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ABSTRACT

Objective: Extracorporeal membrane oxygenation (ECMO) resource allocation tools are currently lacking. We

developed machine learning (ML) models for predicting COVID-19 patients at risk of receiving ECMO to guide

patient triage and resource allocation.

Material and Methods: We included COVID-19 patients admitted to intensive care units for >24 h from March

2020 to October 2021, divided into training and testing development and testing-only holdout cohorts. We

developed ECMO deployment timely prediction model ForecastECMO using Gradient Boosting Tree (GBT),

with pre-ECMO prediction horizons from 0 to 48 h, compared to PaO2/FiO2 ratio, Sequential Organ Failure

Assessment score, PREdiction of Survival on ECMO Therapy score, logistic regression, and 30 pre-selected clin-

ical variables GBT Clinical GBT models, with area under the receiver operator curve (AUROC) and precision

recall curve (AUPRC) metrics.

Results: ECMO prevalence was 2.89% and 1.73% in development and holdout cohorts. ForecastECMO had the

best performance in both cohorts. At the 18-h prediction horizon, a potentially clinically actionable pre-ECMO

window, ForecastECMO, had the highest AUROC (0.94 and 0.95) and AUPRC (0.54 and 0.37) in development

and holdout cohorts in identifying ECMO patients without data 18 h prior to ECMO.

Discussion and Conclusions: We developed a multi-horizon model, ForecastECMO, with high performance in

identifying patients receiving ECMO at various prediction horizons. This model has potential to be used as early

alert tool to guide ECMO resource allocation for COVID-19 patients. Future prospective multicenter validation

would provide evidence for generalizability and real-world application of such models to improve patient out-

comes.
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BACKGROUND AND SIGNIFICANCE

Since the start of the severe acute respiratory syndrome coronavirus-

2 SARS-CoV-2 (COVID-19) pandemic, extracorporeal membrane

oxygenation (ECMO), a complex and resource-intensive therapy

provided in intensive care units (ICU),1–3 has been used for patients

refractory to conventional therapies.4,5 The use of ECMO for

COVID-19 was subject to considerable debate6–12 owing to the

uncertain outcomes8,13–31 and the ethical dilemma in the deploy-

ment of such resource-intensive therapies.3,15,32–39 Despite these

concerns, there was a consistent increase in COVID-19-related

ECMO use worldwide.26,40–43 International recommendations

stated that ECMO should be initiated only at experienced cen-

ters,27,35,44 with recent literature showing that new ECMO centers

required supervision of regional experts.45,46 Recommendations

were often limited to guiding ECMO initiation using markers of

refractory respiratory failure such as PaO2/FiO2 (PF) ratio,44,47 or

previously developed ECMO mortality prediction scores, recogniz-

ing that such scores were not developed to guide patient-level deci-

sion-making48 and their inconsistency in predicting outcomes for

COVID-19-related ECMO.11,49

The substantial burden on the global healthcare system during

the pandemic8 highlighted the lack of tools to guide resource alloca-

tion for high-risk resource-intensive therapies like ECMO. Cur-

rently, there are no objective tools to identify patients at the highest

risk of receiving ECMO support with enough clinically actionable

lead time prior to ECMO cannulation, potentially hindering optimal

resource allocation within an institution or the ability to safely

transport patients to ECMO-experienced centers. The need for such

tools is further highlighted by the evolving evidence of the impor-

tance of early referral to ECMO-capable centers and the impact of

early ECMO deployment on patient outcomes.50–59

In this study, we had 2 objectives: first, to develop predictive

models for early identification of patients at the highest risk of

receiving ECMO support, at individual patient levels, and second,

to evaluate the viability of these models after multiple time horizons

with clinically meaningful lead time to allow patient triage and effi-

cient resource allocation.

MATERIALS AND METHODS

Setting and data sources
Data were extracted from the institutional electronic health record

(EHR) data registry of all COVID-19 patients, spanning 15 hospi-

tals of a quaternary healthcare system in a bi-state region covering

rural and urban areas with a catchment area spanning 5 states, for

19 months (March 3, 2020–October 1, 2021). This study was

approved by the institutional review board of Washington Univer-

sity in St. Louis (IRB# 20201104) with waiver of consent. The

Transparent Reporting of Multivariable Prediction Model for Indi-

vidual Prognosis or Diagnosis (TRIPOD) guidelines60 were used for

reporting (Supplementary Material Digital Content 1).

Study population and outcomes
We included all COVID-19 patients confirmed by SARS-CoV-2

viral polymerase chain reaction admitted to an ICU for at least 24 h.

ECMO indication was confirmed to be directly related to COVID-

19 using chart review (performed by author, ASS). Patients were

excluded if they were less than 3 years of age or met our institutional

ineligibility criteria for ECMO at the time (age >70 years and body

mass index >45 kg/m2). Data were divided into 2 cohorts to validate

the model performance: data from the first 10 months (March

2020–December 2021) were grouped into a development cohort for

model training and evaluation and data from the subsequent 9

months (January 2021–October 2021) were sequestered as a hold-

out cohort and only used for model testing. This approach was

selected to evaluate the model performance and validity through the

evolving waves of the pandemic. The primary prediction outcome

was the provision and timing of COVID-19-related ECMO support

utilizing the data 0–48 h prior to ECMO initiation.

Variables and data processing
All 23 765 available features in the data registry were reviewed and

processed including merging of similar laboratory and flowsheet fea-

tures, and exclusion of self-reporting static features. After sorting

for feature availability, features available in less than 200 patients

were excluded to better reflect the general ICU population. A total

of 212 variables were utilized in the model development including

(1) static variables: demographics, comorbidities (Charlson Comor-

bidity Index61,62) and (2) continuous (time series) variables; labora-

tory, medications, and therapeutic variables (Supplementary

Material Digital Content 2). Normal ranges and direction of abnor-

mality were identified for time series variables and the worst values

in the data collection period prior to the prediction horizons were

concatenated with the static variables as model inputs. For ECMO

patients, the worst values from admission to the start of the predic-

tion horizons before ECMO initiation were included, whereas for

non-ECMO patients we utilized the worst values from admission to

the start of the prediction horizon prior to ICU discharge (Figure 1).

Predictions for ECMO use were made at 2-h intervals from ICU

admission to the start of the prediction horizon.

Multi-horizon prediction models
We developed models capable of incorporating both static patient

characteristics and time series variables for early prediction of

ECMO utilization allowing for appropriate clinical interventions

and preparation. As such, we developed a multi-horizon

approach63,64 to predict the risk of ECMO use every 2 h, with pre-

determined prediction horizons ranging from 0 to 48 h. No data

during the prediction horizons were included as the input. As shown

in Figure 1, input variables were collected from admission to the

start of prediction horizon prior to either: (1) ECMO initiation for

patients supported on ECMO or (2) ICU discharge for non-ECMO

patients. This approach was selected to evaluate the performance at

various clinically actionable pre-ECMO prediction horizons. At

each prediction horizon, patients who had already received the out-

come (ECMO or discharge) were excluded from the model building.

Two multi-horizon prediction Gradient Boosting Tree (GBT)

models were developed; ForecastECMO utilizing all included

features and a model limited a set of 30 a priori selected clinically

relevant variables deemed to be most influential in ECMO decision-

making (by authors ASS and NS, including variables previously

incorporated in ECMO outcome scores49,65,66) labeled Clinical

GBT. Prediction was optimized by developing a collection of GBT

models at the different prediction horizons (Supplementary Material

Digital Content 2).

Comparison models included (1) logistic regression (LR) models

of all considered variables, where variable missingness was handled

by mean imputation, (2) PF ratio, the only currently recommended

marker for consideration of ECMO initiation,44,47,67–69 (3) ICU

severity of illness scores, to reflect the complex resource allocation
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or patient transfer decision-making faced at the bedside. Sequential

Organ Failure Assessment (SOFA) score, a widely used ICU severity

of illness score was chosen for comparison,70,71 which has been used

to assess the severity of illness in COVID-19 patients,45,50,52,68,72

and (4) PREdiction of Survival on ECMO Therapy (PRESET) score,

a widely available score to predict survival on ECMO for patients

with severe acute respiratory distress syndrome65,73 that has been

evaluated in the context of COVID-19.25

Model performance evaluation
Model evaluation consisted of 2 steps; first, we performed 10 repeat

random shuffles of 10-fold cross-validation (100 results sets in total)

in the development cohort and then evaluated the model on the

holdout dataset. Each cross-validation iteration used a different

stratified fold for model evaluation, and the remaining folds were

used for model training. Two performance measures were recorded,

area under receiver operating characteristic curve (AUROC) and

area under precision recall curve (AUPRC) given the expected low

positive ECMO rate and class imbalance. To help provide an assess-

ment of clinical feasibility and explainability, we utilized Shapley

Additive Explanations (SHAP),74 to identify important predictive

features.

Models were compared using the averaged AUROCs and

AUPRCs from the 10 � 10 iterations. Analysis, model development,

testing, and validation were performed in Python v3.6 with

Sklearn,75 XGBoost,76 and Imblearn77 packages, available on

Github (Supplementary Material Digital Content 2). Data are pre-

sented as median and interquartile range (IQR) for quantitative vari-

ables and number and percentage for qualitative variables, unless

otherwise specified. Mann-Whitney U or Chi square tests were used

for group comparisons. A 2-sided P-value equal to or less than .05

was considered statistically significant.

RESULTS

Between March 3, 2020, and October 1, 2021, we identified 61 179

COVID-19-positive patients (33 017 in the development and 28 162

in the holdout cohorts respectively). After applying exclusion and

inclusion criteria, the final cohort included 6247 patients, of whom

135 received ECMO support (67, 2.89%, in the development and

68, 1.73%, in the holdout datasets, respectively) (Figure 2 and Sup-

plementary Material Digital Content 3).

Cohort characteristics
The median ECMO duration was 425 h, IQR: [211, 704], with

shorter ECMO duration in the development cohort as compared to

the holdout cohort (median [IQR]: 369 [198, 554] vs 548 [219, 946]

h, respectively, P¼ .01). The ECMO patients had significantly

higher hospital mortality rates than the non-ECMO patients (48%

vs 17%, P< .001 and 38% vs 16%, P< .001, in both the develop-

ment and holdout cohorts, respectively). Regarding severity of ill-

ness, compared to the non-ECMO patients, ECMO patients had

higher SOFA scores in the development cohort (12 [10, 13] vs 11 [7,

14], P¼ .001) but lower SOFA scores in the holdout cohort (9 [6,

12] vs 12 [9, 14], P¼ .001). In addition, patients supported on

ECMO had longer durations of mechanical ventilation (10 [2, 22]

vs 3 [1, 10] days, P< .001 and 21 [6, 37] vs 4 [1, 15], P< .001 in

both the development and holdout cohorts) and hospital length of

stay (24 [13, 42] vs 8 [4, 17] days, P< .001, 38 [27, 53] vs 8 [4, 18],

P< .001, in the development and holdout cohorts, respectively).

ECMO patients in both cohorts had significantly higher use of ICU

resources including renal replacement therapy, neuromuscular

blockade, pulmonary vasodilatory therapies, and varying doses of

vasoactive medication infusions with no significant difference

between the ECMO patients in both cohorts. Cohort demographics,

characteristics, therapies, and outcomes are shown in Table 1.

Model performance
In the development cohort, the ForecastECMO model outperformed

the PF ratio, SOFA score, PRESET score, and Clinical GBT models,

at all prediction horizons, in both performance metrics, AUROC

and AUPRC (Figure 3A and B, respectively). Compared to the Fore-

castECMO model, the LR model of all included variables demon-

strated comparable AUROC across the different thresholds

(Figure 3A) but had consistently lower AUPRC performance

(Figure 3B). Similarly, in the holdout cohort, the ForecastECMO

Admission Discharge

Discharge

Discharge

Discharge

Hours after admission

Patient 1

Patient 2

Patient 3

Patient N

Patient N -1
Discharge

Prediction horizon

Discharge
Patient 4

...
...

Data collection period Prediction horizon

Prediction horizon

Prediction horizon

ECMO

ECMO

ECMO

ECMO

Model input
Data

Prediction horizon

Prediction horizon

Data not included 
in model development

Figure 1. Machine learning prediction model, prediction horizons. We developed a set multi-horizon machine learning prediction models. The models explored

the prediction of ECMO use at certain data-free hours in advance termed prediction horizons. The prediction horizons were fixed for all patients and varied from 0

to 48 h. For predictions at each prediction horizon, we included measurements in the time interval from ICU admission to either discharge (for non-ECMO

patients) or ECMO initiation (for ECMO patients) minus prediction horizon hours. ECMO: extracorporeal membrane oxygenation; ICU: intensive care unit.
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model outperformed all compared models at all the studied predic-

tion horizons in both AUROC and AUPRC (Figure 3C and D). Of

interest, the LR model did not perform as well, with lower AUROC

and AUPRC at all studied prediction horizons in comparison to the

ForecastECMO model.

Multi-horizon prediction
To identify clinically actionable time frames for patient triage or

resource allocation, we focused on the prediction horizons of high

performance between 12 and 24 h prior to ECMO initiation. We

identified the 18-h prediction horizon to be of high performance for

the ForecastECMO model in both the development and holdout

cohorts. Compared to PF, SOFA, PRESET scores, LR, and Clinical

GBT models ForecastECMO had an AUROC of 0.94 [CI: 0.93–

0.95] versus 0.52, 0.56, 0.66, 0.92 [CI: 0.91–0.93], and 0.82 [CI:

0.8–0.83], respectively, in the development cohort (Figure 4A) and

0.952 [CI: 0.951–0.953] versus 0.564, 0.59, 0.726, 0.908 [CI:

0.908–0.908], and 0.889 [CI: 0.887–0.89], respectively, in the hold-

out cohort (Figure 4C). When compared to PF, SOFA, PRESET

scores, LR, and Clinical GBT models, ForecastECMO had an

AUPRC of 0.546 [CI: 0.51–0.582] versus 0.032, 0.032, 0.077,

0.474 [CI: 0.435–0.512], and 0.248 [CI: 0.218–0.277], respectively,

in the development cohort (Figure 4B) and 0.376 [CI: 0.37–0.382]

versus 0.011, 0.015, 0.039, 0.262 [CI: 0.261–0.262], and 0.345 [CI:

0.341–0.382], respectively, in the holdout cohort (Figure 4D). We

further assessed the performance of both GBT models after calibra-

tion.78 Again, the ForecastECMO model outperformed all com-

pared models including the Clinical GBT model in both studied

cohorts (Supplementary Material Digital Content 4).

Feature importance
On SHAP variable analysis for the overall cohort, the most salient

features were the need for oxygen therapy, use of neuromuscular

blockade, hemoglobin level, patient position,52 use of positive end-

expiratory pressure (a marker of severity of hypoxemia),52 and D-

dimer (commonly used throughout the pandemic as a marker of

COVID-19 disease severity79) all features consistent with progres-

sive COVID-19-related respiratory failure (Figure 5A). Similarly,

SHAP analysis for the ECMO patients showed oxygen therapy,

patient position, hemoglobin, use of continuous neuromuscular

blockade infusions, use of beta-agonist agents (commonly used for

obstructive airway disease), and exhaled tidal volumes on mechani-

cal ventilatory support (another marker of worsening pulmonary

compliance and refractory respiratory failure) as the top features to

contribute to the model prediction of the risk of ECMO utilization

(Figure 5B) (Supplementary Material Digital Content 5). Similar

variables were identified as the most important in model perform-

ance in predicting the risk of ECMO use in both the development

and holdout cohorts on individual patient levels (Figure 6). For the

false-positive patients (identified by the model to have a high likeli-

hood of receiving ECMO but did not), the most salient features

included oxygen therapy, crystalloid fluid resuscitation and hemo-

globin levels (Supplementary Material Digital Content 6).

DISCUSSION

Using data from 15 hospitals with a 5-state-wide catchment area

and over 6000 patients admitted to ICUs, we developed a prediction

model, ForecastECMO, with prediction horizons of 0–48 h ahead of

ECMO deployment, that had high performance in both assessed

metrics, AUROC and AUPRC, in predicting the risk of ECMO use.

We showed the novel use of a multi-horizon prediction model

approach to a clinical problem that requires early prediction for its

translational use. With a clinically actionable time window in excess

of 12 h, this model has the potential to alert clinicians to the possible

need to escalate support in this select patient cohort, at an individual

patient level, with enough lead time to allow for the necessary

resource allocations or patient transport to either higher resourced

centers or centers with more established ECMO experience, before

the degree of critical illness precludes safe transport.

To date, ECMO-related scoring systems have focused on mortal-

ity prediction for patients already supported on ECMO.48,73,80,81

With the evolution of the pandemic and the concerns regarding the

resource-intense nature of ECMO and initially unclear outcomes,

several studies attempted to validate such mortality prediction

scores to the COVID-19 population with varied results.25,49,82

Although these scoring systems provide important prognostic infor-

mation, the performance of such scores in predicting patients at the

highest risk of receiving ECMO with enough lead time has not been

evaluated. Currently available scores also do not consider the

Institutional COVID-19 database 
March 3, 2020 - October 1, 2021 

(n = 61,179)

Non - ICU 41,984

< 3 years9,808

> 70 years6,464

BMI ≥ 45 kg/m26,247

ECMO
(n = 67)

Non - ECMO 
(n = 2,251)

< 24 hours
hospitalization

10,476

ECMO
(n = 68)

Non - ECMO 
(n = 3,861)

Development cohort 
March 3, 2020 - January 9, 2021

Holdout cohort 
January 9, 2021 - October 1, 2021

Figure 2. Patient selection CONSORT diagram. CONSORT diagram of patient

selection process. Screening the institutional COVID-19 data registry, 61 179

patients were identified between March 3, 2020, and October 1, 2021. Patients

not admitted to an ICU and those admitted for less than 24 h were excluded.

Patients less than 3 years of age were excluded as their normal vital signs

ranges are significantly different than adult patients, who constitute the

majority of patients supported on ECMO, and because there have not been

any local patients of this age group supported on ECMO for a primary COVID-

19 pathology. Finally, following the institutional ECMO exclusion criteria,

patients with BMI above 45 kg/m2 and those above 70 years of age were

excluded. The final included cohort was divided in 2, the development cohort

from March 2020 to January 2021 for model development, training and test-

ing, and the holdout cohort from January 2021 to October 2021 for model

testing alone. BMI: body mass index; ECMO: extracorporeal membrane oxy-

genation; ICU: intensive care unit.
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evolving trajectories of this complex patient population. The

approach presented in our study incorporates the patient data from

ICU admission to ECMO initiation, reflecting the data-rich nature

of the ICU environment and providing predictions on a patient level.

The higher performance of the ForecastECMO model compared to

Clinical GBT highlights the contribution of the added features in

identifying the patient cohort at highest risk of receiving ECMO

support, despite lower feature availability as has been previously

reported in other machine learning (ML) models to predict patient

outcomes.83 Our model has the potential to fill a previously well-

recognized gap in the available clinical tools, by providing clinicians

at the bedside with early alert tool identifying patients at risk of

receiving ECMO support with enough lead time to adjust patient tri-

age or the necessary resource allocations.

The aim of this study was not to develop a model to replace clini-

cal decision-making as to which patients should receive ECMO sup-

port, as these decisions are highly individualized and patient

specific. Developing predictive models to identify the patients who

benefit most from ECMO, truly assessing the impact of ECMO sup-

port on patient outcomes, requires evaluating both ECMO and

propensity-matched non-ECMO cohorts. Rather, the aim of this

work was the novel application of ML approaches to a real-life clini-

cal problem: to identify which patients had the highest probability

of receiving ECMO support based off clinician selection, while pro-

viding a potentially clinically relevant lead time prior to ECMO ini-

tiation. Such approaches aim at augmenting and not substituting

clinical decision-making as outlined in the fundamental theories of

biomedical informatics.84

The ability to identify such patients, well in advance of the actual

timing of ECMO initiation, provides clinicians for the first time

with an objective tool to guide patient triage. Such tools add to those

used at the bedside in deciding which patients would benefit most

from transfer to more ECMO-capable centers before their trajecto-

ries progress and they become too sick to tolerate safe transfer. In

addition, even in ECMO-experienced centers in times of stress and

resource limitation, an early alert tool capable of identifying such

patients provides the necessary data to guide allocation of scarce

ECMO resources.

Studies throughout the pandemic have shown an evolution in the

characteristics of patients supported on ECMO in the different pan-

demic waves.42,85–87 These findings emphasize the need for early

warning tools capable of identifying the patients at the highest risk

Table 1. Cohort demographics, characteristics, therapies and outcomes

Features Total cohort,

n¼ 6247

Development cohort Holdout cohort

ECMO,

n¼ 67

Non-ECMO,

n¼ 2251

ECMO,

n¼ 68

Non-ECMO,

n¼ 3861

Age (years) 54 [26, 64] 54 [44, 59]* 58 [45, 65]* 55 [43, 61]* 48 [13, 63]*

Male sex, n (%) 3550 (57) 46 (69) 1255 (56)* 45 (66) 2204 (57)

Caucasian, n (%) 3965 (64) 38 (57)* 1348 (60)* 42 (62) 2537 (66)

Height (cm) 168 [157, 178] 170 [163, 180] 170 [163, 178] 175 [168, 183]* 165 [145, 176]*

Weight (kg) 76 [56, 95] 85 [79, 105]* 84 [67, 100]* 88 [77, 109]* 71 [44, 91]*

BMI (kg/m2) 26 [20, 32] 30 [26, 35]* 28 [24, 34]* 29 [26, 34]* 25 [19, 31]*

Tobacco use, n (%) 1207 (19) 5 (7)* 500 (22)* 5 (7)* 697 (18)*

SOFAa 9 [6, 13] 12 [10, 13]*,** 11 [7, 14]* 9 [6, 12]*,** 12 [9, 14]*

Lowest PF ratioa 112 [66, 204] 56 [48, 69]* 107 [65, 201]* 55 [50, 63]* 126 [71, 218]*

Hospital mortality, n (%) 1079 (17) 32 (48)* 391 (17)* 26 (38)* 630 (16)*

CCI 4 [1, 7] 2 [1, 4.5]* 4 [2, 8]* 3 [1, 4] 3 [1, 7]

Chronic pulmonary disease, n (%) 2305 (37) 18 (27)* 899 (40)* 13 (19)* 1375 (36)*

Diabetes, n (%) 2994 (48) 36 (54) 1388 (62) 30 (44) 1540 (40)

Malignancy, n (%) 1537 (25) 6 (9)* 594 (26)* 10 (15) 927 (24)

Renal disease, n (%) 1369 (22) 13 (19) 568 (25) 9 (13) 779 (20)

Hospital length of stay (days) 8 [4, 18] 24 [13, 42]*,** 8 [4, 17]* 38 [27, 53]*,** 8 [4, 18]*

Mechanical ventilation (days)a 2 [0, 7] 10 [2, 22]*,** 3 [1, 10]* 21 [6, 37]*,** 4 [1, 15]*

CRRT, n (%) 386 (6) 16 (24)* 145 (6)* 14 (21)* 211 (5)*

Remdesivir, n (%) 764 (12) 27 (40)*,** 372 (17)* 26 (38)*,** 339 (9)*

Neuromuscular blockade, n (%) 631 (10) 45 (67)* 188 (8)* 56 (83)* 342 (9)*

Nitric oxide/Iloprost, n (%) 511 (8) 41 (61)* 196 (9)* 45 (67)* 229 (6)*

Dopa. <5 lg/kg/min, Dobu., milrinone or

levosimendan, n (%)a
592 (10) 15 (22)* 145 (6)* 11 (16)* 421 (11)*

Dopa. 5–15 lg/kg/min, Epi/NorEpi

<0.1 lg/kg/min, Vaso, Phenyl, n (%)a

3219 (52) 67 (100)* 1138 (51)* 68 (100)* 1946 (49)*

Dopa >15 lg/kg/min, Epi/NorEpi

>0.1 lg/kg/min, n (%)a
2154 (35) 63 (94)* 726 (32)* 65 (96)* 1300 (33)*

Note: Data are presented as median and interquartile range unless otherwise specified.

Abbreviations: BMI: body mass index; CCI: Charlson Comorbidity Index; CRRT: continuous renal replacement therapy; Dobu: dobutamine; Dopa: dopamine;

ECMO: extracorporeal membrane oxygenation; Epi: epinephrine; NorEpi: norepinephrine; NPPV: noninvasive positive pressure ventilation; Phenyl: phenylephr-

ine; SOFA: Sequential Organ Failure Assessment; Vaso: vasopressin.
aPrior to ECMO initiation for ECMO patients or prior to discharge for non-ECMO patients.

*P-value <.05 by Mann-Whitney U or Chi square tests between ECMO and non-ECMO groups in each cohort.

**P-value <.05 by Mann-Whitney U or Chi square tests between ECMO patients in both cohorts.
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of receiving this level of support regardless of the pandemic phase.

To assess this aspect, we separated our study population into 2

cohorts with a comparable number of ECMO patients, develop-

ment, and holdout cohorts. Consistent with previous reports, the

ECMO patients in both cohorts had different characteristics.

Despite those differences, our model showed similar performance in

the holdout cohort, highlighting its internal validity. While further

research and multicenter validation are needed, the high perform-

ance in the holdout cohort shows the transferability of the multi-

horizon prediction approach to develop early warning tools in

different waves in the pandemic and potentially to similar clinical

problems. While the global healthcare restraints associated with the

COVID-19 pandemic highlighted the need for tools to aid resource

allocation for resource-intensive therapies, the need for such tools

stretches beyond the pandemic. Our approach has the potential to

be utilized in patient triage and resource allocation for other high-

risk resource-intensive therapies.

Resource allocation and patient triage are often based on the

severity of illness. As such, it was important to compare Forecas-

tECMO to models based on general severity of illness (SOFA score),

models based on the severity of respiratory failure (PF ratio) and

models based on the commonly available ECMO mortality scoring

systems (PRESET score). None of these metrics had high predictive

performance in either cohort. This is particularly significant for PF

ratio, a marker of severity of respiratory failure, which while it is

recommended for immediate ECMO decision-making35 has poor

performance as an early prediction tool for patient triage.

When developing early alert models to identify patients at risk of

receiving high-risk therapies such as ECMO, it is important to

develop tools capable of identifying this “unseen” population with

A B

C D

Figure 3. Prediction models performance. (A) Development cohort: area under ROC at prediction horizons of 0–48 h prior to ECMO initiation or hospital discharge

for ForecastECMO, Clinical GBT, PF ratio LR, LR model of all included variables, SOFA score, and PRESET score LR models. The ForecastECMO model outper-

formed the Clinical GBT, PF, SOFA, and PRESET score models at all prediction horizons. The linear LR model performed similar to ForecastECMO at many of the

studied prediction horizons. During the 12–24-h prediction horizons (light dotted line), ForecastECMO had the highest performance at the 18-h prediction horizons

(dark dotted line) compared to the remaining models. (B) Development cohort: area under PRC curve at prediction horizons of 0 to 48 hours prior to ECMO initia-

tion or hospital discharge for ForecastECMO, Clinical GBT, PF ratio LR, LR model of all included variables, SOFA score, and PRESET score LR models. The Fore-

castECMO model outperformed all the compared models at all the studied prediction horizons with high performance at the 18-h prediction horizon (dark dotted

lines) in the 12-24-h prediction horizon range (light dotted lines). (C) Holdout cohort: area under ROC at prediction horizons of 0–48 h prior to ECMO initiation or

hospital discharge for ForecastECMO, Clinical GBT, PF ratio LR, LR model of all included variables, SOFA score, and PRESET score LR models. The ForecastECMO

model outperformed all the comparable models including the linear LR at all prediction horizons. Of note, compared to the development cohort, the PRESET

score LR model outperformed the SOFA score LR model at all the studied prediction horizons. The ForecastECMO maximal performance in the 12–24-h prediction

horizons range (light dotted lines) was at 18 h (dark dotted line). (D) Holdout cohort: area under PRC curve at prediction horizons of 0–48 h prior to ECMO initiation

or hospital discharge for ForecastECMO, Clinical GBT, PF ratio LR, LR model of all included variables, SOFA score, and PRESET score LR models. The Forecas-

tECMO model outperformed all the compared models at all the studied prediction horizons. In the 12–24-h prediction horizons (light dotted lines), ForecastECMO

continued to have high performance at 18 h (dark dotted line) compared to the other models. ECMO: extracorporeal membrane oxygenation; GBT: Gradient

Boosting Tree; ICU: intensive care unit; LR: logistic regression; PF: PaO2/FiO2; PRC: precision recall curve; PRESET: PREdiction of Survival on ECMO Therapy;

ROC: receiver operator curve; SOFA: Sequential Organ Failure Assessment.
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high precision and recall, considering the class imbalance, as less

than 3% of patients in our cohort would eventually receive ECMO

support.88–90 The application of ML models to such real-world clin-

ical problems, provides a level of precision approach that is cur-

rently missing from the available clinical tools. Although there is a

potential risk of unnecessary patient transfers (false alarm) if they

do not eventually receive ECMO support, that risk may be out-

weighed by the potential benefit to both the patient and the health-

care system with early risk identification. A recent analysis of a large

COVID-19 ECMO hub demonstrated that even with expertise and

robust mobile ECMO and transport programs, 12.5% of patients

deemed to not yet need ECMO at the time of evaluation, progressed

to secondarily receive ECMO. The authors also concluded that ear-

lier transfer may be beneficial.91

The ForecastECMO model’s performance compared to a more

limited clinical variable-based model, Clinical GBT, lends value to

its potential as a useful early alert tool to aid in resource allocation

or patient triage even in settings lacking the necessary ECMO

expertise. While generalizability to such settings cannot be assumed

without future external validation, ForecastECMO’s superior per-

formance compared to the clinical variable-based comparator pro-

vides a promising initial signal to this approach.

To aid in clinical explainability, we utilized a SHAP variable

importance analysis to determine variables’ contribution to the

model performance. As expected, the most important variables

included the method of and degree of respiratory support as

expressed by supplemental oxygen delivery, the degree of mechani-

cal ventilatory support (positive end-expiratory pressure, minute

ventilation, and exhaled tidal volume), patient position given the

recognition of the impact of prone positioning that evolved during

the pandemic and the use of neuromuscular blockade for refractory

respiratory failure. The magnitude of importance of these variables

was also displayed on the model performance at individual patient

levels for those predicted to receive or not receive ECMO support,

lending credence to the model’s clinical relevance as it selected varia-

bles known to be clinically relevant without human input.

A B

C D

Figure 4. Models’ performance at select prediction horizons during 24 prior to ECMO initiation. (A) Development cohort: area under ROC for ForecastECMO, PF

ratio LR, SOFA score, PRESET score LR, LR of all included variables, and Clinical GBT models at the 18-h prediction horizon. ForecastECMO outperformed all

other models: PF ratio LR, SOFA score, PRESET score LR, LR of all included variables, and Clinical GBT models with AUROC of 0.94 [CI: 0.93–0.95] versus 0.52,

0.56, 0.66, 0.92 [CI: 0.91–0.93], and 0.82 [CI: 0.8–0.83], respectively. (B) Development cohort: area under PRC for ForecastECMO, PF ratio LR, SOFA score, PRESET

score LR, LR of all included variables, and Clinical GBT models at the 18-h prediction horizon. ForecastECMO outperformed all other models: PF ratio LR, SOFA

score, PRESET score LR, LR of all included variables, and Clinical GBT models with AUPRC of 0.546 [CI: 0.51–0.582] versus 0.032, 0.032, 0.077, 0.474 [CI: 0.435–

0.512] and 0.248 [CI: 0.218–0.277], respectively. (C) Holdout cohort: area under ROC for ForecastECMO, PF ratio LR, SOFA score, PRESET score LR, LR of all

included variables, and Clinical GBT models at the 18-h prediction horizon. ForecastECMO outperformed all other models: PF ratio LR, SOFA score, PRESET score

LR, LR of all included variables, and Clinical GBT models with AUROC of 0.952 [CI: 0.951–0.953] versus 0.564, 0.59, 0.726, 0.908 [CI: 0.908–0.908], and 0.889 [CI:

0.887–0.89], respectively. (D) Holdout cohort: area under PRC for ForecastECMO, PF ratio LR, SOFA score, PRESET score LR, LR of all included variables, and Clin-

ical GBT models at the 18-h prediction horizon. ForecastECMO outperformed all other models: PF ratio LR, SOFA score, PRESET score LR, LR of all included varia-

bles, and Clinical GBT models AUPRC of 0.376 [CI: 0.37–0.382] versus 0.011, 0.015, 0.039, 0.262 [CI: 0.261–0.262], and 0.345 [CI: 0.341–0.382], respectively. AUPRC:

area under precision recall curve; AUROC: area under receiver operator curve; ECMO: extracorporeal membrane oxygenation; GBT: Gradient Boosting Tree; LR:

logistic regression; PF: PaO2/FiO2; PRESET: PREdiction of Survival on ECMO Therapy; ROC: receiver operator curve; SOFA: Sequential Organ Failure Assessment.

662 Journal of the American Medical Informatics Association, 2023, Vol. 30, No. 4



Our data showed a higher incidence of ECMO initiation within

the first 6 h after admission to the ICU, highlighting the fact that

many patients presented in physiological extremis, posing significant

stress on the healthcare system with need for timely mobilization of

ECMO resources. This further emphasizes the clinical potential for

tools capable of identifying patients early in their course to allow for

safe transport before physiological extremis, a fact emphasized by

the growing evidence that early provision of ECMO support in this

patient population, before worsening metabolic derangements, can

be associated with improved outcomes.68

Future directions include exploring the clinical explainability

and plausibility of the model, how model results could be delivered

in a clinically applicable way, validating this tool on multicenter

data, with real-time clinical deployment and further refinement and

development of similar tools for other therapies. Incorporation of

these models into the EHR would provide an opportunity to pro-

spectively evaluate their performance in the real clinical environ-

ment. In addition, while there have been advances in managing

COVID-19-associated disease, the need for such tools extends

beyond the pandemic and has the potential to be adapted for other

high-risk therapies.

Limitations
It is important to view our results considering several limitations.

First, our model was created on only retrospective data from 1 large

healthcare system across different phases of the pandemic. During

this time, there likely was heterogeneity in treatment modalities and

outcomes. Second, this is a single-center study, despite spanning sev-

eral hospitals across a large healthcare system. The current model

relies on a large number of variables. Multicenter studies are neces-

sary to further fine tune the model and necessary features and to test

the generalizability of the model. Although we addressed this risk of

over-fitting with subsampling by repeat cross-fold validation and

random shuffling and validating on a holdout cohort, there contin-

ues to be a need for future external validation before any generaliz-

able conclusions can be made. Third, to guarantee the availability of

sufficient data for model building, we excluded patients admitted to

an ICU for less than 24 h, thus adding the inability to assess the

model performance on that patient cohort. Future prospective stud-

ies will be necessary to further test the model performance regardless

of the patients’ admission duration. In addition, the proposed mod-

els were developed using a case-control retrospective approach,

where the patient outcome was already known, and the model pre-

dicted the likelihood of treatment assignment at various time hori-

zons. How the model performs in a prospective approach where the

patients’ outcome is not known, will need to be further assessed in

future studies. The goal of this work was to identify patients who

ultimately receive ECMO support with enough lead time to allow

the necessary resource allocation, thus cannot be used to identify the

patient cohort who benefits most from ECMO support. Future

work is thus needed for treatment effects predictive modeling to

identify the cohorts who benefit most from ECMO support and

potentially impact patient outcomes.

A

B
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Figure 5. ForecastECMO salient features by SHAP approach. (A) Analysis of

the 20 most relevant features in the ForecastECMO model performance, of

the 212 included features, in the total cohort using SHAP approach, with

absolute SHAP values on y-axis. The features included supplemental oxygen

delivery, use of neuromuscular blockade infusion, hemoglobin measure-

ments, patient position, level of end-expiratory positive pressure ventilation

level (CPAP/PEEP), D-dimer measurement, blood glucose level measurement,

PLR, antibiotic use, and measurement of minute ventilation as the highest 10

contributing variables. (B) Analysis of the 20 most relevant features in the

ForecastECMO model performance, of the 212 included features, in the

ECMO cohort using SHAP approach, with SHAP values on y-axis. The 10

highest contributing features included supplemental oxygen delivery, patient

position, hemoglobin measurements, use of neuromuscular blockade infu-

sion, use of B agonist agents (usually used for patients with obstructive pul-

monary disease), measurement of exhaled tidal volumes on invasive

mechanical ventilation, measurement of ETCO2 (a measurement obtained on

patients requiring invasive mechanical ventilation), measurement of plateau

Figure 5. Continued

pressure on invasive mechanical ventilation, measurement of minute ventila-

tion, and use of antibiotics. CPAP: continuous positive airway pressure; BP:

blood pressure; ECMO: extracorporeal membrane oxygenation; ETCO2: end

tidal carbon dioxide; MAP: mean arterial blood pressure; O2: oxygen; PEEP:

positive end-expiratory pressure; PLR: platelet-to-lymphocyte ratio; Resp: res-

piratory rate; SHAP: SHapley Additive exPlanations; TV: tidal volume.
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CONCLUSION

In this study, we developed a predictive model for ECMO use in

COVID-19 ICU patients, with prediction horizons prior to ECMO

initiation. The model has high prediction performance at potentially

clinically actionable windows prior to cannulation and across pre-

diction horizons. This tool has the potential to impact resource allo-

cation decisions and impact the stressors posed on the healthcare

system during the time of resource limitation. This pilot study opens

the potential for the future development of similar tools for other

high-risk, resource-intensive therapies.
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