square error.

predictive performance from ML algorithms, compared
to the conventional mass-univariate analyses and
the OLS multiple regression. Despite being a linear
and additive algorithm, Elastic Net came up among
the top-performing algorithm. We then implemented
various explainers to explain how these algorithms drew
information from task-based fMRI to predict the g-factor.

With these explainers, we found (i) some similarity
in variable importance across algorithms and studies,
(ii) differences in variable selection between the OLS
multiple regression and Elastic Net, (iii) similar direc-
tionality in the relationship with the g-factor between
ML and mass-univariate algorithms, and (iv) interaction
from certain brain regions as captured by interactive
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Fig. 4. Bootstrap distributions of the differences in predictive performance between Elastic Net and other algorithms. For Pearson’s correlation and
traditional r square, values lower than zero indicates lower performance than Elastic Net. For MAE and RMSE, values higher than zero indicates lower
performance than Elastic Net. The thicker lines reflect 65% bootstrap confidence intervals and the thinner lines reflect 95% confidence intervals.
MAE = mean absolute error; RMSE = root-mean-square error.

algorithms. These explainers also showed potential
problems of the OLS multiple regression, including
having lower consistency in variable importance with a
prior study (Sripada et al. 2020) and having a relationship
with the g-factor in the opposite direction with the mass-
univariate algorithms at many regions, suggesting the
presence of suppression (Ray-Mukherjee et al. 2014).

For predictive performance, the conventional mass-
univariate algorithms, either with the FDR or the more-
conservative Bonferroni correction, showed worse perfor-
mance than most multivariate algorithms across most
response variables of individual differences in cognitive
abilities. Our findings using task-based fMRI are consis-
tent with recent work that compared the performance
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Fig. 5. Variable importance of models predicting the g-factor across
all algorithms. Variable importance for Sripada et al. (2020) is based
on a weighted, PCR. Variable importance for Mass Univariate Analyses,
OLS multiple regression, and Elastic Net is the coefficient values while
variable importance for SVM, Random Forest, XGBoost is the absolute
value of SHAP. We plotted variable importance on the brain using ggseg
(Mowinckel and Vidal-Piñeiro 2019).

between mass-univariate and multivariate algorithms
(via SVM with the RBF kernel) to predict individual differ-
ences in cognition from resting-state fMRI and structural
MRI (Marek et al. 2022). Accordingly, across different MRI
modalities, using multivariate algorithms appear to be a
more promising approach than the mass-univariate algo-
rithms to ensure reproducibility of the brain-cognition
relationship and to use MRI as a predictive tool for indi-
vidual differences.

Nonetheless, simply including all brain regions as
explanatory variables in an OLS multiple regression

Fig. 6. Spearman’s correlations in variable importance between algo-
rithms. We calculated variable importance for models predicting the g-
factor. Variable importance for Sripada et al. (2020) is based on a weighted,
PCR. Variable importance for mass univariate analyses, OLS multiple
regression, and Elastic Net is the coefficient magnitude (i.e. the absolute
value of the coefficients). Variable importance for SVM, Random Forest,
XGBoost is the absolute value of SHAP.

model may not be ideal for prediction. The OLS multiple
regression had poorer predictive performance than ML
algorithms for most response variables. More impor-
tantly, its predictive performance for response variables
that were hard to predict across algorithms (e.g. sequen-
tial memory, Flanker, auditory-verbal, and pattern speed)
was very poor, indicated by negative traditional r square
and lowest RMSE, even when compared to the mass-
univariate algorithms. By contrast, adding regularization
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Fig. 7. Variable selection for the variable importance of the OLS multiple regression (A) and Elastic Net (via eNetXplorer) (B) predicting the g-factor. We
only plotted regions with P < 0.05.

to the OLS multiple regression algorithm in the form
of Elastic Net (Zou and Hastie 2005) appeared to boost
predictive performance across response variables. In
fact, the performance of Elastic Net, despite being a
less complex ML algorithm given its constraints on
linearity and additivity, was on par with, and in many
cases better than, many nonlinear and interactive algo-
rithms, including Random Forest, XGBoost, and SVM of
different kernels. This finding is consistent with work on

resting-state fMRI, showing that a penalized regression-
based algorithm, such as Elastic Net, performed just as
well as other algorithms (Dadi et al. 2019). Given that
Elastic Net is readily interpretable, it can be considered a
parsimonious choice for future task-based fMRI studies.

We observed variability in the level of predictive
performance among the 12 response variables of indi-
vidual differences in cognitive abilities, especially with
multivariate algorithms. It is not surprising to see the
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Fig. 8. Uncertainty estimates of explanatory variables (brain regions) as
a function of VIF for the OLS multiple regression, Elastic Net, Ridge, and
LASSO predicting the g-factor. We calculated the VIF based on the OLS
multiple regression. For the OLS multiple regression, confidence intervals
are the coefficients ±2 multiplied by coefficient’s SE. For the Elastic Net,
Ridge, and LASSO, confidence intervals are the permuted null coefficients
±2 multiplied by the permuted null SD.

highest predictive performance from the behavioral
performance during the n-back fMRI task. Given that
the fMRI and behavioral data were collected at the same
time, our predictive models may capture idiosyncratic
variation due to the task and session itself (e.g. arousal,

attention and other processes). As for out-of-scanner
tasks, our predictive models performed better for
some cognitive tasks (e.g. picture vocabulary, reading
recognition and matrix reasoning) than others (e.g.
sequential memory, Flanker, auditory-verbal, and pattern
speed). More importantly, capturing the shared variance
of behavioral performance across different tasks using
the latent variable, the g-factor, led to higher predictive
performance than any individual task. This suggests that
our framework can be used to build predictive models
for individual differences in cognitive abilities in general,
and is not confined to specific tasks or processes.

Our implementation of various explainers allowed us
to better understand how each algorithm made a predic-
tion of the g-factor. First, variable importance enabled us
to move beyond simply estimating the contribution from
each separate brain region (i.e. marginal importance),
commonly done in mass-univariate analyses. Instead,
with variable importance, we could investigate the con-
tribution from multiple regions in the same model (i.e.
partial importance; Chen et al. 2019; Debeer and Strobl
2020). Here, we found different degrees of similarity in
variable importance across algorithms. On the one hand,
the variable importance of mass-univariate algorithms,
which are the dominant approach for explaining the
brain-cognition associations in the neuroimaging com-
munity (Friston 2007), were more closely related to tree-
based algorithms, Random Forest, and XGBoost, than
other algorithms. On the other hand, the top two algo-
rithms that predicted the g-factor well in the current
study, Elastic Net and SVM with the RBF kernel, had
variable importance that was correlated well with each
other (ρ > 0.7). This suggests that the brain information
similarly drawn by Elastic Net and SVM with the RBF
kernel in our study allowed us to capture individual
differences in the g-factor relatively well.

More importantly, we also tested the similarity in vari-
able importance found in the current study with Sripada
et al.’s (2020). Variable importance from all algorithms,
except for the OLS multiple regression, was significantly
correlated with that of Sripada et al. (2020). While sig-
nificant, these correlations were small in magnitude,
perhaps due to many different characteristics between
Sripada et al.’s (2020) and our study. For instance, Sripada
et al. (2020) built a predictive model from adults’ data
(as opposed to children’s data), applied principle compo-
nent regression on nonparcellated regions (as opposed
to different univariate and multivariate algorithms on
parcellated regions) and used a slightly different varia-
tion of the n-back task (Barch et al. 2013; Casey et al.
2018) and of the response variables for individual dif-
ferences in cognitive abilities. Additionally, we also saw
more similarity in variable importance with Sripada et al.
(2020) on the cortical surface, compared to the whole
brain. This might be due to the superiority of cortical
surface in brain registration across ages, compared to the
subcortical volumetric regions used in the whole brain
(Ghosh et al. 2010). Altogether, this suggests some degree
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Fig. 9. Univariate effects and ALE of models predicting the g-factor across all algorithms. These plots show the prediction pattern and directionality of
the relationship between predictive values of the g-factor from different algorithms and fMRI activity at each brain region. We plotted the top 30 brain
regions with the highest variable importance across algorithms.

of consistency in variable importance across studies for
most of the algorithms examined here, apart from the
OLS regression.

We showed variable selection for different algorithms:
mass univariate analyses with FDR and Bonferroni
corrections, the OLS multiple regression, and Elastic
Net with eNetXplorer (Candia and Tsang 2019). Being
able to explain and select brain regions that exhibited

an above-chance-level contribution to the prediction
of Elastic Net via eNetXplorer was of great importance,
given that Elastic Net had high predictive performance in
the current study. Variable selection for the OLS multiple
regression and eNetXplorer relies on 2 factors: coefficient
magnitudes and uncertainty estimates. Accordingly, we
created Figure 8 to investigate coefficient magnitudes
and uncertainty estimates at different levels of the
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Fig. 10. Interaction plots based on Friedman’s H-statistic. H-statistic here indicates the interaction strength between each brain region and all other
brain regions for different algorithms predicting the g-factor. Higher values indicate higher strength of the interaction from a particular brain region.
Here we plotted the top 20 brain regions with the highest Friedman’s H-statistic at each algorithm.

mixture hyperparameter, including tuned (Elastic Net)
or fixed at either 0 (Ridge) or 1 (LASSO), and multi-
collinearity. For coefficient magnitudes, we saw lower
coefficient magnitude from an algorithm with higher
regularization: ranking from Ridge, (penalty (λ) = 0.36),
Elastic Net (penalty = 0.13), LASSO (penalty = 0.01) to
the OLS multiple regression, which could be viewed
as having penalty at 0. As for uncertainty estimates,

we saw 2 behaviors of eNetXplorer. First, in our data,
the permutation used in eNetXplorer showed more
consistency in uncertainty estimates across the different
levels of multicollinearity (as reflected by VIF), as
compared to the OLS multiple regression. Second, a
higher regularization, indicated by the penalty, led to
not only a smaller coefficient magnitude of the target
model, but also a smaller standard deviation (SD) of the
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permuted null model, which is the uncertainty estimate
for eNetXplorer. This is because eNetXplorer used the
same hyperparameters for both the target and permuted
null models, which were based on the hyperparameters
associated with the best predictive performance for the
target model during cross-validation. eNetXplorer then
tested which of the brain regions contributed to the
prediction of regularized regression higher than chance
by comparing regularized coefficients of the target
models against regularized coefficients of the permuted
null models. Thus, a higher reduction in coefficient
magnitude based on the penalty hyperparameter does
not necessarily mean a smaller number of regions
selected. To illustrate this, in our case, Ridge led to
the highest penalty, which resulted in the smallest
coefficient magnitude, but had the highest number of
regions selected. Altogether, as a result of Elastic Net
hyperparameters and multicollinearity, some of the
regions with high VIF had high SE and were not selected
by the OLS multiple regression, but were selected by
eNetXplorer. In contrast, some of the regions that were
selected by the OLS multiple regression had smaller
relative magnitude and were not selected by eNetXplorer.
Thus, eNetXplorer allowed us to explain and select
variables that contributed to the prediction given the
combination of Elastic Net hyperparameters estimated
(Candia and Tsang 2019).

Next, to reveal the pattern and directionality of the
relationship between task-based fMRI activity and the
g-factor based on different algorithms at different brain
regions, we used univariate effects and ALE. For the pat-
tern, ALE revealed the expected pattern from each algo-
rithm. For instance, ALE showed a linear pattern from
linear algorithms, such as the OLS multiple regression
and Elastic Net. Similarly, ALE also showed a nonlin-
ear pattern from nonlinear algorithms, such as Random
Forest and XGBoost. As for the directionality, we saw
inconsistency in the directionality between ALE from
the OLS multiple regression and univariate effects from
mass-univariate analyses. For example, there were many
brain regions that were shown to have a positive rela-
tionship according to univariate effects, but have a neg-
ative relationship according to ALE from the OLS mul-
tiple regression. Some of these regions included the left
intra/transverse parietal sulcus, left middle frontal gyrus,
left and right middle frontal sulcus, right supplementary
precentral sulcus, left angular gyrus and right supe-
rior parietal gyrus. Accordingly, adding multiple brain
regions into an OLS multiple-regression model appeared
to change the directionality of the relationship each of
the regions had when considered by itself. This may indi-
cate the “suppression” effect whereby the directionality
of an explanatory variable depends on its relationship
with other explanatory variables (Courville and Thomp-
son 2001; Beckstead 2012; Ray-Mukherjee et al. 2014). For-
tunately, all of the ML algorithms we tested did not show
this inconsistency. Indeed, regularizing the coefficients in
the OLS multiple regression as implemented by Elastic

Net appeared to keep the directionality of the relation-
ship in line with that of mass-univariate analyses.

Finally, using Friedman’s H-statistic (Friedman and
Popescu 2008), we also demonstrated the interactions
among brain regions that were captured by each of the
four interactive algorithms: Random Forest, XGBoost and
SVM with polynomial and RBF kernels. The interaction
strength between brain regions for XGBoost and SVM
with polynomial and RBF kernels was quite weak,
accounting for less than 6% of variance explained per
region. Random forest, on the other hand, had 2 brain
regions, the right superior frontal sulcus and right
intraparietal sulcus, that accounted for 15% and 20%
of variance explained per region. Nonetheless, these 4
algorithms that allowed for interactions generally did not
perform well over noninteractive Elastic Net in terms of
predictive performance for the g-factor. This means that
not accounting for interactions may be parsimonious
enough for the current data.

Given the emergence of large-scale, task-based fMRI
studies (Van Horn and Toga 2014), one potential use of
the explainable ML framework (Molnar 2019; Belle and
Papantonis 2021) is to build explainable, predictive mod-
els for future studies. This is similar to polygenic scores in
genomics (Torkamani et al. 2018), where geneticists use
large discovery datasets to build models that reflect the
influences of SNPs across the genome on certain pheno-
types of interest in the form of polygenic scores. Polygenic
scores improve the replicability of genetics studies, com-
pared to the classical “candidate-gene” approach (Bogdan
et al. 2018). Polygenic scores are explainable based on the
influences of each SNP associated with phenotypes in
the discovery dataset (Torkamani et al. 2018). Here we
suggest that neuroimagers can take a similar approach
to build a predictive model based on task-based fMRI
from large-scale studies. In fact, our predictive perfor-
mance for the g-factor from just one fMRI n-back task
(r square ∼ 0.2) was considerably higher than that from
a polygenic score (r square < 0.1) (Allegrini et al. 2019).
This encourages the potential use of task-based fMRI for
individual differences in cognition.

To build predictive models for individual differences
in cognition from task-based fMRI, there are existing
toolboxes, particularly designed for neuroimaging, such
as PRoNTO (Schrouff et al. 2013), pyMVPA (Hanke et al.
2009), and Neurominer (Hanke et al. 2009). Here, we took
a more general ML approach using the tidymodels (Kuhn
et al. 2020) and other R packages. Given the availability of
a number of algorithms in tidymodels and the versatility
of the R language, our approach is more flexible and
readily scalable. Moreover, unlike the neuroimaging tool-
boxes, using the R language allowed us to integrate the
predictive modeling framework with modern explain-
ers, such as SHAP (Lundberg and Lee 2017), eNetXplorer
(Candia and Tsang 2019), ALE (Apley and Zhu 2020),
and Friedman’s H-statistic (Friedman and Popescu 2008).
These explainers are not likely to be available in the
purposefully built toolboxes for neuroimaging.
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Our study has limitations. While the ABCD dataset is
one of the largest datasets with task-based fMRI available
(Casey et al. 2018), its sample as of 2020 has, by design,
a narrow age range. The predictive model built from
our study may only be generalized to children aged 9–
10 years old. However, given that the study will trace
the participants until they are 19–20 years old, future
studies will be able to use a similar approach to ours and
expand the age range. Next, our method shown relied on
Freesurfer’s parcellation (Fischl et al. 2002; Destrieux
et al. 2010), which is the only parcellation available
postprocessed from the ABCD release 2.0.1 (Yang and
Jernigan 2019). This commonly used parcellation is based
on subject-specific anatomical landmarks, but its regions
are relatively large. Future studies may need to demon-
strate predictive ability with smaller parcels, which will
lead to more regions, and in turn, more explanatory
variables, but might also result in higher inconsistencies
in identifying areas across participants. Lastly, there
were many large outliers in the data that we dealt with
via listwise deletion. Many of our algorithms tested,
including the mass univariate, OLS multiple regression,
and Elastic Net, all rely on minimizing the sum of
the squared errors, which can be disproportionately
influenced by outliers (Maronna 2011; Rousselet et al.
2017). In the future, it may be useful to test the workflow
that mitigates the influences of outliers without using
the listwise deletion (Lawrence and Marsh 1984; Maronna
2011).

To conclude, applying the explainable ML framework
(Molnar 2019; Belle and Papantonis 2021) to task-based
fMRI from a large-scale study, we demonstrated poorer
predictive ability from the conventional mass-univariate
approach and the OLS multiple regression. Drawing infor-
mation from multiple brain areas across the whole brain
via different mL algorithms appeared to improve pre-
dictive ability. Elastic Net, a linear and additive algo-
rithm, provides predictive performance on par with, if not
better than, other algorithms. Using different explainers
allowed us to explain different aspects of the predictive
models: variable importance, variable selection, pattern
and directionality and interaction. This in turn enabled
us to pinpoint problems with the OLS multiple regression.
We believe our approach should enhance the scientific
understanding and replicability of task-based fMRI sig-
nals, similar to what polygenic scores have done for
genetics.
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