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The protection of marine habitats from human-generated underwater noise is an emerging challenge. 
Baseline information on sound levels, however, is poorly available, especially in the Mediterranean 
Sea. To bridge this knowledge gap, the SOUNDSCAPE project ran a basin-scale, cross-national, long-
term underwater monitoring in the Northern Adriatic Sea. A network of nine monitoring stations, 
characterized by different natural conditions and anthropogenic pressures, ensured acoustic data 
collection from March 2020 to June 2021, including the full lockdown period related to the COVID-19  
pandemic. Calibrated stationary recorders featured with an omnidirectional Neptune Sonar D60 
Hydrophone recorded continuously 24 h a day (48 kHz sampling rate, 16 bit resolution). Data were 
analysed to Sound Pressure Levels (SPLs) with a specially developed and validated processing app. 
Here, we release the dataset composed of 20 and 60 seconds averaged SPLs (one-third octave, base 10) 
output files and a Python script to postprocess them. This dataset represents a benchmark for scientists 
and policymakers addressing the risk of noise impacts on marine fauna in the Mediterranean Sea and 
worldwide.

Background & Summary
Underwater ambient sound levels are a critical component for the health of the marine ecosystems. Marine 
organisms are evolved to get relevant information by listening to the soundscape, whose acoustic signature 
reveals the occurrence of natural events and vocal species1,2. In this context, the input of underwater noise 
induced by human activities has been linked to detrimental effects on marine fauna3–7. As a result, the anthropo-
genic underwater noise has been recognised as a pollutant of international concern and has been addressed by 
international agreements8. The U.S. National Oceanic and Atmospheric Administration’s Ocean Noise Strategy 
(ONS), for example, focuses on the evaluation and management of the human-generated noise and its effect on 
marine species, supporting the goals of the U.S. National Ocean Policy9. Further, the European Union’s Marine 
Strategy Framework Directive (MSFD) requires the EU member states to monitor and mitigate noise pollution 
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to reach a “Good Environmental Status” of the marine environment. Setting up monitoring cross-border pro-
grammes aiming to evaluate the underwater sound levels at sub-regional scale is recommended in the MSFD 
context (EU Directive 2008/56/EC).

Global efforts on monitoring underwater sound levels resulted in long-term projects dedicated to target 
areas10, including, among others, the US Outer Continental Shelf and the US coastal waters (ADEON, NOAA 
CetSound Project, respectively), the British Columbia, the Vancouver Port waters, the Canadian Atlantic coast 
waters and the Gulf of St. Lawrence (ECHO program11, ESRF and SeaWays projects, respectively). Underwater 

Fig. 1  Soundscape recording stations in the Northern Adriatic Sea; vessel traffic (a) and bathymetry (b) are 
highlighted. Vessel traffic is represented as total number of vessel passages in 2020, obtained from EMODnet 
Human Activities, Vessel Density Map. (revision date 2022-03-21).

https://doi.org/10.1038/s41597-023-02033-1


3Scientific Data | (2023) 10:137 | https://doi.org/10.1038/s41597-023-02033-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

soundscapes have been investigated also in Australia12,13, Eastern, Southern and South East Asia14 and South 
Africa15 waters, as well as in Artic16 and Antartic17 waters.

Continuous sound monitoring EU projects have been established in the Northeast Atlantic (JOMOPANS 
and JONAS), in the Baltic Sea (BIAS) and in waters between Scotland and Ireland (COMPASS)18–21. In contrast, 
no extensive research on the underwater sound continuous levels has been developed in the Mediterranean 
Sea so far. Pilot monitoring studies have been run in the context of the EU QUIETMED project22 together with 
few other local studies23–25, including some done in the Adriatic Sea26–29. The EU Interreg Italy-Croatia project 
SOUNDSCAPE (Soundscapes in the North Adriatic Sea and their impact on marine biological resources) has 
been therefore established to implement a shared monitoring network for a coordinated transnational assess-
ment of the underwater ambient sound in the North Adriatic Sea (NAS). The Adriatic has been recognized as 
one of the important sub-regions of the Mediterranean Sea by the MSFD; the NAS is its shallowest, northern-
most part. Most of NAS is considered to be an Ecologically and Biologically Significant Area (EBSA, Convention 
on Biological Diversity), as well as hosting several marine and coastal Natura 2000 sites, and protected areas30. 
Whilst having a very vulnerable biodiversity31, NAS is highly impacted by increasing maritime traffic, tourism 
and resource exploitation32. As a result, NAS biota is currently under the combined pressure of the anthropo-
genic impact33 and climate change34,35.

The SOUNDSCAPE dataset presented in this paper contains 20 and 60 seconds averaged sound pressure lev-
els (SPLs) collected at nine monitoring stations, from the Gulf of Trieste till about the Middle Adriatic Pit (Fig. 1; 
Table 1), from March 2020 to June 2021. This dataset is essential for establishing baselines that document acous-
tic conditions over time on the regional scale and represents the first dataset of this kind in the Mediterranean 
Sea. The collected data are crucial to assess the ecosystem health, to evaluate the consequences of new possible 
marine development and to promote a knowledge-based management of the marine resources. Additionally, the 
SOUNDSCAPE dataset includes the most restrictive COVID-19-induced lockdown phase (March–April 2020), 
providing a unique benchmark for spatial and temporal comparative analysis.

Methods
The workflow shown in Fig. 2 summarizes the steps undertaken to obtain the SPL datasets from the underwater 
noise raw data collected in the field. The workflow entails two main blocks: (i) “Data Acquisition” describes the 
process of sound recording and wav files uploading on the SOUNDSCAPE-dedicated server to store the data;  
(ii) “Data Processing” shows the steps that lead to the processing of wav data to calculate Sound Pressure Level data.

The applied procedures are in accord to guidelines developed by other international projects or agreements10,36. 
Used terminology followed ISO 1840537, IEC 61260-1:201438 and JOMOPANS39 Terminology Standards and it is 
summarized in Table 2.

Hardware components and calibration.  The acoustic recordings were made by using autonomous 
passive underwater acoustic recorders (APUARs; Sono.Vault by Develogic Subsea Systems GmbH, Hamburg, 
Germany). Each recorder was featured with an omnidirectional broadband Neptune Sonar D60 Hydrophone 
characterized by a sensitivity around −192.7 dB re 1V/µPa (flat frequency response: 10 Hz – 20 kHz ± 3 dB). The 
processing chain includes a high-pass filter (cut-off frequency in the range of 3–10 Hz), a preamplifier and a 16 bit 
analogue to digital converter (ADC). The 16-Bit ADC has a high frequency reject filter with 500 kHz and it is 
otherwise limited by the input amplifier which has a bandwidth of approximately 100 kHz. The ADC is the last 
component in the processing chain. The data that is stored comes directly from the ADC.

The waterproof pressure resistant housing contained a programmable recorder with variable gain, a battery 
set consisting of lithium D-Cells and up to 1TB-SD memory cards.

Hydrophone calibration was achieved by the manufacturer using a calibrated reference projector; the refer-
ence projector was calibrated as well using a free-field three-transducer reciprocity calibration. Both procedures 

Monitoring station reference

Position Water 
depth (m) Sediment typeLongitude (E) Latitude (N)

MS1 – Venice (IT) 12°30.883′ 45°19.383′ 17 sand

MS2 – Rimini (IT) 12°42.656′ 44°10.254′ 18 sand

MS3 – Ancona (IT) 13°40.932′ 43°31.954′ 15 sand

MS4 – Trieste (IT) 13°33.917′ 45°37.095′ 25 sandy mud

MS5 – Susak Lošinj(HR) 14°17.293′ 44°29.545′ 40 rocks/sand

MS6 - Lošinj (HR) 14°34.510′ 44°32.747′ 37 sand

MS7 – Žirje(HR) 15°36.020′ 43°37.788′ 46 gravelly sand

MS8 – Split (HR) 16°25.336′ 43°29.895′ 40 slightly sandy mud

*MS9 – Ivana D (HR) 13°15.720′ 44°46.953′ 42 terrigenous sand

*MS9 – Ivana E (HR) Since 
Dec. 2020 13°14.674′ 44°44.687′ 42 terrigenous sand

Table 1.  Coordinates, bottom depth and sediment types of the recording locations. *MS9 position was changed 
because the Ivana D gas production platform collapsed in December 2020 and the whole area was closed and 
access restricted; the two positions are only few miles apart and the differences in the data collected are regarded 
not relevant.
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are compliant with the IEC 60565-1:2020 international standard40. The recorders were set to record continuously 
at a sampling rate of 48 kHz, providing a recording bandwidth of approximately 22 kHz with 16-bit resolution.

Additional information and hydrophone sensitivity curves in the pertinent frequency range are available in 
the SOUNDSCAPE Deliverables 3.2.141 and 3.6.342.

Acoustic data acquisition.  A total of nine APUARs were deployed (Fig. 1). In most of the stations, the record-
ers were anchored to the bottom with a rig design consisting of an anchor, an acoustic releaser, the logger itself secured 
by polypropylene rope and extra flotations (e.g., sphere with the diameter of 25 cm mounted at minimum of 100 cm 
from the hydrophone), as illustrated in Fig. 3. The rig design above the anchor was positively buoyant. This ensured 
that the loggers were suspended about 3 m above the seabed throughout the deployment. In the stations MS1, MS5 
and MS6, deployment and recovery operations were carried out by scuba divers, so no acoustic release was needed.

The system calibration was checked in situ just before the deployment and after the recovery by using an 
air-pistonphone Grass 42AC (Grass Instruments, West Warwick, RI, USA), that generates a known sound pres-
sure level at 250 Hz. Additionally, profiles of water conductivity, temperature and pressure were recorded by 
using a CTD probe. Metadata were collected for each deployment and recovery, including name, geographic 
position and the depth of the measurement site, start and stop time for each recording, equipment ID number 
and set up data, calibration data and weather conditions. Additional details on the deployment and recovery 
protocols are available in the SOUNDSCAPE Deliverable 3.2.243. Typical measurement duration for the stations 
was 3 months, after which each device needed to be recovered to download data and to remove biological foul-
ing. The measurement period covered about one full year and four months (from 1 March 2020 to 30 June 2021). 
Table 3 shows the data coverage for each monitoring station.

Acoustic data storage and processing.  The collected .wav files were stored on two servers at CNR 
ISMAR (Venice, Italy) and IOR (Split, Croatia). No data compression was applied to the original files. The 
whole data-set has been processed by the same processing executable tool, that was developed specially for the 
SOUNDSCAPE project by the University of Gdansk together with CNR-ISMAR.

Fig. 2  Workflow of the acquisition and processing of underwater noise data to obtain SPL20,60 dataset.
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The processing steps are briefly summarized:

	 (i)	 each 1-sec segment is read from the wav file (i.e. 48000 values, being the Sample Rate equal to 48000 Hz) 
and a discrete Fourier Transform is applied;

	(ii)	 the power within one third-octave (base 10) band38, U(F), is calculated as

∣ ∣∑=U F
N

A( ) 1
(1)b

b
2

2
1

2

where N is the number of samples, A are the coefficients in the discrete Fourier transform and b1 and b2 are 
the indices corresponding to the lower and upper frequencies of a given one-third octave band;

	(iii)	 the SPL (Lp) averaged over 1 second (hereafter SPLs1 dB re 1 μPa) is obtained as

L F log U F S F( ) 10 ( ( )) ( ) (2)p Dev10= ⋅ −

where F refers to each one third-octave (base 10) frequency band38 and SDev is a factor related to the Deve-
logic Sono.Vault hydrophone sensitivity, the recording gain and calibration process;

	(iv)	 20 and 60 seconds averaged SPLs (hereafter SPLs20 and SPLs60) are then calculated from 1 second averaged 
SPLs (SPLs1) by using the following Eq. (3):

SPL log
n

dB10 1 10 ,
(3)
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for each SPLs1i with n = 20 or 60;
	(v)	 output data of SPLs1, SPLs20 and SPLs60 are produced.

Specifically, the factor SDev in formula (2) is computed by the following formula (4) based on the information 
provided by the Develogic Sono.Vault manufacturer.

S F S F LUcal K( ) ( ) (4)Dev H= + +

Where SH (F) (dB/V) is the sensitivity of the hydrophone for each one-third octave frequency band as extracted 
from the calibration sheet (Table 4), LUcal (dB/V) is introduced to take into account the recording gain of the 
APUAR, K is a constant value, being equal to 49.0309 related to the signal used by manufacturer Develogic dur-
ing the calibration process (see SOUNDSCAPE report41 for details).

sound
alteration in pressure, stress or material displacement propagated via the action of elastic 
stresses in an elastic medium and that involves local compression and expansion of the 
medium37

signal specified time-varying electric current, voltage, sound pressure, sound particle 
displacement, or other field quantity of interest37

self-noise
fluctuations in output of a receiver system caused by the combination of (i) acoustic 
self-noise, caused by the deployment, operation, or recovery of a specified receiver, and 
its associated platform37, and (ii) non-acoustic self-noise, such as electrical noise in the 
hydrophone and receiver electronics39

ambient noise all sound except sound associated with a specified signal and except self-noise37

ambient sound sound that is present in the absence of sound from a specified activity37

soundscape characterization of the ambient sound in terms of its spatial, temporal and frequency 
attributes, and the types of sources contributing to the sound field37

sound pressure; p(t) the difference between instantaneous total pressure and pressure that would exist in the 
absence of sound37

reference pressure; p(0) 1 µPa in underwater acoustics

RMS sound pressure; p(rms)
The square root of the mean square pressure; mean square pressure is the time integral of 
squared sound pressure (p(t)) over a specific time interval divided by the duration of the 
time interval37

sound pressure level (SPL) (mean-square 
sound pressure level) 20 log10 [p(rms)/p(0)] dB37

octave logarithmic frequency interval between frequencies f1 and f2 when f2/f1 = 239

decade logarithmic frequency interval between frequencies f1 and f2 when f2/f1 = 1039

one-third octave (base 10) or decidecade band one tenth of a decade38

percentile a statistical measure indicating the value below which a given percentage of observations in 
a group of observations fall39

temporal observation window interval of time within which a statistic of the sound pressure is calculated or estimated39

temporal analysis window interval of time during which statistics are calculated over multiple temporal observation 
windows39

Table 2.  Used acoustic terminology.
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Data Records
The dataset of 20 and 60 seconds averaged Sound Pressure Levels (SPL) output files collected by SOUNDSCAPE 
and described in this paper is available on Zenodo44.

Data are archived using structured HDF5 files, each one containing metadata and SPL data according to the 
ICES (International Council for the Exploration of the Sea) continuous noise data portal specification, with time 
stamps relative to UTC time provided in compliance to ISO 860145.

Technical Validation
In order to ensure the data quality, a check on the collected data by times series visualisation was carried before 
the data analysis: it did not highlight spurious signals or transient artefacts due to deployment settings, nor 
systematic artefacts due to flow noise, which is consistent with the study areas being characterized by low tidal 
currents. Moreover, data recorded before and during the deployment, during and after the retrieval and while 
the deployment vessel was in close proximity of the recorder were removed.

The measured data may be contaminated by the system self-noise. Self-noise fluctuations in output of an 
acoustic receiver system are caused by the combination of acoustic self-noise and non-acoustic self-noise  
(electronic self-noise). The acoustic self-noise sound is usually caused by the deployment, operation, or 
recovery of a specified receiver and its associated with the deployment of the acoustic sensor and platform  
(e.g., noise from moorings and fixtures, flow noise, etc.) whereas the non-acoustic self-noise is related to fluc-
tuations in the output of a receiver system in absence of any sound pressure input37. In the SOUNDSCAPE 
project, the introduction of unwanted acoustic self-noise in the recordings was prevented by deployment rig’s 
design and deployment procedure. Attention was given (i) in the mooring settings to minimize the self-noise  
(i.e., use of soft ropes and avoidance of the metal parts) and (ii) in the positioning of the deployments, by locat-
ing them at a distance from the coast that assured no interaction with external infrastructures that could gener-
ate unwanted sounds. Further, the monitoring stations were not sited in high tidal flow areas and hydrophones 

Fig. 3  Sketch of the SOUNDSCAPE standard rig deployed on the seafloor, with hydrophone set at ~3 m above 
the seafloor (range from 2 to 6 m).
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were placed close to the bottom. The SOUNDSCAPE non-acoustic self-noise due to the electrical noise is calcu-
lated to be better than 58 dB re 1μPa2/Hz at 63 Hz and better than 53 dB re 1 μPa2/Hz at 125 Hz, according to the 
manufacturer technical specifications.

MS1 MS2 MS3 MS4 MS5 MS6 MS7 MS8 MS9 D/E

2020-03- 1–11 1–31 1–31 1-5/11-31 5–31 1–31 1–31 10–31

2020-04- 9–30 1–30 1–22 1–30 1-9/11-30 1–9 1–30 1–30

2020-05- 1–31 31 1–31 1–31 7–31 5–31 1–31 1–31

2020-06- 1-11/15-30 1–30 10–30 1–30 1-11/14-30 1-11/14-30 1–30 1–30 1–30

2020-07- 1–31 1–18 1–31 1–31 1–31 1–31 1–31 1–31 1–22

2020-08- 1–31 1–31 1–31 1–31 1-9/13-31 1-9/13-31 1–31 1–31

2020-09- 1–30 1–30 1-10/29-30 1–30 1–30 1–30 1–30 1–29

2020-10- 1–31 1-10/24-31 1–31 1–14 1-18/20-31 1-18/20-31 1–31

2020-11- 1–30 1–30 1–30 1–30 1–30 1–29 25–30

2020-12- 1–31 1–20 1–31 1–31 1–31 4–31 1–31 14-31*

2021-01- 1–31 30–31 1–11 1-15/18-31 1-15/18-31 1–31 1–31 1–31

2021-02- 1–28 1–28 17–28 5–28 1–28 1–28 1–28 1–28 1–28

2021-03- 1-3/11-16 1–31 1–31 1/18-31 1–31 1–31 1–31 1–26 1–31

2021-04- 1-3/25-30 1–30 1-4/8-23 1–30 1–30 1–4 1–30

2021-05- 4–31 4–31 1-5/14-31 1–10 1–31 1–31 19–31 14–31 1–31

2021-06- 1–30 1–30 1–30 17–30 1/4-30 1/4-30 1–30 1–30 1–30

Table 3.  Data temporal coverage (days per month) for each recording station. *New position of MS9 since 
December 2020.

F SH(F)

25 −192.70

31 −192.70

40 −192.70

50 −192.70

63 −192.70

80 −192.70

100 −192.70

125 −192.70

160 −192.70

200 −192.70

250 −192.70

315 −192.70

400 −192.70

500 −192.70

630 −192.70

800 −192.70

1000 −192.71

1250 −192.79

1600 −192.90

2000 −192.97

2500 −192.61

3150 −192.36

4000 −192.70

5000 −192.91

6300 −193.44

8000 −194.21

10000 −193.71

12500 −194.43

16000 −195.70

20000 −197.65

Table 4.  Sensitivity (dB/V ref 1 μPa) of the hydrophone SH(F) for each one-third octave frequency F extracted 
from the calibration sheet of the manufacturer Develogic.
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Finally, a quality control has been applied to the software used for the analysis (Fig. 2). To validate the correct func-
tioning of the SOUNDSCAPE processing app (ANP) applied to the wav data, the latter was tested again other already 
validated software (SpectraPLUS and independent MATLAB routines). A subset of data was processed with the 
SOUNDSCAPE ANP and the SPLs of each one-third octave (base 10) band were compared with the ones calculated 
by a validated tool: the SOUNDSCAPE ANP was able to reproduce almost the same results. Namely, the mean abso-
lute difference between trusted tool and SOUNDSCAPE ANP results was equal to 0.08 dB, being less than 0.1 dB in 
most of the frequencies, with the exception of the lower frequencies (less than 25 Hz), where it was lower than 0.3 dB.

Usage Notes
To post process the SPLs20,60 data, CNR-ISMAR developed a Python script that was deployed as a Jupyter 
Notebook interactive document46, that is here released.

Fig. 4  Examples of SPL20,60 data post processing outputs generated applying the Python post processing script 
to the released dataset.
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The workflow of SPL data post processing is simple. After reading SPLs20,60 files and (i) selecting a time win-
dow to define the investigated period, (ii) a recording station and (iii) a given one-third octave (base 10) band, 
it is possible to compute some metrics to create tables and to visualize efficiently the data (see Fig. 4 for exam-
ples). Statistics can be calculated for each one-third octave (base 10) band over various temporal analysis win-
dows (based on UTC time) like for example one hour, one day, one month, one year10. Once the time window is 
selected, tables with descriptive statistics can be produced including percentile values (1th, 10th, 25th, 50th, 75th, 90th, 
99thpercentiles) and the arithmetic mean. The Python script can also generate graphs such as time series plots, 
to visualize the temporal evolution of SPL data, and descriptive plots, to highlight the principal statistics of the 
data distribution over the time window. Data can be aggregated also to check their distribution between stations.

Code availability
The Jupyter Notebook interactive document for data post-processing is freely available in ROHub, the Research 
object management platform47.
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