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Abstract

Unsupervised domain adaptation (UDA) has been a vital protocol for migrating information 

learned from a labeled source domain to facilitate the implementation in an unlabeled 

heterogeneous target domain. Although UDA is typically jointly trained on data from both 

domains, accessing the labeled source domain data is often restricted, due to concerns over patient 

data privacy or intellectual property. To sidestep this, we propose “off-the-shelf (OS)” UDA 

(OSUDA), aimed at image segmentation, by adapting an OS segmentor trained in a source domain 

to a target domain, in the absence of source domain data in adaptation. Toward this goal, we aim 

to develop a novel batch-wise normalization (BN) statistics adaptation framework. In particular, 

we gradually adapt the domain-specific low-order BN statistics, e.g., mean and variance, through 

an exponential momentum decay strategy, while explicitly enforcing the consistency of the domain 

shareable high-order BN statistics, e.g., scaling and shifting factors, via our optimization objective. 

We also adaptively quantify the channel-wise transferability to gauge the importance of each 

channel, via both low-order statistics divergence and a scaling factor. Furthermore, we incorporate 

unsupervised self-entropy minimization into our framework to boost performance alongside a 

novel queued, memory-consistent self-training strategy to utilize the reliable pseudo label for 

stable and efficient unsupervised adaptation. We evaluated our OSUDA-based framework on both 

cross-modality and cross-subtype brain tumor segmentation and cardiac MR to CT segmentation 

tasks. Our experimental results showed that our memory consistent OSUDA performs better than 

existing source-relaxed UDA methods and yields similar performance to UDA methods with 

source data.
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1. Introduction

Accurate delineation of lesions or anatomical structures is a critical step for clinical 

intervention and treatment planning and has been markedly progressed over the past several 

years, mainly due to advances in deep neural networks (DNN) (Tajbakhsh et al., 2020). 
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A deep segmentor trained on source domain data, however, cannot generalize well in a 

heterogeneous target domain, e.g., different clinical centers, subtypes, scanner vendors, or 

imaging modalities (Ghafoorian et al., 2017; Liu et al., 2021e). Additionally, it often poses a 

great challenge to annotate labels for new target domain data (Che et al., 2019). To mitigate 

these issues, unsupervised domain adaptation (UDA) has been proposed, as a promising 

technique, to achieve knowledge transfer from a labeled source domain to an unlabeled 

target domain (Liu et al., 2021f,d).

Early attempts at UDA include statistic moment matching (Long et al., 2015), feature/pixel-

level adversarial learning (Liu et al., 2021a), and self-training (Zou et al., 2019; Liu et al., 

2021f), all of which are dependent on the joint training on both source and target domain 

data. Well-labeled source domain data, however, are often inaccessible, due to concerns over 

patient data privacy or intellectual property (IP) (Bateson et al., 2020). As such, it is of great 

interest and needs to develop an adaptation strategy using an “off-the-shelf (OS)” source 

domain model, without access to the source domain data.

In recent years, a source-free UDA approach for classification (Liang et al., 2020) was 

proposed to yield multiple predictions, but producing the diverse neighboring predictions is 

ill-suited for the segmentation purpose. A source relaxed UDA approach for segmentation 

(Bateson et al., 2020) was also proposed to train an auxiliary class-ratio prediction 

model with source domain data, by relying on the assumption that the pixel proportion 

in segmentation is consistent between source and target domains. There are two major 

limitations in that work. First, the class-ratio in two domains can be different, due to label 

shift (Kouw, 2018; Liu et al., 2021a,e,b), e.g., the incident rate of the disease and tumor size 

could vary depending on different tumor subtypes or populations. In addition, the class-ratio 

prediction model requires an extra training step with the source domain data.

To address the aforementioned limitations, in this work, we propose a novel source-free 

UDA approach for segmentation, without an additional auxiliary network trained on the 

source domain data or reliance on the assumption of the same class proportion between two 

domains. Fig. 1 highlights the characteristics of conventional transfer learning approaches 

and our “off-the-shelf” UDA (OSUDA). Our OSUDA does not need any label supervision 

in neither source nor target domain in adaptation, which works under a restrictive setting, 

compared with the conventional approaches (Long et al., 2015; Liu et al., 2021a,f). In our 

prior work (Liu et al., 2021g), we propose to leverage batch-wise normalization statistics 

that can be easily accessed and computed. Specifically, in modern deep learning backbones, 

such as ResNet (He et al., 2016) and U-Net (Zhou and Yang, 2019), Batch Normalization 

(BN) (Ioffe and Szegedy, 2015) has been widely used to achieve fast and stable training. 

After training, the BN statistics are typically stored alongside the network parameters. 

Recent literature on source-available UDA methods has indicated that the low-order BN 

statistics, including the mean and variance in BN, are domain-specific, owing to the 

discrepancy of input data (Chang et al., 2019). To achieve a gradual adaptation of the 

low-order BN statistics in a source-relaxed manner, a novel momentum-based progression 

strategy is presented, in which the momentum follows an exponential decay over the 

adaptation iteration. In addition, for a seamless transfer of the high-order BN statistics, 

including domain shareable scaling and shifting factors (Maria Carlucci et al., 2017), a high-
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order BN statistics consistency loss is proposed to enforce the discrepancy minimization. 

To this end, the transferability of each channel is measured first in an adaptive manner, 

followed by gauging the channel-wise importance. Further, unsupervised self-entropy (SE) 

minimization is used to enhance adaptation performance.

In the present work, we build on our prior work (Liu et al., 2021g) as follows. First, we 

investigate and leverage the correlation between the high-order scaling factor and channel 

transferability for adaptive BN-based adaptation (in Sec. 3.2.3). Second, we develop a novel 

queued memory consistent OSUDA (MCO-SUDA) in order to leverage the reliable pseudo 

label for stable and efficient adaptation (Secs. 3.4 and 3.5). Third, we further provide a 

detailed interpretation of our framework in the context of recent work in this area (Liu 

et al., 2021h,a; Kundu et al., 2021; Chen et al., 2021; You et al., 2021). Finally, in order 

to validate our framework, we experiment on brain tumor segmentation as well as cardiac 

segmentation tasks. New comparisons are also made with recent UDA work for all of the 

tasks to demonstrate the validity and superiority of our framework.

Our contributions are summarized as follows:

• We propose a novel UDA segmentation framework in the absence of the source 

domain data, which thus only relies on an OS segmentor with BN trained on the 

source domain data. We do not need an additional auxiliary model trained in the 

source domain, or the assumption of the class-ratio consistency as in Bateson et 

al. (2020).

• We systematically explore the domain-specific and shareable BN statistics, by 

means of the low-order BN statistics progression with an exponential momentum 

decay (EMD) strategy and the quantified transferability adaptive high-order BN 

statistics consistency loss, respectively.

• In addition to unsupervised SE minimization, we propose a queued memory 

consistent self-training for stable and efficient progression of the pseudo label in 

the target domain, via the memory-based supervision signal, conditioned on the 

historical consistency.

• We evaluate our framework on both (cross-modality and cross-subtype) 

brain tumor segmentation and cardiac MR to CT segmentation tasks using 

BraTS2018 and MM-WHS databases, to demonstrate the general efficacy of our 

framework and its superiority to conventional source-free/source-available UDA 

segmentation methods.

2. Related Work

Unsupervised Domain Adaptation

Unsupervised Domain Adaptation has been widely used to migrate domain knowledge of 

one domain to another (Kouw, 2018; Liu et al., 2021a). Conventional approaches for UDA 

utilized the data in both domains for adaptation (Long et al., 2015; He et al., 2020; Zou et 

al., 2019). This setting, however, requires the sharing of labeled source domain data, which 

poses a data privacy concern in real-world implementations. Recently, source-free UDA for 
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classification (Li et al., 2020a,b; Liang et al., 2020; Wang et al., 2021) has been proposed 

to only use a pre-trained classifier, rather than co-training of the network with source and 

target domain data. Whereas these methods were applied only to classification or object 

detection, the present work focuses on segmentation tasks, i.e., fine-grained pixel-wise 

classification. CRUDA (Bateson et al., 2020) pre-trained a class-ratio prediction model in 

the source domain, and enforced the pixel proportion consistency between two domains for 

segmentation.

To the best of our knowledge, our prior work (Liu et al., 2021g) was the first attempt 

at OS source-relaxed UDA for segmentation, without the need for an additional auxiliary 

network, trained on the source domain data, or the assumption of the same class-ratio 

similar to CRUDA (Bateson et al., 2020). The follow-up works proposed methods based on 

knowledge distillation (Liu et al., 2021h) and source data hallucination (Ye et al., 2021), but 

an additional attention network or generative modules are required. In addition, Kundu et al. 

(2021) demanded a specific training strategy in the source domain, which does not utilize 

an OS segmentor, unlike our approach. Moreover, You et al. (2021) proposed a negative 

training strategy, designed specifically for classifying numerous classes, which is equivalent 

to the vanilla solution for a binary case. These works are also compared and discussed in 

relation to our proposed work.

Batch Normalization

Batch Normalization has been widely used to stabilize network training (Ioffe and Szegedy, 

2015), by eliminating an internal covariate shift. Early attempts of applying BN to 

adaptation simply added BN to a target domain, and did not have an interaction with 

the source domain (Li et al., 2018). Recent work (Chang et al., 2019; Maria Carlucci 

et al., 2017; Wang et al., 2019a; Mancini et al., 2018) demonstrated that the low-order 

batch statistics, including the mean and variance in BN, are domain-specific, owing to the 

divergence of feature representations. Note that simply forcing the mean and variance in the 

target domain to be the same as the source domain can lead to a loss of expressiveness of the 

networks (Zhang et al., 2020). In addition, once the low-order BN statistics discrepancy has 

been partially mitigated, the high-order BN statistics can be shareable between two domains 

(Maria Carlucci et al., 2017; Wang et al., 2019a).

However, all of the aforementioned methods (Chang et al., 2019; Maria Carlucci et al., 2017; 

Zhang et al., 2020; Wang et al., 2019a; Mancini et al., 2018) need joint training on source 

domain data. In the present work, however, we rather opt to reduce the domain discrepancy, 

using a momentum-based adaptive low-order batch statistics progression strategy and 

explicit high-order BN statistics consistency loss for our source-free UDA for segmentation.

Memory-based Learning

Memory-based Learning was initially proposed to stabilize supervised training with external 

modules to store memory (Weston et al., 2014). Then, the idea of the memory mechanism 

has been generalized to semi-supervised learning (Tarvainen and Valpola, 2017; Laine and 

Aila, 2016), which utilized historical models as the regularization of the current network 

parameters. Therefore, we would expect more stable and competitive predictions. A moving-
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average model was used as the smoothed teacher model (Tarvainen and Valpola, 2017) 

to regularize the UDA training (French et al., 2017; Zheng and Yang, 2019; Luo et al., 

2021). However, that work relied on the data in both domains for adaptation. Instead, in this 

work, we share a similar idea of the memory mechanism for efficiently stabilizing the OS 

adaptation.

Self-training

Self-training has been proposed to address semi-supervised learning (Triguero et al., 2015). 

Deep self-training was further proposed to integrate deep embedding learning and classifier 

adaptation (Zou et al., 2019). Recently, several deep self-training methods were proposed 

to utilize the pseudo label in the target domain data for UDA (Busto et al., 2018; Zou et 

al., 2019; Liu et al., 2020, 2021f). However, the aforementioned works require co-training 

on source domain data, which is not applicable to our source-relaxed setting. Note that 

the conventional pseudo label generation can be highly unstable and unreliable, since 

it relies on the source domain supervision for correction (Zou et al., 2019; Liu et al., 

2021c). Accordingly, in the present work, we used the self-training strategy with historical 

consistency-guided target data only learning.

3. Methodology

Let x ∈ ℝH0 × W 0 × C0 be an input image with the height, width, and channel of H0, W0, and C0, 

respectively. In segmentation, we predict the label of each pixel yh,w ∈ {1, 2, ⋯, N} as one 

of N classes, yielding a segmentation map y ∈ ℝH0 × W 0. There are a source domain s and a 

target domain t, where s ≠ t indicates that their inherited data distributions are different 

(Kouw, 2018; Liu et al., 2021a).

We assume that a segmentation model with BN, i.e., f: x → y parameterized with w, is 

pre-trained with source domain samples (x, y) ~ s. Note that the BN statistics are stored in 

the network itself, following the typical BN protocol. At the adaptation stage, we adapt the 

trained OS segmentor with only the unlabeled target domain samples x ~ t.

The domain adaptation theory (Ben-David et al., 2010) states that, for a hypothesis h drawn 

from ℋ, the following condition is met: ϵt(ℎ) ≤ ϵs(ℎ) + 1
2dℋΔℋ s, t + e, where, ϵs(h) and ϵt(h) 

represent the expected losses with hypothesis h in source and target domains, respectively. 

The right side terms are considered an upper bound of the target loss. Of note, e is usually 

a small and negligible value (Ben-David et al., 2007), and therefore UDA attempts to 

minimize the cross-domain divergence, dℋ△ℋ{s, t}. Because the batch statistics are closely 

associated with the domain characteristics (Li et al., 2016; Pan et al., 2018), we propose 

to leverage the transferability-aware batch-wise statistics for domain alignment, thereby 

offering a powerful inductive bias for target domain learning (in Subsec. 3.2). Specifically, 

in this work, the connection of the transferability between low and high-order statistics is 

investigated. In addition, the SE minimization of the target data prediction (in Subsec. 3.3) 

and the novel memory-consistence self-training (MCSF) strategy (in Subsec. 3.4) are further 

integrated as a unified framework (in Subsec. 3.5).
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3.1. Revisiting the Batch Normalization

BN has been widely used in modern deep learning models (Ioffe and Szegedy, 2015). For a 

batch with B images, which have the height, width, and channel in the l-th layer of Hl, Wl, 

and Cl, the batch of input features in the l-th layer fl ∈ ℝB × Hl × W l × Cl is normalized for each 

channel.

We index the samples in a batch with b ∈ {1, ⋯, B}, index the spatial position in 

the l-th layer with m ∈ {1, ⋯, Hl × Wl}, and index the channel in the l-th layer 

with c ∈ {1, ⋯, Cl}, respectively. The channel-wise mean in BN is calculated by 

μl, c = 1
B × Hl × W l

∑b
B ∑m

Hl × W l fl, b, m, c, where fl, b, m, c ∈ ℝ is the feature value. Then, the channel-

wise variance can be σ2
l, c = 1

B × Hl × W l
∑b

B ∑m
Hl × W l fl, b, m, c − μl, c

2. Note that the input feature 

is then normalized as f l, b, m, c, followed by applying a linear mapping:

f l, b, m, c = fl, b, m, c − μl, c

σ2
l, c + ϵ (1)

f l, b, m, c = γl, cf l, b, m, c + βl, c, (2)

where γl,c and βl,c are learnable scaling and shifting factors. ϵ ∈ ℝ+ is a small scalar for 

numerical stability. After the normalization, f l, b, m, c has zero mean and unit variance. In 

backpropagation, γl,c and βl,c are updated with the gradient as the network parameters.

Instead of B samples in a training batch, the testing input is usually a single sample. To 

bridge this gap, BN layer stores the weighted average of BN statistics in training and uses it 

for testing. Specifically, we use k ∈ {1, 2, ⋯, K} to index the training iteration, and the mean 

and variance in each iteration are tracked progressively following:

μl, c
k = (1 − η) ⋅ μl, c

k − 1 + η ⋅ μl, c
k , (3)

σ2
l, c
k = (1 − η) ⋅ σ2

l, c
k − 1 + η ⋅ σ2

l, c
k , (4)

where η ∈ [0, 1] is used to balance between the current and historical values. After K 

training iteration, μl, c
K , σ2

l, c
K , γl, c

K , and βl, c
K  are stored and used for the normalization in testing 

(Ioffe and Szegedy, 2015).

3.2. Adaptive Source-relaxed Batch-wise Statistics Adaptation

We propose to explore both the shared and domain-specific batch-normalization statistics 

with the quantified transferability to achieve the domain alignment (Liu et al., 2021g). 

Specifically, we propose to reduce the domain divergence using an adaptive low-order BN 

statistics progression with EMD, and explicitly enforce the consistency of the high-order BN 

statistics in a source-free manner. In addition, the role of the scaling factor in transferability 

is further investigated.
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3.2.1. Low-order statistics progression with EMD—For the target domain-specific 

factors, including mean and variance (Chang et al., 2019; Maria Carlucci et al., 2017), we 

propose a gradually learning scheme with EMD for low-order batch statistics progression in 

source-free UDA. First, the target domain mean and variance are initialized using the tracked 

μl, c
K  and σ2

l, c
K  in the source domain. In what follows, the target domain mean and variance in 

t-th adaptation iteration are progressively updated as

μl, c
t = 1 − ηt ⋅ μl, c

t + ηt ⋅ μl, c
K , (5)

σ2
l, c
t = 1 − ηt ⋅ σ2

l, c
t + ηt ⋅ σ2

l, c
K , (6)

where ηt = η0exp(−t) is a momentum parameter with an exponential decay over iteration 

t. Note that μl, c
t  and σ2

l, c
t  are the mean and variance in the current target batch. Thus, the 

proportion of source statistics, i.e., μl, c
K  and σ2

l, c
K , are smoothly decreased along with the 

training, while μl, c
t  and σ2

l, c
t  gradually represent the low-order BN statistics in the target 

domain.

3.2.2. Transferability adaptive high-order statistics consistency—For the 

domain shareable high-order BN statistics, including the learned scaling and shifting factors 

(Maria Carlucci et al., 2017; Wang et al., 2019a), we explicitly enforce their consistency 

across two domains in source-free UDA with a high-order BN statistics (HBS) loss, given 

by:

ℒHBS = ∑
l

L
∑

c

Cl

1 + αl, c γl, c
K − γl, c

t + βl, c
K − βl, c

t , (7)

where γl, c
t  and βl, c

t  are the scaling and shifting factors in t-th adaptation iteration. We note that 

γl, c
K  and βl, c

K  are stored in the source domain model. αl,c is used to adaptively balance among 

the channels.

The transferability of each channel can be different. For instance, Pan et al. (2018) 

demonstrated that channels with smaller low-order BN statistics divergence can be more 

transferable. As such, we propose a novel loss in a way that the channel with higher 

transferability contributes more to UDA. To this end, in order to quantify the channel-wise 

domain discrepancy, the difference between batch statistics is measured as an efficient 

surrogate. For source-free UDA, we define a novel channel-wise cross-domain low-order 

BN statistics divergence at t-th adaptation iteration as

dl, c = | μl, c
K

σ2
l, c
K + ϵ

− μl, c
t

σ2
l, c
t + ϵ

| . (8)

Then, the channel-wise low-order statistics divergence based transferability is quantified 

with αl, c = L × C × 1 + dl, c
−1

∑l ∑c 1 + dl, c
−1 . Therefore, the more transferable channels will have larger 
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weight (1 + αl,c) in ℒHBS, thereby contributing to the optimization with a higher 

importance.

3.2.3. Scaling factor for channel-wise transferability—In addition to the mean 

and variance investigated in our prior work (Liu et al., 2021g), we further explore the 

scaling factor γl, c
K  for quantifying the transferability. Conventionally, the scaling factor has 

been widely used as a criterion for the channel-wise importance in the channel pruning1 

operations (Liu et al., 2017; Kang and Han, 2020). The small scaling factor usually indicates 

the less effectiveness of this channel in a single domain classification task (Molchanov et al., 

2019).

Although these pruning works only focus on a single domain, we propose to investigate 

whether the transferability of each channel is also associated with its scaling factor. 

Specifically, we use the segmentation U-Net trained on high-grade gliomas (HGG) datasets 

and adapt it for low-grade gliomas (LGG) datasets in the BraTS2018 database (Menze 

et al., 2014) with our framework. -distance is a typical measurement for the feature 

discrepancy between two domains (Ben-David et al., 2010), which has a smaller value for 

better alignment and 0 for the same feature distribution. From Fig. 3(a), we can see that 

the pruning of 10% of the channels with the smallest γl, c
K  has the similar -distance as the 

network adapted without pruning, which indicates that these channels with small γl, c
K  may 

have little impact on UDA. This phenomenon can be simply explained from a gradient 

perspective. We denote all of the optimization objectives at the adaptation stage as ℒ. Then, 

the partial derivative of ℒw.r.t.f l, b, m, c can be expressed as:

∂ℒ
∂f l, b, m, c

= ∂ℒ
∂f l, b, m, c

γl, c
K , (9)

which has a negligible gradient of ∂ℒ/ ∂f l, b, m, c, if γl, c
K  is approaching to 0. Thus, the adaptation 

loss cannot efficiently enforce the domain alignment for this channel at the adaptation stage.

We note that the channel dropping can be an efficient binary hard-weighting strategy to 

remove the less transferable channels, while it is difficult to define the reasonable threshold, 

thus rendering the network less expressive. Therefore, it can lead to a suboptimal solution. 

As shown in Fig. 3(b), simply dropping 10% of the channels will still lead to a performance 

drop in the target domain. Instead of simply dropping the channels with small γl, c
K , similar 

to prior work, we propose to leverage the scaling factor measured reliability via a soft-

weighting strategy. Specifically, we utilize the scaling factor adjusted HBS loss:

ℒHBS
γ = ∑

l

L
∑

c

Cl

exp −γl, c
K 1 + αl, c γl, c

K − γl, c
t + βl, c

K − βl, c
t , (10)

where exp −γl, c
K  has a smaller weight, if γl, c

K  is smaller. Thus, ℒHBS
γ  can take both low- and 

high-order BN statistics to achieve channel-wise transferability quantification for adaptive 

BN-based adaptation.

1 https://intellabs.github.io/distiller/tutorial-struct-pruning.html 
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3.3. Self-entropy minimization in target domain

Although the label supervision in the target domain is not available, the unlabeled target 

domain can be guided by an unsupervised learning objective (Bateson et al., 2020; Liu et al., 

2022).

A possible solution would be self-entropy (SE) minimization which has been a widely 

used objective in several deep learning models to enforce the confident prediction, i.e., the 

maximum softmax value can be high (Grandvalet and Bengio, 2005; Liang et al., 2020; 

Wang et al., 2021; Bateson et al., 2020). The pixel-wise SE for segmentation is formulated 

by the averaged entropy of the predictions of each pixel, given by

ℒSE = − 1
B × H0 × W 0

∑
b

B
∑
m

H0 × W 0

pb, mlogpb, m , (11)

where H0 and W0 denote the height and width of the input, and pb, m ∈ ℝN indicates 

the N-class softmax output of the m-th pixel of the b-th image in a batch. Optimizing 

ℒSE can encourage pb,m to approach to an one-hot vector. In addition, there are more 

alternative objectives to encourage confident predictions, e.g., the minimum class confusion 

(MCC) loss (Jin et al., 2020). We note that the MCC loss takes much more sophisticated 

computation than the classical SE loss, and is not scalable to the segmentation task (Jin et 

al., 2020).

However, either SE loss or MCC loss only takes the prediction at the current iteration into 

consideration, which can be highly unreliable and unstable along with the training (Zou et 

al., 2019). In the case of source-free UDA, since there is no source data supervision in each 

iteration for correction, the biased prediction could significantly mislead the training.

3.4. Queued memory-consistent Self-training

We further propose a novel queued memory-consistent self-training (MCSF) strategy for 

stable and efficient source-relaxed UDA. MCSF is able to stabilize the OSUDA from two 

perspectives. First, we only account for the pixel with high confident prediction in each 

iteration akin to conventional self-training (Zou et al., 2019). In addition, we calculate the 

supervision signal, conditioned on the historical consistency.

Specifically, for a pixel in a target domain sample xb,m, we have the corresponding 

network prediction pb, m
τ  in τ-th training iteration at the adaptation stage. The pseudo label 

yb, m = yb, m
1 , …, yb, m

N  of a target sample xb,m is a N-dimensional vector indexed by n. The n-th 

dimension has the value of 1, only if the histogram distribution pb,m takes the maximum 

probability in n-th class, and the corresponding probability is larger than a class-wise 

threshold λn (Zou et al., 2019). We note that λn works as a confidence threshold to only 

keep the relatively reliable pseudo labels. We usually resort to the maximum value of pb,m, 

as a surrogate of the confidence (Zou et al., 2019), and rank all of the pixels in a batch 

w.r.t. their maximum value of pb,m. Then, λn is set to select the top α% of the most 

confident pixels in each class. Specifically, each class-wise bin of the pseudo label yb, m can 

be formulated as:
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yb, m
n =

1, if n = arg max
n

pb, m(n ∣ x, w)
λn and pb, m(n ∣ x, w) > λn,

0, otherwise,
(12)

where pb,m(n|x, w) is the value of pb,m in the n-th bin, which indicates the predicted 

probability of n-th class. Therefore, yb, m
n  can be a one-hot histogram for the reliable pixels, 

while yb, m
n  can be 0 vector for the ones that are not confident. That is, the feasible set 

of yb, m ∈ ΔN − 1 ∪ 0  is a union of probability simplex ΔN−1 and {0}. We note that the 

cross-entropy loss for yb, m = 0  is always 0, which indicates that the corresponding pixel is 

not counted to the final loss.

Then, for each xb, m
τ , we measure the pixel-wise historical consistency ψb, m

τ  over H consecutive 

iteration. Note that traversing all of the historical data can be inefficient to process. 

Therefore, we propose to incorporate the most recent H iteration with a dynamic queue 

module that evolves smoothly alongside the network update. As shown in Fig. 4, we utilize 

a “first-in-first-out” memory queue to store pb, m
τ  and its previous values, i.e., pb, m

τ − 1, ⋯, pb, m
τ − H, to 

calculate the pixel-wise historical consistency ψb, m
τ  at τ-th iteration by:

ψb, m
τ = 1 − Sigmoid 1

H ∑
ℎ = 1

H
pb, m

τ − pb, m
τ − ℎ

1 . (13)

We propose to utilize ψb, m
τ  to achieve pixel-wise adaptive reweighting of the self-training 

objective. In the case of a good agreement of the historical predictions, the target sample can 

be considered a well-learned one. Therefore, it is reasonable to rely on these samples and 

increase their contribution to the overall loss function, by assigning a large ψb, m
τ . By contrast, 

we lower the weights for the largely historical inconsistent samples in the loss calculations. 

The training loss following the cross-entropy-based self-training can be formulated as:

ℒMCST = − 1
B × H0 × W 0

∑
b

B
∑
m

H0 × W 0

ψb, m
τ × yb, m

τ log pb, m
τ , (14)

where pb, m
τ  is the prediction at τ-th iteration, and yb, m

τ  is its pseudo label generated with Eq. 

(12).

Compared with the self-entrpy in Eq. (11), ℒMCST utilizes the pseudo label yb, m
τ  instead of 

pb, m
τ . Therefore, the low confident predictions will not be used to update the networks. In 

addition, the loss is adaptively adjusted with ψb, m
τ .

3.5. Overall training protocol for OSUDA with MCSF

At the target domain adaptation stage, the OSUDA with EMD and ℒHBS
γ  can be combined 

with either the conventional SE minimization or our novel queued memory-consistent 

self-training. Note that the training protocol of the source model, e.g., loss function and 
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hyperparameters, is not a prerequisite for our model, but the trained model with its stored 

BN statistics alone is required.

In the case of OSUDA with SE minimization, the overall training objective can be 

formulated as ℒ = ℒHBS
γ + λℒSE,, where λ balances between these two terms. However, SE 

may lead to a trivial solution that every sample has the same one-hot prediction (Grandvalet 

and Bengio, 2005). For stabilization, we propose to change the contribution of the loss 

terms along with the training (Granger et al., 2020; Ganin et al., 2016; Tang et al., 2022). 

Specifically, we simply linearly decrease λ, e.g., from 10 to 0, along with the adaptation. Of 

note, the use of more sophisticated decreasing functions, e.g., the log or exponential function 

w.r.t. epoch (Granger et al., 2020; Ganin et al., 2016) could further enhance adaptation 

performance.

The optimization objective of the proposed OSUDA with MCSF can be expressed as

min
w, y

ℒ = ℒHBS
γ + λℒSE + φℒMCSF,

s.t.y ∈ ΔK − 1 ∪ 0 , ∀x ∈ Dt, andEMD,
(15)

which is typically formulated as a classification maximum likelihood (CML) problem 

(Amini and Gallinari, 2002), and can be optimized with Classification Expectation 

Maximization (CEM) (Zou et al., 2019). Specifically, there are three steps in each iteration 

(Zou et al., 2019):

1. Expectation: Estimating pb, m
τ  for all of xb,m in a target batch with the forward 

pass of the current model.

2. Classification: Calculating the pseudo label yb, m
τ  (in Eq. (12)) and the 

corresponding memory-consistency ψb, m
τ  (in Eq. (13)) for all of xb,m in a target 

batch.

3. Maximization: Updating the low-order BN statistics with EMD, and fine-tuning 

the network parameter w with ℒHBS
γ + λℒSE + φℒMCSF via backpropagation.

We note that solving for Eq. (12) in our Expectation-classification steps is a typical concave 

problem that has a globally optimal solution. In addition, the Maximization step is seen 

as supervised learning, which is usually convergent (Shalev-Shwartz and Ben-David, 2014; 

Cover, 1999). Thus, the overall training process can be convergent. In each iteration, we 

implement these three steps sequentially as the conventional self-training (Zou et al., 2019; 

Liu et al., 2021f).

4. Experiments and Results

To show the effectiveness of our framework, we experimented on both the brain tumor 

and cardiac segmentation tasks. We provided detailed comparisons against “partial” source-

relaxed UDA methods as well as the contemporary or follow-up source-free UDA methods. 

The source available UDA methods with the same backbones are used as our “upper 

bounds.”
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In addition, we provide ablation studies of the components in our framework, and the 

sensitivity analysis of hyperparameters invovled. We denote our prior work (Liu et al., 

2021g) as OSUDA. The OSUDA without the adaptive channel-wise weighting and SE 

minimization are denoted as OSUDA-AC and OSUDA-SE, respectively. In addition, 

OSUDA+ℒHBS
γ  indicates using the scaling factor adjusted HBS loss for the high-order 

BN statistics consistency. We further integrate the memory-consistent self-training as our 

memory consistent OSUDA (MCOSUDA), i.e., OSUDA+ℒHBS
γ + MCSF, to achieve superior 

source-free adaptation performance.

We set ϵ = 1 × 10−6 for batch normalization as in Ioffe and Szegedy (2015). Following 

the previous self-training works (Zou et al., 2019; Liu et al., 2020, 2021f), we empirically 

initialize α = 20, and linearly increase it to 80 along with the training, since the pseudo-label 

is inherently more noisy at the start of training.

The training was performed with the PyTorch deep learning toolbox (Paszke et al., 2017) on 

an NVIDIA V100 GPU. For the evaluation metrics, we employed the widely accepted Dice 

similarity coefficient (DSC) and Hausdorff distance (HD) as in Zou et al. (2020); Bateson et 

al. (2020). The DSC, a.k.a. dice score (the higher, the better), measures the overlap between 

the predicted segmentation mask and the label. The HD (the lower, the better) is defined for 

two sets of points in the prediction and label in a metric space (Zou et al., 2020; Bateson et 

al., 2020). The standard deviation was reported over five runs.

4.1. Brain Tumor Segmentation

The BraTS2018 database contains a total of 285 patients (Menze et al., 2014), in which a 

total of 210 patients have glioblastoma, i.e., high-grade gliomas (HGG), while the remaining 

75 patients have low-grade gliomas (LGG).

Each patient has 4 registered Magnetic Resonance (MR) Imaging (MRI) modalities, i.e., 

T1-weighted (T1), T1-contrast enhanced (T1ce), T2-weighted (T2), and T2 Fluid Attenuated 

Inversion Recovery (FLAIR) MRI. The MRI voxels have four class labels, i.e., enhancing 

tumor (EnhT), peritumoral edema (ED), tumor core (CoreT), and background. The union of 

CoreT, ED, and EnhT represents the whole tumor (Shanis et al., 2019). To demonstrate the 

validity and generality of the proposed OSUDA, we carried out two cross-domain protocols, 

including cross-modality (Zou et al., 2020) and cross-subtype UDA (Shanis et al., 2019). 

Fig. 5 shows example samples with the four MRI modalities from HGG or LGG datasets. Of 

note, because there are imaging artifacts and some volumes are of low resolution (e.g., LGG 

T1 slices), some of the structures are incomplete. In addition, volumes in the BraTS database 

have different resolution, and so co-registration was carried out (Menze et al., 2014), which 

also involves interpolation to a standard resolution.

4.1.1. Cross-MR-modality UDA: T2-weighted MRI to T1-weighted/T1ce/FLAIR 
MRI—In the cross-modality UDA task, there can be relatively large appearance 

discrepancies among the MRI modalities. Considering the clinical manual annotation of 

the brain tumor usually works on T2-weighted MRI, the conventional cross-MR-modality 

UDA focuses on using T2-weighted MRI as the labeled source domain, while T1-weighted/

T1ce/FLAIR MRI are used as the target domain (Zou et al., 2020). Following the standard 
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protocol, we used 80% subjects for training and 20% subjects for testing (Zou et al., 2020), 

and used the same network backbone. All of the samples were used in a subject-independent 

and unpaired manner (Zou et al., 2020).

We followed the backbone as in Zou et al. (2020). We set the batch size to 12 for 

segmentation. For all the adaptation models, a model trained on the source data with 

cross-entropy over 100 epochs was used as an initialization. The network was trained over 

100 adaptation epochs. The consecutive iteration in the memory H was set as 5. The training 

took about 1 hour. In practice, segmenting one image in testing only took about 0.1 seconds.

In Table 1, we provide the quantitative evaluation results. The proposed OSUDA-based 

methods outperformed CRUDA (Bateson et al., 2020) and the follow-up source-free UDA 

methods, e.g., GTA (Kundu et al., 2021), DPL (Chen et al., 2021), and SFKT (Liu et 

al., 2021h). Note that CRUDA requires training an additional label proportion network 

in the source domain, and GTA requires training a special domain generalization module 

in the source domain, both of which are not source-free settings. In addition, our OSUDA-

based methods with ℒHBS
γ  and MCSF outperformed the source-available UDA methods, 

e.g., CycleGAN (Zhu et al., 2017) and SIFA (Chen et al., 2019), for T2-weighted MRI to 

T1-weighted/FLAIR MRI transfer tasks w.r.t. DSC and HD. We listed the state-of-the-art 

source available UDA methods as our “upper bounds”, and did not manage to beat all of 

them. Fig. 6 illustrates the visual comparisons of 3 target MRI modalities, which shows the 

promising results of OSUDA-based methods over the other comparison methods.

OSUDA-AC and OSUDA-SE yielded inferior performance than OSUDA, demonstrating the 

effectiveness of the adaptive channel-wise weighting and the SE minimization. In addition, 

the scaling factor adjusted ℒHBS
γ  and MCSF can further improve the performance.

4.1.2. Cross-subtype UDA: HGG to LGG—The subtypes of HGG and LGG can take 

different tumor sizes and positions. Following the standard cross-subtype data split protocol 

in Shanis et al. (2019) to adapt the model trained on HGG to LGG subjects. We chose the 

same backbone as in Shanis et al. (2019) with 15 layers in U-Net (Ronneberger et al., 2015). 

Networks were trained with four-channel sliced 2D axial MRI slices to perform pixel-wise 

four-class segmentation, including background, EnhT, CoreT, and ED. The input samples 

have the size of 128×128×4, which is a slice-wise concatenation of four MRI modalities. 

The networks were trained with a batch size of 12. The consecutive iteration in the memory 

H was set as 3. Following Shanis et al. (2019), both HGG and LGG volumes were split into 

training and testing datasets. We pre-trained our network on the source domain data over 150 

epochs as in Shanis et al. (2019). The adaptation training took about 2 hours.

In Table 2, we provide the results of our quantitative evaluations. Due to different class-wise 

pixel proportions in the two subtypes, the class-ratio-based CRUDA (Bateson et al., 2020) 

only achieved marginal improvements. Especially, the DSC of CoreT was inferior to the 

source model without adaptation, which can be the case of the negative transfer (Wang 

et al., 2019b). Our proposed OSUDA with ℒHBS
γ  and MCSF was able to achieve superior 

performance for source-free UDA segmentation, and approached the results of source-
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available SEAT (Shanis et al., 2019). The ablation studies also confirmed the effectiveness of 

the adaptive channel-wise weighting, SE minimization, ℒHBS
γ , and MCSF.

The qualitative comparisons are shown in Fig. 7. Source-free UDA methods were able to 

substantially improve the performance over the source domain model without adaptation. 

However, CRUDA (Bateson et al., 2020) tended to predict a larger area for the tumor.

4.2. Segmentation of Cardiac Structures

We used the MM-WHS database for the whole heart segmentation (Zhuang and Shen, 2016), 

which contains a total of 40 datasets acquired from multiple clinical sites. There are a total 

of 20 subjects who have MRI scans, each of which has a total of 128 MRI slices. Another 

20 subjects have CT scans, each of which has about a total of 256 slices. The segmentation 

label of each slice in the cardiac datasets has five classes, including left ventricle blood 

cavity (LVC), left atrium blood cavity (LAC), the myocardium of the left ventricle (MYO), 

ascending aorta (AA), and background. Note that the subjects with MRI and CT scans are 

unpaired. We followed the previous evaluation protocols in Chen et al. (2019); Zou et al. 

(2020); Chanti and Mateus (2021) to use the coronal view slices, and chose 8/2 subject 

split for training and testing, respectively. We chose MRI and CT as the source and target 

domains, respectively. As a preprocessing step, the slice was cropped to 256 × 256. For a fair 

comparison, we adopted the same backbone in Chen et al. (2019); Zou et al. (2020). We set 

φ = 5 and linearly decreased λ from 10 to 0. In all of our cardiac segmentation tasks, we set 

the batch size B as 12, and the consecutive iteration in the memory H as 5. We trained the 

source model over 100 epochs, followed by the source-free adaptation over 100 epochs. The 

training took about 1.5 hours.

The numerical comparisons are provided in Table 3. Consistent with the brain tumor 

segmentation tasks, our framework performed better than CRUDA (Bateson et al., 2020) 

and SFKT (Liu et al., 2021h), by more than 4% w.r.t. DSC, and 6mm w.r.t. HD. When 

compared with the methods with the source data, our framework performed better than the 

classical cycleGAN (Zhu et al., 2017). In Fig. 8, we provide the qualitative comparisons.

In addition, we followed the evaluation protocol in Chanti and Mateus (2021) to evaluate the 

performance with only one subject in the target domain. As in Chanti and Mateus (2021), 

we took three adjacent slices (256 × 256 × 3) as input and predicted the segmentation 

mask of the middle slice to explore the 2.5D information. The segmentation network has 5 

convolutional and 5 de-convolutional layers (Chanti and Mateus, 2021). We set H = 3 and φ 
= 5, and linearly decreased λ from 10 to 0.

The numerical comparisons are provided in Table 4. We can see that the performance 

improvements over CRUDA (Bateson et al., 2020) and SFKT (Liu et al., 2021h) are 

more appealing. Specifically, the average DSC of MCOSUDA was about 15% higher than 

CRUDA and SFKT.

4.2. Sensitive analysis of hyper-parameters

There are several hyper-parameters involved in our framework. In this subsection, we 

provide a systematical analysis of these hyper-parameters. Firstly, the stability of the BN 
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statistics can be highly associated with the batch size. A larger batch size can provide more 

unbiased statistics, while introducing more computation and memory costs. As shown in 

Fig. 9 left, the performance can be benefited, by increasing the batch size from 1 to 10, 

while the performance is almost stable for the batch size larger than 10 for all of the tasks. 

Therefore, we simply set all of the batch size to 12 in this work.

We used λ to weight the SE minimization, which is linearly changed from a relatively large 

positive value to 0 at the adaptation stage. As shown in Table 5, we can see that the linearly 

decreasing λ can be better than fixed λ. To select the proper initial value of λ, we provide 

the sensitivity analysis in Fig. 10. The range of linearly decreasing λ can be relatively stable 

from 5→0 to 15→0. We simply set λ to 10→0 for all of our experiments. We note that 

setting λ to 0 is equivalent to OSUDA-SE, i.e., without the SE minimization term.

In MCSF, we utilized a memory queue to measure the historical consistency. As shown in 

Fig. 9 right, we analyzed the relationship between H and the performance. In both the cross-

modality segmentation and the cardiac MR to CT segmentation tasks, the performances 

were stable, since H had a value larger than 5. For the HGG to LGG task, H = 3 was 

sufficient to achieve the DSC of 62.87%.

In order to balance the MCSF loss, we used φ to weight the objectives. For the sensitivity 

analysis, we provide the comparisons with different φ as shown in Fig. 11. By setting φ 
larger than 5, we were able to achieve relatively stable performance for all of the tasks, 

e.g., the average DSC of 59.17% in cross-modality whole tumor segmentation using the 

BraTS2018 dataset.

In addition, λn is set to select the top α% of the most confident pixels in each class. 

Therefore, α is a to-be tuned hyperparameter, and λn adaptively changes in each iteration 

based on α. Increasing α along with the training is a typical solution to accommodate the 

noisy level change of pseudo-label (Zou et al., 2019; Liu et al., 2020, 2021f). In Table 6, 

we compared the model with different start and end α for both tasks. We can see that too 

large end α can lead to worse performance. Since the pseudo-label can still be noisy at the 

late training epochs, assuming more than 80% of them are correct can mislead the training. 

In addition, too small start α can lead to slower convergence, since the pseudo label is not 

sufficiently utilized.

5. Discussion

The problem of domain shift is prevalent, when applying deep learning models trained 

on source domain data to carry out a variety of tasks in the target domain. As a result, 

the performance degradation has been clearly observed in tasks using data from different 

centers (Liu et al., 2021e), scanners (Ghafoorian et al., 2017), populations, subtypes (Liu 

et al., 2021e), and modalities (Liu et al., 2021f). Among these cases, cross-modality UDA 

can be the most challenging task, due to different imaging principles involved, resulting in 

different image appearances. The general validity and efficacy of our proposed framework 

were demonstrated using cross-MR-modality and cross-subtype brain tumor segmentation 

tasks, and cardiac MR to CT segmentation task. While these databases presented different 
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challenges, our framework robustly achieved superior performance consistently compared 

with the conventional approaches. In addition, different backbones were adopted, similar to 

the previous works. Notably, our proposed framework is not dependent on prior knowledge 

of the specific imaging modality, and can be easily applied to other UDA tasks.

Due to concerns over patient data privacy and IP, the restriction of the source data sharing 

in clinical practice can be a significant obstacle for many UDA approaches. To address the 

issue, in this work, we proposed a novel UDA segmentation framework in the absence of 

source domain samples. To the best of our knowledge, this is one of the first attempts at 

source-relaxed UDA for image segmentation, which does not need an auxiliary network, 

or the unreliable assumption of the same label proportion (Bateson et al., 2020). Our 

framework is only reliant on a pre-trained OS segmentor, with the widely used BN.

As shown in Tables 2–4 and Figs. 6–8, our framework yields superior performance over 

the other comparison methods, when qualitatively and quantitatively evaluated. There are 

a few important differences that give insights into their performances. We can see that the 

performance degradation of the source domain model widely exists, especially when we 

apply our framework to a different target domain. Due to a relatively large domain shift in 

the cardiac MR to CT segmentation task, the DSC of the source domain model was only 

17.2%. Since the multi-modality segmentation task is widely used in clinical practice, and 

the dual annotation on multiple modalities can be a large burden, the domain adaptation 

methods can be a viable solution (Chen et al., 2019).

CRUDA (Bateson et al., 2020) assumes that the pixel proportion is consistent between two 

domains. In adaptation, this prior knowledge was used as the only transferable information. 

In Table 2, we show that the performance of CRUDA is largely inferior to our framework, 

since the tumor pixel proportion is largely different between HGG and LGG subjects. 

In addition, the class-ratio prediction model is usually not “off-the-shelf,” since it is not 

typically used in clinical practice and needs specialized training in the source domain. 

Recently, there are several contemporary or follow-up works, aimed at source-free UDA for 

natural image segmentation, which are re-implemented and compared in Tables 1, 2, and 3. 

Although the relatively good performance was achieved by Kundu et al. (2021), its domain 

generalization training in the source domain limits the model to be used for source-free 

UDA. The additional attention network used in SFKT may require relatively more data for 

training, thus yielding additional parameters. For the cardiac MR to CT segmentation task, 

with only one target training sample, the DSC of SFKT is 7% lower than our framework. 

The denoising strategy used in Chen et al. (2021) utilized the Monte Carlo method, which is 

challenging for Bayesian uncertainty approximation and training (Liu et al., 2021f).

Several state-of-the-art source-available UDA segmentation works are also compared (Liu 

et al., 2021a; Zou et al., 2020), which are used as the “upper bounds.” Note that we did 

not manage to outperform all of them, since we have different settings when training on 

the source data, and it can be applied to different applications. Nonetheless, the fact that 

our framework approached their performance indicates the superior performance of our 

source-free UDA. In some of the tasks, our framework was able to outperform even the 
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source data available methods (Zhu et al., 2017; Shanis et al., 2019; Chen et al., 2019), 

which further demonstrates the superiority of our framework.

We proposed to explore the BN statistics for source-free UDA using a systematical 

framework with low-order statistics progression and high-order statistics consistency loss. 

The transferability of each channel was exploited for the channel-wise adaptive alignment. 

We further proposed to utilize both the low-order statistics discrepancy and scaling factor 

for the transferability quantification, which are evidenced by the ablation studies for 

OSUDA-AC and OSUDA+ℒHBS
γ , respectively. In addition to the BN statistics alignment, 

we further integrated the SE minimization and MCSF into a unified framework to exploit 

the unsupervised learning and memory-based learning, respectively. The unsupervised SE 

minimization and pseudo label used in self-training can be noisy and unstable (Zou et 

al., 2019; Liu et al., 2021f, 2020). In our source-free setting, no source domain data are 

available at the adaptation stage to correct the biased update similar to the source available 

self-training (Zou et al., 2019), which makes the task more challenging. To address this 

issue, we proposed a novel MCSF strategy to efficiently regularize the adaptation with 

memory-based learning. In Fig. 12, we show that MCSF was able to effectively stabilize the 

training, and achieve better performance.

This work aimed to develop a source-free UDA approach, in which source domain data are 

not available at the adaptation stage, which is considered a more restricted setting, compared 

with UDA with source data. This setting, in turn, could help avoid any potential issues over 

patient data sharing or IP. As such, the evaluations against UDA approaches, in which source 

data are available, are used for performance comparison purposes only.

There are a few important aspects that are not fully studied in the present work. First, we 

proposed to exploit the BN statistics. Recent studies (Zhou et al., 2021) used instance-wise 

statistics for domain generalization, which can be orthogonal to our framework and could 

be potentially added to our framework. Second, we only investigate the case where the 

source and target domain models use the same backbone, which is a typical setting in UDA. 

The different backbones may be achievable by initializing the target model with knowledge 

distillation (Hinton et al., 2015). Third, we have taken the correlation between neighboring 

MRI slices into consideration (i.e., 2.5D segmentation) as in Chanti and Mateus (2021) in 

Table 4. Yet, the 3D segmentation backbones can hardly be applied to the datasets, due to 

the relatively limited number of 3D datasets to provide reliable BN statistics. In addition, 

while our experiments showed that many of the weights were not sensitive, they needed to 

be carefully tuned to balance among the optimization objectives.

6. Conclusion

In this paper, we have proposed a novel and practical source-free UDA framework, aimed 

at image segmentation. Our framework was only reliant on an OS pre-trained segmentation 

network with BN in the source domain, which could thereby sidestep the concerns over 

the patient data sharing and IP inherent in conventional UDA. The BN statistics were 

systematically investigated for domain alignment. Specifically, the low-order BN statistics 

progression with EMD was proposed to gradually learn the target domain-specific mean 
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and variance. The domain shareable high-order BN statistics consistency was encouraged by 

the HBS loss, which was adaptively adjusted, according to the channel-wise transferability. 

In addition to quantifying the transferability based on low-order statistics discrepancy, the 

high-order scaling factor was further explored. An unsupervised learning objective, i.e., 

SE minimization, was incorporated into our framework, and the novel queued memory-

consistent self-training was further proposed to achieve stable memory learning with the 

pseudo label. Extensive experiments, ablation studies as well as sensitivity analysis on 

the cross-MR-modality and cross-subtype brain tumor segmentation tasks and cardiac MR 

to CT segmentation task demonstrated the effectiveness of our OSUDA, which can be 

potentially applied in a clinically meaningful setting.
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Fig. 1: 
Comparisons of our framework with different related knowledge transfer methods: (a) fine-

tuning makes use of labels in both domains via two stages, i.e., supervised pre-training in 

source domain and supervised re-training in target domain; (b) domain generalization (DG) 

(Liu et al., 2021b) relies on joint training and expects generalization in unseen domains; (c) 

conventional UDA (Wilson and Cook, 2020; Liu et al., 2021a) is trained jointly on labeld 

source domain and unlabeled target domain data; and (d) our source-relaxed “off-the-shelf” 

model adaptation for segmentation is based on adaptation, without source domain data.
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Fig. 2: 
Illustration of a channel in our OSUDA framework, based on the pre-trained “off-the-shelf 

(OS)” model with BN. We mitigate the domain discrepancy with the adaptive BN statistics 

in each channel.
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Fig. 3: 
Comparison of (a)  − distance (Ben-David et al., 2010) and (b) the target domain DSC of 

the source domain model w/wo pruning of channels with a small scaling factor in the HGG 

to LGG task.
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Fig. 4: 
Illustration of our proposed queued dynamic memory-consistent self-training strategy.
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Fig. 5: 
Illustration of the tumor size variability in the BraTS2018 database: the top row shows axial 

slices of LGG (top row) and HGG (bottom row) tumors with four MRI modalities and the 

corresponding segmentation label used in this work.
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Fig. 6: 
Comparisons of our framework against other UDA methods, and ablation studies of T2-

weighted MRI-to-T1-weighted/T1ce/FLAIR MRI UDA for whole tumor segmentation using 

BratS2018. Note that CLS (Liu et al., 2021a) with source data for training is regarded as an 

“upper bound.”
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Fig. 7: 
Comparisons of our framework against other UDA methods, and ablation studies for HGG 

to LGG cross-subtype brain tumor UDA segmentation. The source-available CLS (Liu et al., 

2021a) is regarded as an “upper bound.”
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Fig. 8: 
Comparisons of our framework against other UDA methods, and ablation studies for cardiac 

MR to CT segmentation. The source-available CLS (Liu et al., 2021a) is regarded as an 

“upper bound.”
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Fig. 9: 
The average DSC of OSUDA+ℒHBS

γ + MCSF(MCOSUDA) with different batch size (left) and 

H in the memory queue for the cross-modality (blue) and the HGG to LGG (red) brain 

tumor segmentation task, and the cardiac MR to CT segmentation task (green).
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Fig. 10: 
The DSC of OSUDA+ℒHBS

γ + MCSF(MCOSUDA) in cross-modality tumor segmentation (left) 

and cardiac MR to CT segmentation (right) with different λ.
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Fig. 11: 
The DSC of OSUDA+ℒHBS

γ + MCSF(MCOSUDA) in cross-modality tumor segmentation (left) 

and cardiac MR to CT segmentation (right) with different φ.
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Fig. 12: 
The training loss (left) and validation DSC (right) of our OSUDA, with or without MCSF in 

cross-MR-modality tumor segmentation.
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Table 4:

Comparisons of cardiac MR to CT segmentation with only one target domain subject for training as in OLVA 

(Chanti and Mateus, 2021).

Method Source data
DSC [%] ↑

AA LAC LVC MYO Average

CRUDA Partial 53.45 59.20 73.32 35.64 55.40±0.13

SFKT no 51.38 56.93 71.30 33.76 53.34±0.14

OSUDA no 57.96 63.37 77.85 39.82 59.75±0.11

-AC no 57.63 62.03 77.45 39.74 59.21±0.15

-SE no 57.13 62.41 77.32 39.26 59.03±0.13

+ℒHBS
γ no 58.06 63.49 78.12 39.94 59.90±0.12

+ℒHBS
γ + MCSF no 58.27 64.18 78.44 40.51 60.35±0.08

SIFA Yes 62 53 80 39 62

OLVA Yes 60 70 78 68 69

± indicates standard deviation. The UDA methods with source domain data are regarded as “upper bounds.”
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Table 5:

The average DSC of OSUDA with fixed or linear changed λ for the BraTS cross modality/subtype and MR to 

CT segmentation tasks.

Cross modality segmentation task using BraTS18

λ 10→0 10 5 3 1 0

DSC 57.84 56.98 57.15 57.26 57.04 56.58

HGG to LGG segmentation task using BraTS18

λ 10→0 10 5 3 1 0

DSC 61.94 60.97 61.02 61.14 61.08 60.78

MR to CT segmentation task using MM-WHS

λ 10→0 10 5 3 1 0

DSC 63.11 62.95 62.96 62.95 62.90 62.87
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Table 6:

The average DSC of MCOSUDA with different α for three tasks.

Cross modality segmentation task using BraTS18

α 20→80 10→80 30→80 20→70 20→90

DSC 59.17 59.02 58.87 59.13 58.74

HGG to LGG segmentation task using BraTS18

α 20→80 10→80 30→80 20→70 20→90

DSC 62.87 62.74 62.65 62.72 62.46

MR to CT segmentation task using MM-WHS

α 20→80 10→80 30→80 20→70 20→90

DSC 64.57 64.50 64.48 64.49 64.42
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