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Abstract

The metagenomics approach accelerated the study of genetic information from uncultured microbes and complex microbial
communities. In silico research also facilitated an understanding of protein-DNA interactions, protein—protein interactions,
docking between proteins and phyto/biochemicals for drug design, and modeling of the 3D structure of proteins. These in
silico approaches provided insight into analyzing pathogenic and nonpathogenic strains that helped in the identification of
probable genes for vaccines and antimicrobial agents and comparing whole-genome sequences to microbial evolution. Arti-
ficial intelligence, more precisely machine learning (ML) and deep learning (DL), has proven to be a promising approach in
the field of microbiology to handle, analyze, and utilize large data that are generated through nucleic acid sequencing and
proteomics. This enabled the understanding of the functional and taxonomic diversity of microorganisms. ML and DL have
been used in the prediction and forecasting of diseases and applied to trace environmental contaminants and environmental
quality. This review presents an in-depth analysis of the recent application of silico approaches in microbial genomics, pro-

teomics, functional diversity, vaccine development, and drug design.
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Introduction

The discipline of microbiology means exploring the struc-
ture and function, interrelationships, and mechanisms within
communities of microorganisms and their interactions with
the immediate environments or hosts. Microscopy has been
the key technique for the identification of microbes, which is
complementarily followed by culture techniques to elucidate
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their physiology, genetic constructs, metabolism, and patho-
genicity. However, these procedures are time-consuming and
labor-intensive. The incorporation of advanced techniques
such as high-throughput sequencing and next-generation
sequencing in the field of microbiology has presented a
plethora of genomic data. This accumulation of data from
various domains of microbial genomics has enabled the
development of new diagnostic and genotyping tools, deci-
phered microbial genetic diversity, and identified virulence
and resistance mechanisms. Additionally, in silico methods
assist in gathering genetic information that can be used to
identify therapeutic targets, investigate host—pathogen inter-
actions, and establish mechanisms of antibiotic resistance
and virulence.

Therefore, an optimal analysis and interpretation of these
large intricate data is the next challenge to achieve these
promising advances. This task is beyond human expertise
with a high risk of errors involved and calls out for advanced
computational techniques that can detect meaningful pat-
terns from the heaps of data. Artificial intelligence can fill
these gaps with techniques such as machine learning, which
uses structured data and recognizes meaningful patterns with
supervised and unsupervised learning methods.
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Bioinformatics, an application of information technol-
ogy, helps in the processing and analysis of the data gen-
erated in biological research and experiments by applying
computer-based algorithms. It helps in DNA barcoding and
designing the patterns of disease outbreaks and new biologi-
cal products. Proteomics also facilitates the study of protein
structures and the identification of protein—protein interac-
tion sites (Rao et al. 2014). In the study of metabolomics,
dynamics in cell and cellular interactions are possible with
the help of bioinformatics (Kushwaha et al. 2017). Bioinfor-
matics has not only helped in genome sequencing and pre-
sented accomplishments in gene allocations but also helped
to draw phylogenetic relationships and detect transcription
factor-binding sites of the genes. Microarray data analysis
is made possible by bioinformatics tools. Biological data
are growing exponentially due to the availability of low-
cost sequencing technologies. The enormous amount of data
generated has led to the development of databases of nucleic
acid sequences, protein sequences, and their structures. For
example, Swiss-Prot and PIR for protein sequences, Gen-
Bank and DDBJ for genome sequences and protein struc-
tures, and protein databanks are established primary data-
bases. Various software and tools that could be helpful in
microbiological studies are summarized in Table 1.

In silico approaches for microbial genomics

Metagenomics is an approach of advanced genomics tech-
niques to study the microbial communities directly from
their natural environments without cultivation in the lab and
isolation of individual species (DeLong 2002; Riesenfeld
et al. 2004a, b; Handelsman 2004; Rodriguez-Valera 2004;
Streit and Schmitz 2004; Edwards and Rohwer 2005). This is
the culture-independent approach for retrieval of /65 rRNA
genes, established two decades ago by Pace and colleagues
(Olsen et al. 1986). In 2002, Hugenholtz reported that until
that time, 99% of microbial species had not been cultivated
due to limitations but metagenomics approaches, revolution-
ized microbiology by eliminating the need for clonal isolates
(Hugenholtz 2002; Rappe and Giovannoni 2003; Singh and
Porwal 2021).

Metagenomic assembly facilitates gene prediction and
annotation and is therefore considered a significant step
when studying the functional constitution and size of micro-
biomes (Van der Walt et al. 2017).

To facilitate microbial identification studies, various
techniques have emerged. DNA pyrosequencing, also
known as sequencing by synthesis, was developed in the
mid-1990s (Ronaghi et al. 1996). The major limitation of
this method is its inability to read the long stretches of
DNA sequence (sequences hardly exceed 100-200 base
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pairs with first- and second-generation pyrosequencing
chemistries) (Joseph et al. 2009).

With the advent of sequencing technology, next-gener-
ation sequencing (NGS) has emerged as a rapid and reli-
able method for the identification of bacterial pathogens.
NGS has evolved as a molecular microscope, expanding its
applications into every field of microbial research (Buer-
mans and den Dunnen 2014). The application of NGS in
the microbial world includes both wet lab and bioinformat-
ics tools/computational methods (Fig. 1) (Ghannam and
Techtmann 2021). The first step of this technique is the
molecular profiling of the microbial community that incor-
porates collection of sample (from the patient or environ-
ment), nucleic acid extraction, and library preparation.
Several biases could be introduced with wet lab methods
(Hazen et al. 2013). After sequencing, the primary analysis
was performed using bioinformatics tools. Several studies
have taken place on the processing of sequencing reads.
This includes methods for binning marker genes into oper-
ational taxonomic units (OTUs) and is representative of
biologically meaningful categories (Edgar 2010). Liu et al.
(2021) have elaborated the step wise analysis methods
used for high throught put analysis of microbiome. The
collected samples are first diluted and then distributed in
microtiter plate of 96 wells. The wells are then subjected
to amplicon sequencing and selected as candidate. The
candidates are further subjected to 16rDNA full length
Sangers sequencing (Fig. 2).

Peker et al. compared the three methods for NGS data
analysis for speed and diagnostic accuracy: de novo assem-
bly followed by the Basic Local Alignment Search Tool
(BLAST), operational taxonomic unit (OTU) for cluster-
ing and an in house developed database (16S-23S rRNA
encoding region). They directly used the patient samples
to perform NGS of the 16S and 23S rRNA encoding
regions for reliable identification of pathogens. Although
NGS data analysis is tedious and laborious, a database
for the complete 16S-23S rRNA coding region is not
obtainable. The study suggested and recommended de
novo assembly followed by BLAST as a better method.
This method showed the shortest turnaround time (2 h and
5 min), which is two hours less than OTU clustering and
4.5 h less than mapping, with a sensitivity of 80%. This
analysis concluded that the blend of de novo assembly
and BLAST seems to be the best approach for the analysis
of data (Peker et al. 2019). Additionally, comprehension
of protein-DNA interactions, protein—protein interactions,
docking between proteins and phyto/biochemicals for drug
design, and modelling of the three-dimensional structure
of proteins were made possible by in silico research (Qiu
et al. 2020; Bryant et al. 2022; Baig et al. 2016; Ali et al.
2021; Fatoki et al. 2021).
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Machine learning for metagenomic data analysis

With the evolution of technology and machine learning
(ML) models, metagenomics has become a popular field
of bioinformatics. One can create more competent models
to address the problems of DNA sequencing and genome
classification. As the technology is becoming more sophis-
ticated, new more precise DNA sequencing techniques
have been developed, and the enhanced computational
power of modern computers has helped to achieve that.
As aresult, much larger quantities of data can now be pro-
cessed and trained with more complex machine learning
models that were earlier not feasible due several limita-
tions. The advantage of ML is that it can fully appreci-
ate the depth of data generated while microbiome studies
and build predictive models based on outcomes for the
data achieved from the microbial community (Ghannam
and Techtmann 2021). ML approaches use several forms,
involving unsupervised, semisupervised, reinforced, or
supervised learning (Kumar et al. 2018; Saxena et al.
2019; Sathya and Abraham 2013: Zitnik et al. 2019)
(Fig. 2). The model that uses a training set falls under
supervised learning (Stoter et al. 2019). Statistical classifi-
cation and regression analysis come under common super-
vised learning algorithms (Kumar et al. 2011). Clustering,
also known as unsupervised learning, implements k-means
to determine a centriole and reduces error by iteration and
descent to achieve classification (Omer et al. 2014).

The progression of ML has led to the use of this tech-
nique in various fields of research (Chen et al. 2016; Li
et al. 2016; Zou et al. 2016; Ding et al. 2017; Feng et al.
2017; Yu et al. 2017; Zeng et al. 2017; Pan et al. 2018; Liu
etal. 2018; He et al. 2019; Kumar et al. 2021; Zhang et al.
2019). Such exemplary applications are drug repurposing
(Yu et al. 2016, 2017), discovery of new antibiotics (Steele
et al. 2009), identification of novel biocatalysts, personal-
ized medicine (Virgin and Todd 2011; Pires et al. 2020a,
b; Villasana et al. 2020), identification of disease-related
microRNAs (Chen and Huang 2017; Zhao et al. 2018),
identification of disease-related noncoding RNAs (Chen
and Yan 2013; Hu et al. 2017, 2018), and bioremediation
of agricultural, industrial, and domestic wastes (Mani and
Kumar 2014; Pires et al. 2020a, b). Oudah and Henschel
defined the four key stages of ML algorithm develop-
ment (Oudah and Henschel 2018): The first step of the
ML method, which is also a critical stage, addresses the
extraction of the features (Liu et al. 2015) and then OTUs,
which are obtained by clustering. Then, the significant fea-
tures that are responsible for enhancing the precision and
proficiency are selected, and the final step is training the
dataset that is used to train an algorithm and fit the dataset.
After that, a test set is used for the evaluation of the model.

Letunic and Bork (2021)

Argimén et al. (2016)
Hadfield et al. (2018)
Parks et al. (2013)

References
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https://microreact.org/
https://itol.embl.de/

URL

Browser based application for visualization and
sharing of genomic epidemiology data

Online tool for quick evaluation of large-scale
population genomics datasets that combines
output from multiple genomic analysis methods

Online application used to manage, display, and
annotate phylogenetic trees

Applications including 3-D graphical and Python
interfaces that allow users to combine sequences
and digital map data

Description

Visualization tool

Usage

Microreact
Phandango
iTOL
GenGIS 2

Table 1 (continued)
S.no Software name

16
17
18
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Machine learning for disease prediction
and classification

Various normal microflora residing in the gut play vital
roles in human health. Disturbances in intestinal microor-
ganisms may cause inflammatory diseases of the intestine
(Chen et al. 2017a, b, c), such as colorectal cancer, tumors,
diabetes, ulcerative colitis, and obesity. Consequently, it
becomes essential to interpret the relationship of microbes,
a disease, better clinical prognostic tests, and the develop-
ment of new drugs (Yu et al. 2015, 2016; Shi et al. 2016;
Su et al. 2018, Fan et al. 2019, Arango-Argoty et al. 2018,
Steiner et al. 2020).

For the analysis of microiome-host interactions in the
context of disease, an approach was given by Fan et al.
(2019) that combines several data sources of the human
microbiome-host disease consortium with HeteSim scores.
Initially, they constructed heterogenicity networks and then
conducted microbe—disease pair weighting with the stand-
ardized HeteSim measurement method. This was followed
by the integration of the microbes—disease—disease path-
way with HeteSim scores of the microbe—microbe—dis-
ease pathway and finally calculation of the corresponding
scores of probable microgenome associations.

Amgarten et al. (2018) proposed a new tool, MARVEL,
for the prediction of the double-stranded DNA sequence of
bacteriophages in metagenomics. MARVEL uses a random
forest (RF) approach with a large dataset containing 1247
phage genomes and 1029 bacterial genomes along with
a test dataset consisting of 335 bacterial and 177 phage
genomes. Six features were proposed for the identification
of phages, and then, RF was exercised for the selection of
features. Finally, three features were established, which
provided more information (Grazziotin et al. 2017).

Over the last few years, many studies have explored
and scrutinized the role of microbiome communities in
the prediction of diseases. Later, researchers incorporated
complete genome sequencing and entire transcriptome
sequencing data of 33 types of cancer from The Cancer
Genome Atlas (TCGA) to examine the potential of micro-
bial signatures as cancer predictors by using variation
boosting ML models (Poore et al. 2020). The ML models
successfully discriminated different cancer types and dis-
tinguished between cancer and normal tissues, suggesting
that the microbiome is exclusive to each cancer type and
cancer stage. The authors concluded that the proposed
model could serve as a potential tool in microbiome-
based cancer diagnosis. A similar study investigated the
role of the vaginal microbial community based on bacte-
rial signatures in the prediction of cervical intraepithelial
neoplasia (CIN) using a random forest model (Lee et al.
2020). Sequencing data of the V3 region of 16S rRNA
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from vaginal swabs of 66 subjects were investigated for
its taxonomic composition. A set of 33 bacterial spe-
cies were obtained as marker communities differentiat-
ing between the CIN1 and CIN2 groups, with 0.952 area
under curve (AUC). This finding validates the potential
of the RF model in the prediction of CIN staging and VM
as a biomarker.

Cai et al. (2019) focused on investigating the underlying
mechanism of pathogenesis in human diseases using genom-
ics with the help of in silico applications. They used a novel
ML.-based approach and recognized two genes, OTOF and
SOCSI1, that contribute to the pathogenesis mechanism of
rhinovirus (Xu et al. 2019). The expression levels of these
two genes could potentially determine the infected or non-
infected state of an individual. Alongside depicting the
significance of these two genes in rhinovirus pathogenesis,
this study also demonstrated the effectiveness of in silico
applications in studying the pathogenesis mechanisms.
Wang et al. in 2019, proposed a spectral rotation method
based on the triplet periodicity property to solve planted
motif finding problems (Wang et al. 2019). The proposed
method gives genes with several substitutions that can be
detected from arbitrarily generated background sequences.
The results of the experiment based on the genomic data-
set of Saccharomyces cerevisiae showed that genes could
be visually distinguished. The authors suggested that genes
having approximately 50% mutations could be easily identi-
fied in background sequences.

Several studies have explored viral genomics with the
help of in silico approaches. Remita et al. developed a
machine learning-based virus classification tool called
CASTOR and used different datasets of hepatitis B virus,
human papillomaviruses (HPV), and HIV-1 as testing data-
sets (Remita et al. 2017). The model imitates the restriction
fragment length polymorphism (RFLP) technique in silico
and stimulates fragmention of genomic material by different
restriction endonucleases. The authors noted positive cases
of 99% for HPV alpha species, 99% for HBV genotyping,
and 98% for HIV-1 M subtyping. They concluded that this
model is a great fit to achieve accurate large-scale virus stud-
ies owing to its generality and robustness (Lebatteux et al.
2019). Ren et al. proposed VirFinder (a novel k-mer-based
tool) for the identification of viral sequences from collected
metagenomic data (Ren et al. 2017). This model identifies
viral sequences based on the differences in k-mer signatures
of viruses and hosts. The model was trained on sequences of
host and viral genomes that were sequenced before January
1, 2014, and evaluated on sequences attained after January
1, 2014. When compared to the current gene-based virus
classification tool VirSorter (Roux et al. 2015), the pro-
posed model had better TPRs (true positive rates), and it
also works comparatively better for small viral contigs. The
authors concluded that the proposed model is an effective
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tool to improve viral sequence identification, especially for
viral metagenomic data.

Through their intricate multilayered learning models,
deep neural networks have been shown to be a promising
approach for the analysis of feature-rich and high-dimen-
sional omics data with their complex multilevel structure.
Various studies have developed deep learning-based com-
putational models for the analysis of complex genomic and
metagenomic datasets. Arangp-Argoty et al. proposed Deep-
ARG networks to analyze a metagenomic dataset to envis-
age antibiotic resistance genes (ARGs) (Arango-Argoty et al.
2018). This network constitutes two models, DeepARG-LS
for short-read sequences and DeepARG-SS for full-length
sequences. The models were trained using 30 ARG cat-
egories and showed extreme accuracy (>0.97) and recall
(>0.90) when evaluated on different databases (Berglund
et al. 2017; Lakin et al. 2017). On the basis of the results, the
authors concluded that DeepARG facilitates the identifica-
tion of a wide range of ARGs.

Quang et al. developed a model named deleterious anno-
tation of genetic variants using neural networks (DANN),
based on a deep neural network, to annotate the pathogenic-
ity of coding and noncoding genetic variants while also cap-
turing nonlinear relationships among the features (Quang
et al. 2015). Trained using the same feature set and training
data as combined annotation-dependent depletion (CADD),
the support vector machine (SVM)-based model DANN was
found to outperform CADD’s SVM by a 19% decrease in the
error rate with a 14% increase in the area under the receiver
opreting characteristic curve.

Artificial intelligence in microbial
proteomics

The protein—protein interactions among hosts and patho-
gens are capable of providing insights into the host—patho-
gen relationship. However, there is a lack of experimental
research regarding this context, and the computational
approach is proven to be of great significance in this con-
text. Emamjomeh et al. established a collective learning
method to interpret proton pump inhibitors (PPIs) between
humans and the hepatitis C virus (Emamjomeh et al. 2014).
They used six different descriptors to encode human and
HCYV proteins as feature vectors. The benchmark dataset for
validation comprises confident positive and negative PPIs.
Tenfold cross-validation was carried out, and the method
achieved 83% accuracy and 94% specificity. This method
exhibited better performance than the existing approaches
and was concluded to be appropriate for future use in the
interpretation of the host—pathogen relationship. In a similar
study, the group of authors used SVM models to interpret
human proteins that interact with HPV proteins and HCV

proteins (Kim et al. 2017). Their model achieved an average
accuracy of 66.9% for HPV-human PPIs and 75% for HCV-
human PPIs for independent datasets in each case.

Application of artificial intelligence in drug
and vaccine development

Secondary metabolites isolated from bacteria, fungi, plants,
and marine organisms are important sources of antibiotics,
immunosuppressants, anticancer drug/agent herbicides, and
insecticides. In microorganisms, the biosynthesis of these
secondary metabolites takes place via metabolic pathways.
The biosynthetic pathways of specific/secondary metabolites
are governed by enzymes, and these enzymes are encoded
by clustered genes (Singh et al. 2021a). Earlier, it was very
tedious to find the metabolic pathways of specific metabo-
lites, but with the increased availability of high-end gene
sequencing combined with powerful bioinformatics tools, it
helped to identify metabolic gene clusters (Chavali and Rhee
2018). These bioinformatics tools are primarily focused on
the identification of gene clusters of bacteria and fungi.
They can identify “signature enzymes,” named nonriboso-
mal peptide synthetase (NRPS), polyketide synthase (PKS),
and hybrid NRPS-PKS (Osbourn 2010).

Antimicrobial peptides are short innate immunity pep-
tides and may belong to a wide range of diverse sequence
families. These are popular candidates for the development
of antimicrobials owing to their ability to disrupt the target
by several mechanisms, such as DNA interference, dam-
age to the cell membrane, or signaling for adaptive immune
responses (Wimley and Hristova 2011). The search for this
component even in wet labs is turning toward computational
approaches. In 2018, Veltri et al. implemented a DNN model
with convolutional and recurrent layers to allow the model to
extract features on its own (Veltri et al. 2018). The dataset is
used for the training and testing of the model that reveals the
latest available antibacterial peptide data from an updated
APD version 3. This model has identified approximately
98% of the AMPs that are listed and available in APD vr.3
as active against gram-positive and gram-negative bacteria.
Su et al., in 2019, used a multiscale CNN with multiple
layers. The proposed DNN model attained 92.4% accuracy
and 94% specificity, outperforming existing DNN models by
1.3% and 1.5%, respectively (Su et al. 2019).

The amphiphilicity of AMPs is a membrane disrup-
tive factor, but they often become hemolytic in human red
blood cells (Nguyen et al. 2011; Baeriswyl et al. 2019).
Most ML applications do not consider such issues while
searching for AMPs. To address this issue, Capecchi et al.
recently published their study, where they used ML models
for AMP design, taking both the activity and hemolysis of
AMPs into consideration by training their model’s sets of
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active, inactive, hemolytic, and nonhemolytic sequences
obtained from reported activity data (Capecchi et al. 2021).
They further trained the RNN classifier using data from the
Antimicrobial Activity database and peptide structure to
design short nonhemolytic AMPs. The authors successfully
managed to identify eight new nonhemolytic AMPs against
Pseudomonas aeruginosa, Acinetobacter baumannii, and
methicillin-resistant Staphylococcus aureus (MRSA) and
showed that ML could be used to design therapeutically safe
new nonhemolytic AMPs.

Stokes et al. (2020) used DNN and trained it by using
a dataset of approved antimicrobials as input to interpret
the growth inhibitory activity of Escherichia coli (Stokes
et al. 2020). They used a pool of 2335 molecules to train
the neural network model that hampered E. coli growth.
Furthermore, the model was applied to multiple chemical
libraries containing > 107 million molecules to identify the
best leading molecule against E. coli. The candidates were
ranked according to the model’s predicted score, and finally,
the list of potential candidates was selected. This dataset
showed antimicrobial activity within an acceptable toxic-
ity range in humans. This technique led to the discovery
of halicin, a novel broad-spectrum antimicrobial that was
effective against a wide range of MDR microbes. However,
there are several drawbacks of this algorithm that need to
be acknowledged. Although this algorithm will lead to a
molecule with a low toxicity level, the slightest change in the
amino acid sequence can cause a drastic shift in the toxicity
level (Maritan et al. 2020).

Drug discovery is a long and complex pipeline and a
significant stage for the identification of new compounds
targeted to specific characteristics of microorganisms. This
is designed to prevent/control the disease/infection either by
obstructing vital microbial processes or by preventing micro-
organism multiplication (Singh et al. 2021b). Vamathevan
et al. (2019) explained the application of ML in drug discov-
ery and different developmental stages (Vamathevan et al.
2019).

The in silico vaccine discovery pipeline consists of
computational tools to discover potential candidates that
may stimulate a protective immune response in the host or
typically to predict protein characteristics (Goodswen et al.
2021). Therefore, the primary aim of implementing machine
learning in vaccine development should be to minimize the
number of false candidates. Goodswen et al. (2013) trained
their ML algorithms by using protein datasets from Toxo-
plasma gondii, Plasmodium sp., and Caenorhabditis elegans
(Goodswen et al. 2013). They concluded that their proposed
model was more effective in identifying false candidates
than laboratory validation.

Data visualization is of critical importance in elucidating
results and communicating knowledge among researchers.
Chen et al. (2022) developed a data visualization web server

@ Springer

Image GP to visualize and analyze data in easier and effi-
cient way specially designed for biology and chemistry data
visualization. They have used R code for plotting which is
open sourced, and supplemented with 26 parameters to fulfil
tailored requirements (Chen et al. 2022).

With the enormous increase and heavily utilization of
high-throughput technologies including genomics, proteom-
ics, metabolomics, a large data is generated. Now, scientists
need to understand and analyze the data very precisely and
also need to bridge the gap between genotype and pheno-
type on gigantic scale (Davis-Turak et al. 2017; O’Donoghue
2021; O’Donoghue et al. 2018). This requires either a
trained professional setup to jeopardize dataset quality. But
manual set up alone cannot deal with the huge amount of
data and also chances of errors can occur. To deal with this,
the pipelines have been developed. A pipeline is a process
of an automated workflow of a complete machine learning
task. This is performed by facilitating a sequence of data that
has to be transformed and corelated in a model and further
could be analyzed to get the output. A pipeline comprises
raw data input, features, outputs, model parameters, machine
learning models, and predictions. A pipeline consists of mul-
tiple sequential steps for data processing, modelling, and
deployment. The flow of pipeline is depicted in Fig. 3. In
the pipeline, each step is designed as an independent module
and all these modules are tied together to get the final result
(https://www.javatpoint.com/machine-learning-pipeline).
Various computational pipelines used for microbial genom-
ics, proteomics, and functional diversity are summerizes in
Table 2.

Application of ML in antimicrobial resistance

Human mortality worldwide faces the widespread spread
of infectious diseases. There is a major challenge for health
workers for the prevention and treatment of such diseases.
To address any such threat, accurate identification and char-
acterization of pathogens are the foremost requirement and
require expertise along with high-end equipment and facili-
ties. Machine learning can automate this with precision and
accuracy with the help of image and metagenomics data
(Goodswen et al. 2021).

Drug-resistant tuberculosis (TB) poses major health
concerns worldwide. Earlier, the identification of drug
resistance was based on single nucleotide polymorphisms
(SNPs). Currently, research is based on the association
between genetic variants and multivariate variants (Zhang
et al. 2013; Walker et al. 2015). Yang et al. (2018) stud-
ied the multivariate association with different ML mod-
els, such as RF, SVM, and LR, for the classification of
multidrug resistance against eight anti-TB drugs. The
reported SVM was the best model that derived the data
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retrieved from Uniprot Swiss/TTEMBL. (5) Bias filtering Section (6)
“Raw” phylogenetic analysis. (7) Potential homologous selection. (8)
Pfam screening association for functional domains. (9) Population

from 1839 TB samples. Another similar study was con-
ducted by Kouchaki et al. (2019), with 13,402 samples and
tested against 11 drugs. In this study, LR performed best
and indicated that ML algorithms function differently with
different training datasets.

Antimalarial resistance in Plasmodium falciparum is the
greatest challenge in Africa. The efficacy of antimalarial
therapy was assessed by genotyping malaria parasites once
the infection was identified and treated (Plucinski et al.
2015; Talundzic et al. 2016; Halsey et al. 2017), followed
by parasite genotyping from the same patient if reinfected
with malaria by sequencing a well-defined set of microsat-
ellite repeats. This microsatellite comparison enables us to
understand whether the patient is infected with a new strain
or reoccureance is due to failure in treatment (Plucinski et al.
2015). For this study, an unsupervised Bayesian classifier
was developed (Slater et al. 2005), as the manual prediction
of these profiles is difficult and prone to bias. Jones et al.
(2020) evaluated this approach and proposed that the Bayes-
ian approach was immensely specific and catered to the pre-
cise assessment of treatment failure rates in comparison to
manual analysis (Jones et al. 2020).

analysis simulated — statistics score applied; reference sequences
from selected database (A) phylogeny to analyze the population
analysis result coupled with the previous raw phylogenetic analysis
results; new database extrapolation of input data through API (B)
comparison of my pipeline with previous findings (Pelosi 2022)

Limitations and conclusions

As indicated by the performance metrics of the research
listed above, Al algorithms have shown excellent gains in
microbial studies. However, large-scale clinical applications
outside of limited clinical investigations are needed. This
could aid in obtaining government regulatory approval for
clinical applications of Al-based models in conventional
patient treatment, which is currently absent.

Multiple variables must be addressed before AI may be
used in regular healthcare procedures on a wide scale, such
as model training, high-quality data/images, data labeling,
and model validation methodologies.

In general, Al models necessitate correctly annotated
genomes and proteomics data. Otherwise, the study could
lead to Al model bias. AI models that are based on a single
source and nonblinded microbiological data frequently pro-
duce incorrect results. Al models are typically built in a sin-
gle institution with a specific patient population, which can
limit the models’ ability to be applied outside of the institu-
tional clinical setting. The accuracy achieved in Al-assisted
microbiological research may not always imply efficacy in
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facilitate the viral genome annota-

command line tool for annotation
and GenBank deposition of viral

genomes

2606-y

tions. It can handle batch submis-
sion of multiple viruses without

prior knowledge of viral species,

correctly annotates RNA editing

and ribosomal and runs with simple
one line command slippage, and

handles submission of metadata

clinical practice. Furthermore, ethical concerns are likely
due to biassed Al models and exaggerated accuracy, which
could result in unintended misidentification or predictions
with false negatives and positives. The majority of Al-driven
microbiological technologies are largely research-based and
not in widespread use. While several research groups strive
to make Al technologies easier to integrate and implement
with traditional software systems, this requires additional
formal training for microbiologists and technical employ-
ees. Moreover, microbial institutions must develop uniform
standards for the use of Al in relevant settings. All of these
drawbacks must be addressed before regulatory organiza-
tions provide final permission for the use of Al-based tech-
nology in microbiology research.

Predictive models for metagenomics studies, disease pre-
diction and classification, and microbial proteomics studies
could be extremely beneficial, not only in the case of early
disease detection and improved patient survival rates but also
in terms of gaining a better understanding of pathogenic and
beneficial microorganisms. During the previous decade, Al
algorithms’ prediction performance improved considerably.
Similarly, modern microbiological study predictive models
are improving. However, to take advantage of advances in Al
algorithms for data mining and building valuable patterns for
better decision support, we must appropriately utilize data
collected from microbial research. These prediction mod-
els are not intended to replace traditional microbiological
research but rather to provide an additional layer of protec-
tion for disease detection and treatment. Additionally, these
Al-based systems are capable of extracting key information
with predictive significance. In regard to a tangible benefit,
only models with knowledge-driven approaches provide a
genuine difference when compared to traditional techniques.
Fair restrictions from relevant authorities, as well as the
adoption of Al approaches in microbial metagenomics, pro-
teomics, and disease predictions, are necessary conditions
for incorporating Al technology into the current healthcare
environment.
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