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Abstract

Emerging evidence has shown that functional connectivity is dynamic and changes over the course 

of a scan. Furthermore, connectivity patterns can arise from short periods of co-activation on the 

order of seconds. Recently, a dynamic co-activation patterns (CAPs) analysis was introduced to 

examine the co-activation of voxels resulting from individual timepoints. The goal of this study 

was to apply CAPs analysis on resting state fMRI data collected using an advanced multiband 

multi-echo (MBME) sequence, in comparison with a multiband (MB) sequence with a single 

echo. Data from 28 healthy control subjects were examined. Subjects underwent two resting 

state scans, one MBME and one MB, and 19 subjects returned within two weeks for a repeat 

scan session. Data preprocessing included advanced denoising namely multi-echo independent 

component analysis (ME-ICA) for the MBME data and an ICA-based strategy for Automatic 

Removal of Motion Artifacts (ICA-AROMA) for the MB data. The CAPs analysis was conducted 

using the newly published TbCAPs toolbox. CAPs were extracted using both seed-based and seed-

free approaches. Timepoints were clustered using k-means clustering. The following metrics were 

compared between MBME and MB datasets: mean activation in each CAP, the spatial correlation 

and mean squared error (MSE) between each timepoint and the centroid CAP it was assigned 

to, within-dataset variance across timepoints assigned to the same CAP, and the between-session 

spatial correlation of each CAP. Co-activation was heightened for MBME data for the majority 

of CAPs. Spatial correlation and MSE between each timepoint and its assigned centroid CAP 
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were higher and lower respectively for MBME data. The within-dataset variance was also lower 

for MBME data. Finally, the between-session spatial correlation was higher for MBME data. 

Overall, our findings suggest that the advanced MBME sequence is a promising avenue for the 

measurement of dynamic co-activation patterns by increasing the robustness and reproducibility of 

the CAPs.
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1. Introduction

For nearly three decades, resting-state functional MRI (rs-fMRI), where images are collected 

while the participant does not perform a specific task, has been used to extract distinct 

brain networks (Biswal et al., 1995; Fox et al., 2005). For the most part, these studies have 

assumed these brain networks were static over time and examined functional connectivity 

by identifying brain regions where the entire time series was in sync. More recent work, 

however, has shown this may not be the case, and functional connectivity is dynamic, even 

changing throughout the course of a single scan (Allen et al., 2014; Chang and Glover, 2010; 

Liu et al., 2013; Liu and Duyn, 2013; Sakoglu et al., 2010).

For example, Chang and Glover performed a time-frequency coherence analysis using 

wavelet transform coherence, allowing coherence and phase differences between two time 

series to be evaluated in time-frequency space (Chang and Glover, 2010). They found 

significant variability in both coherence and phase between the posterior cingulate cortex 

(PCC) and the task-positive networks. They also performed a sliding window analysis, 

wherein the correlation is computed between subsets, or windows, of the time series. These 

windows are then moved forward in time along the time series, and a correlation coefficient 

is obtained for each window. That analysis identified several brain regions exhibiting 

variable connectivity with the PCC. Another study used the sliding window approach to 

evaluate the correlation between 50 brain networks, identified using group independent 

component analysis (gICA) in a group of control subjects (Allen et al., 2014). Thus, a 50 × 

50 correlation matrix was computed for each window. Then, a k-means clustering algorithm 

identified different correlation patterns or states, and windowed correlation matrices were 

each assigned to one of the states. These results identified organized connectivity patterns 

that varied across time in individual subjects, repeated over time, and existed across subjects. 

Damaraju et al. (2014) applied this technique in patients suffering from schizophrenia. They 

found that patients spent less time in states with higher, widespread connectivity and had 

overall reduced connectivity in these states.

Other studies have examined activation patterns related to single timepoints, based on the 

idea that patterns of connectivity can arise from short co-activation periods lasting mere 

seconds (Chen et al., 2015; Liu et al., 2013; Liu and Duyn, 2013). These studies showed that 

a particular brain region can be co-active with brain regions in different networks at different 

timepoints. Different co-activation patterns (CAPs) can be identified by looking at individual 
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timepoints and identifying brain regions with concurrent high (or low) signal intensity, and 

then using a clustering algorithm to identify distinct CAPs. Each timepoint is then assigned 

to a CAP based on its spatial similarity.

In addition to advances in dynamic functional connectivity analyses, technical improvements 

in echo-planar imaging (EPI) image acquisition have greatly improved functional 

connectivity estimation. For example, multiband (MB) imaging, where multiple slices are 

acquired simultaneously, permits increased spatial and/or temporal resolution (Feinberg et 

al., 2010; Moeller et al., 2010; Setsompop et al., 2012). Moreover, multi-echo (ME) EPI 

imaging involves collecting images at several echo times (TEs) in a single shot. Multi-echo 

imaging provides increased fMRI sensitivity (Fernandez et al., 2017; Kundu et al., 2012; 

Poser and Norris, 2009; Poser et al., 2006; Posse et al., 1999), but it also suffers from 

decreased spatial and temporal resolution due to the increased echo train length required to 

collect additional echoes.

Recent studies have combined the MB and ME techniques in a single MBME acquisition 

(Boyacioglu et al., 2015; Olafsson et al., 2015). Increasing literature has begun to 

systematically evaluate the benefits of MBME imaging for fMRI studies (Cohen et al., 

2021a,2021b,2021c). For the rs-fMRI application, Cohen et al. (2021c) directly compared an 

MBME sequence with an MB sequence and found higher functional connectivity strength 

and extent for the MBME data. They also found better reproducibility of rs-fMRI metrics in 

a subset of subjects with repeat imaging. To date, there remains a lack of dynamic analyses, 

specifically utilizing CAPs, using MBME imaging.

In this study, MBME and MB rs-fMRI scans were collected in a group of healthy volunteers, 

with a subset returning within two weeks for repeat imaging. A CAPs analysis was 

conducted and measures of activation strength, goodness of fit, and reproducibility were 

compared between the MBME and MB datasets.

2. Methods

2.1. Subjects

All subjects provided written informed consent prior to participation in this study, which was 

approved by the Medical College of Wisconsin Institutional Review Board and conducted in 

accordance with the Declaration of Helsinki. In total, 28 healthy volunteer subjects (Mean 

Age = 28.0 Range 20 – 46, 9 Male, 19 Female) participated in this study. Among them, 19 

subjects (Mean Age = 27.2 Range 20 – 46, 7 Male, 12 Female) returned within two weeks to 

repeat the study. Subjects were instructed to refrain from caffeine and tobacco for six hours 

prior to imaging.

2.2. MR imaging

MR Imaging was performed at 3T (Signa Premier, GE Healthcare, Waukesha, WI) with a 

body transmit coil and a 32-channel NOVA (Nova Medical, Wilmington, MA) receive head 

coil. The maximum gradient strength was 70 mT/m and the maximum slew rate was 170 

mT/m/ms. First, a high-resolution 3D T1-weighted magnetization-prepared rapid acquisition 

with gradient echo (MPRAGE) anatomical image was acquired with TR/TE = 2200/2.8 ms, 
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FOV = 24 cm, matrix size = 512 × 512 × 256, slice thickness = 0.5 mm, voxel size = 0.47 × 

0.47 × 0.5 mm, and flip angle (FA) = 8°.

Each subject then underwent two gradient-echo EPI rs-fMRI acquisitions: one MBME scan 

and one MB scan, as described previously (Cohen et al., 2021c). The MBME scan had the 

following parameters: TR/TE = 900/11,30,49 ms (three echoes), FOV = 24 cm, matrix size 

= 80 × 80 with slice thickness = 3 mm (3 × 3 × 3 mm voxel size), 11 slices with multiband 

factor = 4 (total slices 44), FA = 60°, and partial Fourier factor = 0.85. Both MB and MBME 

scans utilized in-plane acceleration (R) = 2. The MB scan had the following parameters: 

TR/TE = 650/30 ms, FOV = 24 cm, matrix size = 80 × 80 with slice thickness = 3 mm (3 

× 3 × 3 mm voxel size), 11 slices with multiband factor = 4 (total slices 44), FA = 60°, 

and partial Fourier factor = 0.85. Resting state scans lasted six minutes each resulting in 

400 volumes for the MBME scans and 554 volumes for the MB scans. During the resting 

state scans, subjects were instructed to close their eyes, but remain awake, refrain from any 

motion, and not think about anything in particular.

Reconstruction was performed online using a modified multiband EPI reconstruction to 

support the multi-echo acquisition (Cohen et al., 2021a,2021b,2021c). Multiband unaliasing 

was accomplished using Autocalibrating Reconstruction for Cartesian Imaging (ARC) 

reconstruction technology with a blipped-controlled CAIPI shift = 4 (Setsompop et al., 

2012). Zero-filling was used during reconstruction for the partial Fourier data.

2.3. Data preprocessing

A combination of AFNI (Cox, 1996, 2012), FSL (Jenkinson et al., 2012), and Matlab (The 

Mathworks, R2018a) were used for the data analysis. Image preprocessing was conducted 

based on the HCP minimal preprocessing pipeline (Glasser et al., 2013), available at 

https://github.com/Washington-University/HCPpipelines, modified in-house to account for 

multi-echo data (Cohen et al., 2021a,2021b,2021c).

2.3.1. Anatomical processing—Anatomical processing used the 

PreFreeSurferPipeline.sh scripts from the HCP pipeline. First, the anatomical image was 

aligned with line between the anterior commissure (AC) and posterior commissure (PC) 

using aff2rigid in FSL. Next, a brain mask was created using FNIRT-based brain extraction. 

For this process, first, the MPRAGE image was linearly registered to MNI space using 

flirt in FSL with 12° of freedom (Jenkinson et al., 2002). Then, fnirt in FSL was used to 

non-linearly refine the registration. A masked reference image in MNI space was inverse 

warped back to native space using the transformations determined above and used to mask 

the MPRAGE. Finally, the MPRAGE brain-only image was registered to MNI space using 

flirt with 12° of freedom followed by fnirt.

2.3.2. Functional preprocessing—For both the MBME and MB datasets, the first 

16 volumes were discarded to allow the signal to reach equilibrium. Next, both the 

MBME and MB datasets were volume registered to the first volume using mcflirt in 

FSL and the six rigid-body motion parameters were output. For the MBME data, only 

the first echo was registered. Subsequent echoes were registered using the transformation 
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matrices from the first echo. In addition, framewise displacement (FD) was calculated using 

fsl_motion_outliers in FSL (Power et al., 2012).

MBME preprocessing and denoising:  The MBME data was denoised using multi-echo 

independent component analysis (ME-ICA) (Kundu et al., 2013,2012) and the open-source 

python script tedana.py version 0.0.9 (Ahmed et al., 2020). The three echoes were first 

combined using the T2* -weighted approach (Posse et al., 1999). The combined-echo data 

was then denoised using ME-ICA. The ME-ICA technique, described in detail elsewhere 

(Ahmed et al., 2020; Kundu et al., 2013,2012), classifies independent components as BOLD 

or non-BOLD based on whether or not their amplitudes are linearly dependent on TE, 

respectively (Kundu et al., 2013,2012; Olafsson et al., 2015). Components classified as 

non-BOLD are regressed out of the combined ME data using general linear regression, 

resulting in a denoised dataset. The denoised MBME dataset was then registered to the 

ACPC-aligned MPRAGE image using epi_reg in FSL, and subsequently registered to MNI 

space using the anatomical transformations computed in Section 2.3.1. Finally, the data was 

smoothed using a 4 mm full width at half maximum (FWHM) Gaussian kernel.

MB preprocessing and denoising:  The MB data was registered to the AC-PC aligned 

MPRAGE image using epi_reg in FSL. Then, the MB data was registered to MNI 

space using the anatomical transformations computed in Section 2.3.1. The data was then 

smoothed using a 4 mm FWHM Gaussian kernel and denoised using an ICA-based strategy 

for Automatic Removal of Motion Artifacts (ICA-AROMA) with automatic dimensionality 

estimation and non-aggressive denoising (Dipasquale et al., 2017; Pruim et al., 2015). 

ICA-AROMA is a data-driven technique that removes motion-related components from the 

data.

2.3.3. CAPs analysis—The denoised and smoothed data was then used for the CAPs 

analysis, which was conducted using the TbCAPs toolbox (https://c4science.ch/source/

CAP_Toolbox.git) (Bolton et al., 2020). Separate analyses were performed for the MB and 

MBME datasets. In addition, the data was split into training and test datasets. The training 

data set consisted of the nine subjects with only one session and five randomly selected 

subjects with two sessions and was used to determine the optimal cluster sizes and generate 

the CAPs. The remaining 14 subjects, all with two sessions, comprised the test dataset. 

For both the training and test datasets the data was masked using a template gray matter 

(GM) mask and then temporally z-scored so the temporal mean = 0 and temporal standard 

deviation = 1.

Seed-based approach:  Next, the timepoints for the CAPs analysis were selected. To ensure 

the robustness of the results, two analyses were conducted. First, a single seed, the posterior 

cingulate cortex (PCC) was used. This seed was obtained from the AAL2 brain atlas, 

including voxel values of 39 and 40 (Rolls et al., 2015). The PCC was chosen because it is a 

hub in the extensively studied default mode network (DMN) (Chang and Glover, 2010). For 

all datasets, the mean temporally z-scored signal was extracted from the PCC seed. Frames 

with signal intensity in the top 30% were retained. In addition, frames with FD > 0.5 were 

excluded.
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The optimal number of CAPs and the CAPs themselves were determined using only the 

training data. As mentioned previously, CAPs were determined separately for the MB 

and MBME data. To generate CAPs the data from the whole gray matter volume, at the 

thresholded frames from the PCC seed, were clustered using k-means clustering. First, the 

optimal number of clusters was determined using consensus clustering (Monti et al., 2003) 

as implemented in the TbCAPs toolbox (Bolton et al., 2020). Briefly, k-means clustering 

was run across 20 folds for cluster numbers (K) ranging from 2 to 12, randomly selecting 

a 80% of the data for each fold. In the ideal case, data points should regularly be clustered 

together or clustered separately across folds. The optimal K is the one for which the 

proportion of ambiguously clustered pairs (PAC) (i.e. sometimes clustered together and 

sometimes separately) is minimized (Senbabaoglu et al., 2014). The stability was defined as 

1 – PAC. Once the optimal K was determined, k-means clustering was run using the training 

data using that cluster number. For all datasets, each surviving frame was assigned to one of 

the CAPs based on their spatial similarity.

Since CAPs were computed separately for the MB and MBME datasets, the centroid CAPs 

were visually inspected and matched between MB and MBME datasets. CAPs that did not 

have a counterpart in the other dataset were not included in further comparisons between 

datasets. The surviving frames from the subjects in the test dataset were then assigned to one 

of the CAPs by spatially correlating each frame with each CAP and assigning the frame to 

the CAP with the highest correlation.

Seed-free approach:  analysis was then repeated using a seed-free approach where all 

frames were included in the analysis except frames with FD > 0.5. Consensus clustering 

was once again used to determine the optimal number of clusters for the MB and MBME 

datasets separately using the training dataset. Resulting CAPs were visually compared 

between MB and MBME datasets and CAPs that did not appear for both were excluded 

from further analyses. Finally, in the same manner as the seed-based approach, timepoints 

from subjects in the test dataset were assigned to one of the CAPs.

For the seed-free method, several additional metrics were computed including the number of 

occurrences of and number of entries into each CAP, the probability of remaining in a CAP 

between timepoints (resilience), betweenness centrality, the likelihood of entering a specific 

CAP from any other CAP (in-degree), and the likelihood of leaving a specific CAP towards 

another CAP (out-degree). The number of occurrences of and number of entries into each 

CAP for the MB data were scaled by the ratio of timepoints in the MBME data to number of 

timepoints in the MB data (384 and 538, respectively).

2.3.4. Goodness of Fit—Goodness of fit metrics were computed for the test dataset. 

The goodness of fit of each of the CAPs was estimated by computing the spatial correlation 

and mean squared error (MSE) between each frame and the centroid CAP it was assigned 

to. The MSE was computed by averaging the squared difference between the volume at each 

frame and the centroid CAP to which it was assigned.
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The within-dataset variance (Vwin) was extracted by computing the voxelwise variance 

across all frames assigned to each of the CAPs separately for each dataset (i.e. single scan). 

The Vwin was then averaged across voxels to obtain one value per dataset.

2.3.5. Test-retest—Test-retest similarity was also computed for the test dataset. To 

estimate test-retest similarity of the CAPs, for each dataset the frames assigned to each CAP 

were averaged resulting in one volume for each CAP for the MB or MBME dataset. The 

spatial correlation was then computed between scan session 1 and scan session 2 for each 

subject for the MBME and MB datasets.

2.3.6. Comparisons between MBME and MB sequences—The mean and 

maximum FD were compared between the MB and MBME datasets using a paired t-test 

across subjects. In addition, the mean and maximum FD were compared across CAPs using 

an ANOVA and between MB and MBME datasets for each CAP using a paired t-test.

For each CAP, the voxel-wise mean CAPs (averaged within each dataset) were compared 

between MBME and MB test datasets using the paired t-test option of 3dttest++ in AFNI. 

Multiple comparisons correction was accomplished using the 3dClustSim feature in 3dttest+
+. Resulting z-score maps were thresholded at p< 0.001 with minimum cluster sizes ranging 

from 80 to 90 voxels (α< 0.05).

The following comparisons were all made on the test dataset only. For the spatial correlation 

and MSE metrics, timepoints were grouped by CAP and sequence (MBME or MB) across 

subjects and sessions. Since the number of timepoints for each CAP differed across datasets, 

spatial correlation and MSE were compared between MBME and MB datasets using a 

two-sample t-test for each CAP separately. For Vwin, each dataset had one value. Thus, a 

paired t-test was used to compare MBME and MB datasets across subjects for each CAP. 

Similarly, for the test-retest analysis, the spatial correlation between sessions was compared 

between the MBME and MB datasets using a paired t-test across subjects for each CAP. All 

results were Bonferroni corrected for multiple comparisons, and a corrected p < 0.05 was 

considered significant.

3. Results

3.1. Head motion

No significant difference was found between MB and MBME scans for mean FD (0.52 

± 0.43 vs. 0.40 ± 0.37, respectively, p= 0.09) or maximum FD (0.096 ± 0.042 vs. 0.101 

± 0.036 respectively, p = 0.24). In addition, there was no significant difference between 

number of scrubbed frames between MB and MBME datasets. Finally, no significant 

differences in FD were seen between CAPs and between MB and MBME datasets for each 

CAP for both the seed-based and seed-free approaches (Supplementary Fig. S1).

3.2. Number of clusters

For the MB data the number of clusters (K) was chosen to be five for the seed-based and 

seed-free analyses as a clear local maximum in the stability metric was observed for both. 

The results weren’t as clear for the MBME case. For the seed-based approach a small local 
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maximum was observed at five clusters, however, there was no local maximum for the 

seed-free case. As a result, different numbers of clusters were tried. It was found that for 

K> 5 there were very few timepoints (< 1%) from the test dataset assigned to clusters 6 

and above. Thus, five clusters were chosen for all datasets. Plots of stability as a function of 

cluster size are shown in Supplementary Fig. S2.

3.3. PCC seed

Fig. 1 shows the five centroid CAPs extracted using the training dataset. Each CAP in the 

MB dataset was matched with its corresponding CAP in the MBME dataset. In general, 

CAP1 showed strong co-activation mainly in the visual and motor cortices. CAP2 showed 

higher co-activation in the DMN and negative co-activation in the visual and motor cortices.. 

CAP3 showed high co-activation globally, especially for the MBME dataset, with areas of 

heightened co-activation in the motor cortices, default mode network (DMN), frontoparietal 

network, and salience network (i.e. insula). CAP4 showed higher co-activation in the DMN, 

some frontal and temporal regions. Finally, CAP5 showed heightened co-activation in the 

DMN.

Fig. 2 shows mean CAPs for the test dataset for the MBME (left) and MB (middle) datasets. 

Overall, significantly higher co-activation was seen for the MBME data compared to the MB 

data for all five CAPs, as evidenced by the voxel-wise paired t-test results (p< 0.001, cluster 

size corrected) (Fig. 2, right). No area showed higher co-activation for any of the five CAPs 

for the MB data in comparison with the MBME data.

Fig. 3 shows box plots of the goodness of fit metrics and within-dataset variance compared 

between MBME and MB datasets for all five CAPs. Mean spatial correlation between each 

timepoint assigned to a CAP and the corresponding centroid CAP was significantly higher 

for the MBME data than the MB data for all five CAPs (Fig. 3a, p < 0.001, Bonferroni-

corrected). The MSE between each timepoint assigned to a CAP and the corresponding 

centroid CAP was significantly lower for MBME vs. MB data for CAPs 1 – 3 and 5 (Fig. 3b, 

p < 0.001, Bonferroni-corrected). Similarly, the within-dataset variance across timepoints 

assigned to each CAP was significantly lower for MBME vs. MB data for CAPs 1 – 3 and 5 

(Fig. 3c and 4, p< 0.001, Bonferroni-corrected).

Furthermore, the spatial correlation between sessions 1 and 2 for each CAP was compared 

between the MBME and MB data. Between-session spatial correlation was significantly 

higher for MBME data vs. MB data for CAPs 1 – 4 (CAP1 : p= 0.003; 5CAP2: p= 0.013; 

CAP3: p= 0.003; CAP4 : p= 0.003; all Bonferroni-corrected).

3.4. Seed-free

A total of five centroid CAPs were extracted from the training data for the seed-free 

approach. Overall, four of the five CAPs matched between the MB and MBME datasets, 

while CAP5 differed (Fig. 5). CAP1 showed areas of heightened co-activation in the visual 

and motor cortices. CAP2 showed largely global negative co-activation for the MBME data 

with heightened negative co-activation mainly in the visual and motor areas. CAP3 showed 

higher co-activation in the visual network and frontoparietal network. CAP4 showed higher 

co-activation in the DMN.
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Fig. 6 shows mean CAPs for the test dataset for the MBME and MB datasets for the four 

CAPs that matched between the MB and MBME datasets. In general, significantly higher 

co-activation, both in the positive and negative direction, was seen for the MBME data 

compared to the MB data for the four CAPs, as evidenced by the voxel-wise paired t-test 

results (p< 0.001, cluster size corrected) (Fig. 6, right). For example, for CAP2, a more 

negative co-activation strength was seen for the MBME data compared to the MB data 

throughout the brain. For CAP3 there was an area of lower co-activation in the visual cortex.

The goodness of fit metrics and within-dataset variance were compared between MBME 

and MB datasets for the four matched CAPs (Fig. 7). Mean spatial correlation between 

each timepoint assigned to a CAP and the corresponding centroid CAP was significantly 

higher for the MBME data compared to the MB data for all four CAPs (Fig. 7a, p< 

0.001, Bonferroni-corrected). The MSE between each timepoint assigned to a CAP and the 

corresponding centroid CAP was significantly lower for MBME vs. MB data for all CAPs 

1, 2, and 4 (Fig. 7b, p < 0.001, Bonferroni-corrected). Finally, the within-dataset variance 

across timepoints assigned to each CAP was significantly lower for MBME vs. MB data 

for all CAPs 1,3, and 4 (Fig. 7c, CAP1 : p< 0.001; CAP3 : p = 0.02; CAP4 : p< 0.001; all 

Bonferroni-corrected).

The spatial correlation between sessions 1 and 2 for each CAP for the MBME and MB data 

was also evaluated (Fig. 8). Between-session spatial correlation was significantly higher for 

MBME data vs. MB data for CAPs 1,2, and 4 (CAP1 : p< 0.001; CAP2: p < 0.001; CAP4: 

p= 0.009;, Bonferroni-corrected).

In addition, results of seed-free analyses for the other summary metrics, including the 

number of occurrences of each CAP, number of entries into each CAP, resilience, 

betweenness centrality, CAP in-degree, and CAP out-degree are presented as Supplementary 

Material (Fig. S3).

4. Discussion

In this study, a CAPs analysis was conducted on rs-fMRI data acquired using MBME and 

MB sequences. Various metrics were compared between MBME and MB datasets in a group 

of control subjects imaged twice over a span of two weeks. Overall, co-activation using 

seed-based (PCC) or seed-free approaches was higher for the MBME sequence vs. MB 

sequence. In addition, individual frames were more strongly spatially correlated with their 

assigned CAP centroid and had lower variance within datasets for the MBME data. Finally, 

the between-session spatial correlation was higher for MBME data for most CAPs.

A very limited number of studies have used a multi-echo sequence for dynamic analyses of 

rs-fMRI data. One study used a single band ME sequence to examine the variability of DMN 

connectivity in depression (Wise et al., 2017). They found higher variability in the medial 

prefrontal cortex and PCC in major depression subjects using a sliding window approach. 

Another study used an MBME sequence and a sliding window approach to examine the 

relationship between dynamic functional connectivity and mindfulness, assessed using the 

Child and Adolescent Mindfulness Measure (CAMM), in children and adolescents (Marusak 
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et al., 2018). They found no significant effects between static connectivity and mindfulness, 

but found mindful participants changed states more throughout the scan and spent more time 

in a state characterized by positive default mode network connectivity with central executive 

networks. Although neither study compared ME to single echo approaches, they indicate the 

potential for using ME approaches in the clinical realm.

In this study, the CAPs method was used. In contrast to more conventional approaches 

focusing on correlating rs-fMRI time series across time (i.e. static or sliding window 

connectivity), the CAPs method focuses on single timepoints (Bolton et al., 2020). As 

described by Liu et al., time series approaches might have several disadvantages (Liu et al., 

2018). First, brain networks comprise thousands of voxels while correlations are computed 

over tens or hundreds of timepoints, potentially leading to covariation across many voxels. 

Similarly, rs-fMRI data has orders of magnitude more voxels than timepoints leading to 

rank-deficient matrices. The CAPs method builds off previous work using point process 

analyses (PPA), with timepoints defined by the sequence of timepoints that crosses a defined 

threshold from below (Tagliazucchi et al., 2012). Tagliazucchi et al. showed averaging 

these high amplitude timepoints in the BOLD signal results in similar results to standard 

connectivity analyses using continuous data, and distinct groups of brain voxels are co-active 

over very short timescales (Tagliazucchi et al., 2012). These methods can evaluate the 

codependence in activity over more than two brain regions (Liu et al., 2018). The CAPs 

method expands on this by clustering high intensity voxels, extracted from the time series of 

a spec-fied seed region (or using all frames), based on spatial similarity. The CAPs method 

has shown distinct spatial patterns both within and outside of the DMN that would not be 

expected using static or sliding window correlation techniques (Liu et al., 2013).

Nevertheless, our results align with our previous studies evaluating static rs-fMRI 

connectivity using MBME and MB sequences (Cohen et al., 2017,2021c). For example, 

Cohen et al showed higher functional connectivity strength and extent for MBME vs. MB 

scans for seed-based and whole-brain parcellation-based methods. They also found MBME 

scans to be more reproducible using the Dice coefficient. Dipasquale et al. (2017) showed 

higher connectivity strength using ME approaches compared to single echo approaches 

especially after denoising using ME-ICA. It is important to distinguish the current study 

with these eariler studies evaluating static connectivity (Cohen et al., 2017, 2021c). Those 

studies mainly evaluated correlations between time series. In contrast, the CAPs approach 

treats each time point separately as independent data points. Thus, it was not trivial whether 

the results of the static connectivity analysis would translate to the dynamic CAP analysis.

Anytime data is being clustered, the number of clusters to choose is paramount as the 

“correct” number of clusters is often not known a priori. Two common methods used in 

dynamic rs-fMRI studies are the elbow criterion (Allen et al., 2014; Damaraju et al., 2014; 

Espinoza et al., 2019; Rabany et al., 2019) and silhouette criterion (Fiorenzato et al., 2019; 

Kim et al., 2017; Shakil et al., 2016). For the elbow criterion, a cluster validity index (i.e. 

the ratio of within to between cluster distances) is computed for a range of cluster numbers. 

The cluster number at the elbow of the cluster validity index vs. cluster size graph is chosen. 

For the silhouette criterion (Rousseeuw, 1987), the similarity of a point to points in its own 

cluster compared to points in other clusters is computed across clusters, and the cluster 
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size with the maximum is selected. In this study, consensus clustering was used (Monti et 

al., 2003) as implemented in the TbCAPs toolbox. It works well for datasets with large 

dimensionality and, as described in the TbCAPs manual, has been successfully applied to 

selecting cluster numbers for generating functional brain networks with large scales (Bolton 

et al., 2020; Zöller et al., 2018). While cluster number is important, previous work has 

shown that CAP patterns did not depend on the number of clusters, and the majority of 

clusters found for lower cluster numbers were also found for higher cluster numbers (Liu 

and Duyn, 2013).

There was an overlap in the location of CAPs found using the seed-based seed-free 

approaches. For example, CAP2 and CAP4 for the seed-free approach matched CAP4 and 

CAP3 for the seed-based approach, respectively. This was somewhat expected as the PCC 

frames used for the single seed analysis were a subset of the seed-free case. However, 

in general, the intensity of the seed-based CAPs was higher compared to the seed-free 

CAPs. This is also unsurprising as the seed-based case only used frames in the top 30% 

of intensity. Finally, there were two all-negative CAPs for the seed-free approach. The 

seed-free approach used all frames and, since the data was z-scored, this included ~~50% 

of voxels with intensity < 0. While the implication of these negative CAPs remains to be 

further explored, they still have shown improved goodness of fit and reproducibility metrics 

for the MBME compared to MB data.

This study focuses on co-activation maps from individual timepoints and their relationship 

with the centroid CAPs. There are several other, more global metrics that can be assessed 

using the CAPs method including the number of occurrences of and the number of entries 

into each CAP, the probability of remaining in a CAP between timepoints (resilience), 

betweenness centrality, the likelihood of entering a specific CAP from any other CAP 

(in-degree), and the likelihood of leaving a specific CAP towards another CAP (out-degree). 

These metrics are presented as supplementary material and were not the main focus of the 

paper. One reason was that the brain might have been in different states during different 

scans, potentially biasing the results. The MB scans in this study always occurred following 

the MBME scans, which could have introduced bias into these metrics. For example, if the 

subject became fatigued throughout the course of the scan, it could have altered their brain 

state. For example, one study evaluated CAPs during four states of consciousness (Amico et 

al., 2014). They found, while the overall CAP patterns were maintained, some regions were 

no longer coactivated when consciousness was reduced. Another study evaluated patients 

with unresponsive wakefulness syndrome (UWS) and found reduced occurrences of CAPs 

associated with the DMN in UWS patients (Di Perri et al., 2018). In addition, these metrics 

are only presented for the seed-free case as timepoints were skipped in the seed-based 

analysis making these measures difficult to interpret.

One advantage of ME scans is that a short echo time (< 15 ms) image can be acquired. 

Since the signal from the first echo will be weighted more heavily in the T2* -weighted 

echo combination scheme, BOLD contrast will be maximized in voxels with short T2*. In 

addition, the signal is higher at shorter echo times. Thus, the collection of short TE images 

reduces susceptibility-induced signal dropout (Cohen et al., 2021a; Fernandez et al., 2017). 
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This can particularly be observed for CAP2 for the seed-based analysis, which had higher 

co-activation in the orbitofrontal cortex for the MBME data compared to the MB data.

More subcortical co-activation was found for the MBME data, specifically in CAPs 2 and 

4 for the seed-based analysis and CAP3 for the seed-free analysis. This finding is in line 

with previous work by Cohen et al., where subcortical-cortical were higher for MBME 

scans vs. MB scans for both whole-brain parcellation analysis and seed-based analyses 

using the hippocampus as the seed for the functional connectivity analysis (Cohen et al., 

2021a,2021c). Kundu et al. (2012) found similar results for ME compared to single-echo 

data by using a hippocampus seed.

Both the MB and MBME data were preprocessed using advanced ICA-based denoising 

techniques, namely ICA-AROMA for MB and ME-ICA for MBME. Both methods involve 

regressing noise ICA components from the data. A recent study by Dipasquale et al. (2017) 

compared a variety of denoising techniques for multi-echo and single echo datasets . Their 

results suggest that ICA-AROMA is best for single echo data and ME-ICA is best for 

multi-echo data (Dipasquale et al., 2017). It was assumed the majority of researchers would 

process their fMRI data with advanced denoising approaches, and our results would be more 

useful to readers. More importantly, ME scans also allow for the estimation of T2* and 

the combination of echoes prior to ME-ICA (Kundu et al., 2013,2012). ME-ICA removes 

the artifactual non-BOLD signal from the data including R2* effects, motion artifacts, 

and physiological noise (Kundu et al., 2013,2012,2017; Olafsson et al., 2015), reducing 

variations in these signals across scan sessions automatically and resulting in a more 

stable signal over time. This can account for the higher between-session spatial correlation 

and lower within-dataset variance for the MBME data vs. the MB data, which will have 

important implications for further applications (Elliott et al., 2021).

While a powerful denoising technique, Power et al. have pointed out that whole-brain 

respiratory artifacts are not adequately removed by techniques such as ME-ICA (Power 

et al., 2018). This leaves open the possibility that CAPs may be influenced by these 

artifacts. Techniques such as global signal regression (GSR) could be used to mitigate 

these effects, but the use of GSR has been hotly debated in the fMRI community and 

would add additional confound to the analysis (Marshall et al., 2020; Murphy et al., 2013). 

Moreover, the CAPs analysis tends to be less susceptible to global artifacts compared 

to correlation-based metrics. For example, Liu and Duyn (2013) found that global signal 

regression did not strongly impact spatial patterns derived by CAPs. Our study did find 

CAPs that appear more global in nature, especially for the MBME data (see CAP3 for the 

PCC seed). However, the majority of CAPs are specific and appear neural in nature, and 

the MBME data was improved in those CAPs compared to the MB data. Thus, we do not 

feel the primary differences between the MBME and MB sequences are due to brain-wide 

respiratory artifacts. Since CAPs analysis temporally decomposes the data into point-wise 

patterns, one would therefore expect global effects to be largely relegated to a subset of 

CAPs, with the others relatively unaffected (Nalci et al., 2017). Further, Nalci et al. (2017) 

showed that global signal regression acts largely as a temporal down-weighting process, 

attenuating specific timepoints with large global signal amplitudes. Therefore, we did not 
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apply GSR in the current work following previous CAPs studies (Chen et al., 2015; Marshall 

et al., 2020).

Parameters were identical between the MB and MBME acquisitions except for the TR (900 

ms for MBME and 650 ms for MB). This was done intentionally to evaluate each sequence 

as researchers were likely to use them. One advantage of the single echo approach is lower 

minimal TRs compared to the multi-echo approach. However, it leads to the question of 

whether differences in CAP characteristics could be attributed to the different sampling rate 

between the sequences. Previous work showed MBME data had a temporal SNR (tSNR) 

1.18 times higher than the MB data for the same scan protocols used in this study ((Cohen et 

al., 2021a). One may argue that the increased tSNR from the longer TR for the MBME data 

is somewhat mitigated by the increase in the number of timepoints for the shorter TR MB 

data (Smith et al., 2013). Furthermore, a previous study has shown improvements in static 

functional connectivity for MBME compared to single-echo MB data with identical TR and 

other scan parameters (Cohen et al., 2017).

Moreover, one may speculate how our results would compare to the single-band ME 

acquisition. Increased TR of single-band TE would lead to fewer frames collected in the 

same scan time potentially leading to a lower optimal number of CAPs. On the other hand, 

MB acquisitions come with increased reconstruction (g-factor) artifacts potentially leading 

to more noise associated CAPs. In this study, no noise CAPs were detected for five CAPs.

This study had some limitations in addition to those mentioned above. First, only young 

healthy controls were included in this study. Comparisons should be made in patient 

populations. Also, as mentioned previously, the MB scans always occurred after the MBME 

scans, which could potentially lead to participant fatigue during the later acquisitions. 

These scans both occurred in the first half of the scan session so those effects should 

be diminished. Also, we found no significant differences in head motion, measured with 

framewise displacement, between the MB and MBME scans or between CAPs. It should 

also be noted that temporal z-scoring on a scan-to-scan basis was performed in the initial 

CAP and point-process studies (Liu and Duyn, 2013; Liu et al., 2018; Tagliazucchi et al., 

2012). We have carried out this z-scoring step in our analysis to be consistent with the 

literature.

In conclusion, a CAPs analysis showed higher co-activation across CAPs for MBME scans 

compared to MB scans. MBME CAPs were more similar to the centroid CAPs and MBME 

CAPs were more reliable across scan sessions compared to MB scans.

Taken together, MBME is a promising avenue for CAPs analyses in future applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

rs-fMRI resting-state functional magnetic resonance imaging

BOLD blood oxygenation level dependent

CAPs co-activation patterns

MB multiband

ME multi-echo

MBME multiband multi-echo

EPI echo planar imaging

ME-ICA multi-echo independent component analysis

ICA-AROMA ICA-based strategy for automatic removal of motion artifacts

TE echo time

TR repetition time

FOV field of view

FA flip angle

FWHM full width at half maximum

PCC posterior cingulate cortex

AAL2 anatomical atlas version 2

DMN default mode network

References

Ahmed Z, Bandettini PA, Bottenhorn KL, Caballero-Gaudes C, Dowdle LT, DuPre E, Handwerker 
D, Heunis S, Kundu P, R LA, Markello R, Markiewicz CJ, Maullin-Sapey T, Moia S, Salo T, 
Staden I, Teves J, Uruñuela E, Vaziri-Pashkam M, Whitaker K, 2020. ME-ICA/tedana: 0.0.9 https://
zenodo.org/record/4509480.

Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD, 2014. Tracking whole-brain 
connectivity dynamics in the resting state. Cereb. Cortex 24, 663–676. [PubMed: 23146964] 

Amico E, Gomez F, Di Perri C, Vanhaudenhuyse A, Lesenfants D, Boveroux P, Bonhomme V, 
Brichant JF, Marinazzo D, Laureys S, 2014. Posterior cingulate cortex-related co-activation 
patterns: a resting state FMRI study in propofol-induced loss of consciousness. PLoS ONE 9, 
e100012. [PubMed: 24979748] 

Biswal B, Yetkin FZ, Haughton VM, Hyde JS, 1995. Functional connectivity in the motor cortex of 
resting human brain using echo-planar MRI. Magn. Reson. Med 34, 537–541. [PubMed: 8524021] 

Bolton TAW, Tuleasca C, Wotruba D, Rey G, Dhanis H, Gauthier B, Delavari F, Morgenroth E, Gaviria 
J , Blondiaux E , Smigielski L, Van De Ville D, 2020. Tb-CAPs: a toolbox for co-activation pattern 
analysis. Neuroimage 211, 116621. [PubMed: 32058000] 

Boyacioglu R, Schulz J, Koopmans PJ, Barth M, Norris DG, 2015. Improved sensitivity and specificity 
for resting state and task fMRI with multiband multi-echo EPI compared to multi-echo EPI at 7 T. 
Neuroimage 119, 352–361. [PubMed: 26162554] 

Cohen et al. Page 14

Neuroimage. Author manuscript; available in PMC 2023 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://zenodo.org/record/4509480
https://zenodo.org/record/4509480


Chang C, Glover GH, 2010. Time-frequency dynamics of resting-state brain connectivity measured 
with fMRI. Neuroimage 50, 81–98. [PubMed: 20006716] 

Chen JE, Chang C, Greicius MD, Glover GH , 2015. Introducing co-activation pattern metrics to 
quantify spontaneous brain network dynamics. Neuroimage 111, 476–488. [PubMed: 25662866] 

Cohen AD , Jagra AS, Visser NJ, Yang B, Fernandez B, Banerjee S, Wang Y, 2021a. Improving the 
breath-holding CVR measurement using the multiband multi--echo EPI sequence. Front. Physiol 12, 
619714 . [PubMed: 33716769] 

Cohen AD, Jagra AS, Yang B , Fernandez B, Banerjee S, Wang Y , 2021b. Detecting task functional 
MRI activation using the multiband multiecho (MBME) echo-planar imaging (EPI) sequence. J. 
Magn. Reson. Imaging 53, 1366–1374. [PubMed: 33210793] 

Cohen AD, Nencka AS, Lebel RM , Wang Y , 2017. Multiband multi-echo imaging of simultaneous 
oxygenation and flow timeseries for resting state connectivity. PLoS ONE 12, e0169253. 
[PubMed: 28253268] 

Cohen AD, Yang B, Fernandez B, Banerjee S, Wang Y, 2021c. Improved resting state functional 
connectivity sensitivity and reproducibility using a multiband multi-echo acquisition. Neuroimage 
225, 117461. [PubMed: 33069864] 

Cox RW, 1996. AFNI: software for analysis and visualization of functional magnetic resonance 
neuroimages. Comput. Biomed. Res 29, 162–173. [PubMed: 8812068] 

Cox RW, 2012. AFNI: what a long strange trip it’s been. Neuroimage 62, 743–747 . [PubMed: 
21889996] 

Damaraju E, Allen EA, Belger A, Ford JM, McEwen S, Mathalon DH, Mueller BA, Pearlson GD, 
Potkin SG, Preda A, Turner JA , Vaidya JG, van Erp TG, Calhoun VD, 2014. Dynamic functional 
connectivity analysis reveals transient states of dysconnectivity in schizophrenia. Neuroimage 
Clin. 5, 298–308 . [PubMed: 25161896] 

Di Perri C, Amico E, Heine L, Annen J, Martial C, Larroque SK, Soddu A, Marinazzo D, Laureys 
S, 2018. Multifaceted brain networks reconfiguration in disorders of consciousness uncovered by 
co-activation patterns. Hum. Brain Mapp 39, 89–103. [PubMed: 29024197] 

Dipasquale O, Sethi A, Lagana MM , Baglio F, Baselli G, Kundu P, Harrison NA, Cercignani M, 2017. 
Comparing resting state fMRI denoising approaches using multi- and single-echo acquisitions. 
PLoS ONE 12, e0173289. [PubMed: 28323821] 

Elliott ML, Knodt AR , Hariri AR, 2021. Striving toward translation: strategies for reliable fMRI 
measurement. Trends Cogn. Sci 25, 776–787. [PubMed: 34134933] 

Espinoza FA , Liu J, Ciarochi J, Turner JA, Vergara VM, Caprihan A, Misiura M, Johnson HJ, Long 
JD, Bockholt JH, Paulsen JS, Calhoun VD, 2019. Dynamic functional network connectivity in 
Huntington’s disease and its associations with motor and cognitive measures. Hum. Brain Mapp 
40, 1955–1968. [PubMed: 30618191] 

Feinberg DA, Moeller S, Smith SM, Auerbach E, Ramanna S, Gunther M, Glasser MF, Miller KL, 
Ugurbil K, Yacoub E, 2010. Multiplexed echo planar imaging for sub-second whole brain FMRI 
and fast diffusion imaging. PLoS ONE 5, e15710 . [PubMed: 21187930] 

Fernandez B, Leuchs L, Samann PG, Czisch M , Spoormaker VI, 2017. Multi-echo EPI of human fear 
conditioning reveals improved BOLD detection in ventromedial prefrontal cortex. Neuroimage 
156, 65–77. [PubMed: 28483719] 

Fiorenzato E, Strafella AP, Kim J, Schifano R, Weis L , Antonini A, Biundo R, 2019. Dynamic 
functional connectivity changes associated with dementia in Parkinson’s disease. Brain 142, 2860–
2872. [PubMed: 31280293] 

Fox MD, Snyder AZ, Vincent JL, Corbetta M , Van Essen DC, Raichle ME, 2005. The human brain is 
intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci 102, 
9673–9678. [PubMed: 15976020] 

Glasser MF, Sotiropoulos SN , Wilson JA, Coalson TS, Fischl B, Andersson JL, Xu J, Jbabdi S, 
Webster M, Polimeni JR, Van Essen DC, Jenkinson M, Consortium, W.U.M.H. , 2013. The 
minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124. 
[PubMed: 23668970] 

Cohen et al. Page 15

Neuroimage. Author manuscript; available in PMC 2023 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Jenkinson M, Bannister P, Brady M , Smith S, 2002. Improved optimization for the robust and accurate 
linear registration and motion correction of brain images. Neuroimage 17, 825–841. [PubMed: 
12377157] 

Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM , 2012. FSL. Neuroimage 62, 
782–790. [PubMed: 21979382] 

Kim J, Criaud M, Cho SS, Diez-Cirarda M, Mihaescu A, Coakeley S, Ghadery C, Valli M, Jacobs MF, 
Houle S , Strafella AP, 2017. Abnormal intrinsic brain functional network dynamics in Parkinson’s 
disease. Brain 140, 2955–2967 . [PubMed: 29053835] 

Kundu P, Brenowitz ND, Voon V, Worbe Y, Vertes PE, Inati SJ, Saad ZS, Bandettini PA, Bullmore ET, 
2013. Integrated strategy for improving functional connectivity mapping using multiecho fMRI. 
Proc. Natl. Acad. Sci. U. S. A 110, 16187–16192 . [PubMed: 24038744] 

Kundu P, Inati SJ, Evans JW, Luh WM, Bandettini PA, 2012. Differentiating BOLD and non-BOLD 
signals in fMRI time series using multi-echo EPI. Neuroimage 60, 1759–1770. [PubMed: 
22209809] 

Kundu P, Voon V, Balchandani P, Lombardo MV, Poser BA , Bandettini PA, 2017. Multi-echo fMRI: a 
review of applications in fMRI denoising and analysis of BOLD signals. Neuroimage 154, 59–80. 
[PubMed: 28363836] 

Liu X, Chang C, Duyn JH, 2013. Decomposition of spontaneous brain activity into distinct fMRI 
co-activation patterns. Front. Syst. Neurosci 7, 101. [PubMed: 24550788] 

Liu X, Duyn JH, 2013. Time-varying functional network information extracted from brief instances of 
spontaneous brain activity. Proc. Natl. Acad. Sci. U. S. A 110, 4392–4397. [PubMed: 23440216] 

Liu X, Zhang N, Chang C, Duyn JH, 2018. Co-activation patterns in resting-state fMRI signals. 
Neuroimage 180, 485–494. [PubMed: 29355767] 

Marshall E, Nomi JS, Dirks B, Romero C, Kupis L, Chang C, Uddin LQ, 2020. Coactivation pattern 
analysis reveals altered salience network dynamics in children with autism spectrum disorder. 
Netw. Neurosci 4, 1219–1234. [PubMed: 33409437] 

Marusak HA, Elrahal F, Peters CA, Kundu P , Lombardo MV, Calhoun VD, Goldberg EK, Cohen C, 
Taub JW, Rabinak CA, 2018. Mindfulness and dynamic functional neural connectivity in children 
and adolescents. Behav. Brain Res 336, 211–218. [PubMed: 28887198] 

Moeller S, Yacoub E, Olman CA, Auerbach E, Strupp J, Harel N, Ugurbil K, 2010. Multiband 
multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with 
application to high spatial and temporal whole-brain fMRI. Magn. Reson. Med 63, 1144–1153. 
[PubMed: 20432285] 

Monti S, Tamayo P, Mesirov J, Golub T, 2003. Consensus clustering: a resampling-based method for 
class discovery and visualization of gene expression microarray data. Mach. Learn 52, 91–118.

Murphy K, Birn RM, Bandettini PA, 2013. Resting-state fMRI confounds and cleanup. Neuroimage 
80, 349–359. [PubMed: 23571418] 

Nalci A, Rao BD, Liu TT, 2017. Global signal regression acts as a temporal down-weighting process in 
resting-state fMRI. Neuroimage 152, 602–618. [PubMed: 28089677] 

Olafsson V, Kundu P, Wong EC, Bandettini PA, Liu TT, 2015. Enhanced identification of BOLD-
like components with multi-echo simultaneous multi-slice (MESMS) fMRI and multi-echo ICA. 
Neuroimage 112, 43–51. [PubMed: 25743045] 

Poser BA, Norris DG, 2009. Investigating the benefits of multi-echo EPI for fMRI at 7 T. Neuroimage 
45, 1162–1172. [PubMed: 19349231] 

Poser BA, Versluis MJ, Hoogduin JM, Norris DG, 2006. BOLD contrast sensitivity enhancement and 
artifact reduction with multiecho EPI: parallel-acquired inhomogeneity-desensitized fMRI. Magn. 
Reson. Med 55, 1227–1235. [PubMed: 16680688] 

Posse S, Wiese S, Gembris D, Mathiak K, Kessler C, Grosse-Ruyken ML, Elghahwagi B, Richards 
T, Dager SR, Kiselev VG, 1999. Enhancement of BOLD-contrast sensitivity by single-shot multi-
echo functional MR imaging. Magn. Reson. Med 42, 87–97. [PubMed: 10398954] 

Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE, 2012. Spurious but systematic 
correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 
2142–2154. [PubMed: 22019881] 

Cohen et al. Page 16

Neuroimage. Author manuscript; available in PMC 2023 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Power JD, Plitt M, Gotts SJ, Kundu P, Voon V, Bandettini PA, Martin A, 2018. Ridding fMRI data of 
motion-related influences: removal of signals with distinct spatial and physical bases in multiecho 
data. Proc. Natl. Acad. Sci. U. S. A 115, 2105–2114.

Pruim RHR, Mennes M, van Rooij D, Llera A, Buitelaar JK, Beckmann CF, 2015. ICA-AROMA: 
a robust ICA-based strategy for removing motion artifacts from fMRI data. Neuroimage 112, 
267–277. [PubMed: 25770991] 

Rabany L, Brocke S, Calhoun VD, Pittman B, Corbera S, Wexler BE, Bell MD, Pelphrey K, Pearlson 
GD, Assaf M, 2019. Dynamic functional connectivity in schizophrenia and autism spectrum 
disorder: convergence, divergence and classification. NeuroImage Clin. 24, 101966. [PubMed: 
31401405] 

Rolls ET, Joliot M, Tzourio-Mazoyer N, 2015. Implementation of a new parcellation of the 
orbitofrontal cortex in the automated anatomical labeling atlas. Neuroimage 122, 1–5. [PubMed: 
26241684] 

Rousseeuw PJ, 1987. Silhouettes: a graphical aid to the interpretation and validation of cluster 
analysis. J. Comput. Appl. Math 20, 53–65.

Sakoglu U, Pearlson GD, Kiehl KA, Wang YM, Michael AM, Calhoun VD, 2010. A method 
for evaluating dynamic functional network connectivity and task-modulation: application to 
schizophrenia. MAGMA 23, 351–366. [PubMed: 20162320] 

Senbabaoglu Y, Michailidis G, Li JZ, 2014. Critical limitations of consensus clustering in class 
discovery. Sci. Rep 4, 6207. [PubMed: 25158761] 

Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL, 2012. Blipped-controlled 
aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor 
penalty. Magn. Reson. Med 67, 1210–1224. [PubMed: 21858868] 

Shakil S, Lee CH, Keilholz SD, 2016. Evaluation of sliding window correlation performance for 
characterizing dynamic functional connectivity and brain states. Neuroimage 133, 111–128. 
[PubMed: 26952197] 

Smith SM, Beckmann CF, Andersson J, Auerbach EJ, Bijsterbosch J, Douaud G, Duff E, Feinberg 
DA, Griffanti L, Harms MP, Kelly M, Laumann T, Miller KL, Moeller S, Petersen S, Power J, 
Salimi-Khorshidi G, Snyder AZ, Vu AT, Woolrich MW, Xu J, Yacoub E, Ugurbil K, Van Essen 
DC, Glasser MF, Consortium, W.U.-M.H., 2013. Resting-state fMRI in the human connectome 
project. Neuroimage 80, 144–168. [PubMed: 23702415] 

Tagliazucchi E, Balenzuela P, Fraiman D, Chialvo DR, 2012. Criticality in large-scale brain FMRI 
dynamics unveiled by a novel point process analysis. Front. Physiol 3, 15. [PubMed: 22347863] 

Wise T , Marwood L, Perkins AM, Herane-Vives A , Joules R, Lythgoe DJ, Luh WM, Williams SCR, 
Young AH, Cleare AJ, Arnone D, 2017. Instability of default mode network connectivity in major 
depression: a two-sample confirmation study. Transl. Psychiatry 7, e1105. [PubMed: 28440813] 

Zöller DM, Bolton TA, Karahanoğlu FI, Eliez S, Schaer M, Van De Ville D, 2018. Robust recovery of 
temporal overlap between network activity using transient-in-formed spatio-temporal regression. 
IEEE Trans. Med. Imaging 38, 291–302. [PubMed: 30188815] 

Cohen et al. Page 17

Neuroimage. Author manuscript; available in PMC 2023 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Centroid CAPs for the MBME (left) and MB (right) data for the seed-based analysis. 

Centroid CAPs were generated separately for the MBME and MB data using the training 

dataset. Similar CAPs were matched between the MBME and MB datasets. All five CAPs 

had a corollary between datasets. CAP3 showed the highest activity with high co-activation 

throughout much of the gray matter. CAP1 showed higher co-activation in the motor 

cortex and visual cortex. CAP4 showed higher co-activation in parietal, visual, frontal and 

subcoritical regions. Finally, CAPs 2 and 5 showed higher co-activation in the default mode 

network, along with some subcoritcal area.

Cohen et al. Page 18

Neuroimage. Author manuscript; available in PMC 2023 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Mean CAPs evaluated for MBME (left) and MB (middle) data separately and t-test results 

comparing MBME and MB data (right) for the seed-based analysis. CAPs were determined 

using the test dataset by assigning each frame to a CAP based on spatial similarity. Thus, 

mean CAPs closely match the centroid CAPs determined from the training data. While the 

patterns of co-activation are similar for the MBME and MB datasets, significantly higher 

co-activation was observed for the MBME data compared to the MB data for all five CAPs 

(p < 00.001, cluster-size corrected). No region showed higher co-activation in the MB data 

compared to the MBME data.
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Fig. 3. 
Violin plots of the goodness of fit and CAP robustness metrics for the seed-based analysis. 

All plots were generated using the test dataset. Spatial correlation (a) and mean squared 

error (MSE) (b) between individual timepoints and their assigned centroid CAP were 

computed separately for MBME and MB datasets (MB: yellow color; MBME: blue color). 

The spatial correlation was significantly higher for MBME vs. MB datasets for all five 

CAPs, while MSE was significantly lower for MBME vs. MB datasets for all CAPs except 

CAP4. Within-dataset variance (c), calculated across timepoints assigned to the same CAP 

for each subject, session, and sequence, was significantly lower for MBME data compared 

to MB data for all CAPs except CAP4. Note: on each box, the central mark indicates the 
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median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, 

respectively. *** p < 00.001, ** p < 00.01, * p < 00.05, Bonferroni-corrected.
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Fig. 4. 
Violin plot of CAP reproducibility for the seed-based case. Between-session spatial 

correlation was calculated for the test dataset using the mean of all timepoints assigned 

to each CAP for each subject and sequence. CAPs 1 – 4 showed significantly higher spatial 

correlation for the MBME vs. MB data (MB: yellow color; MBME: blue color). Note: on 

each box, the central mark indicates the median, and the bottom and top edges of the box 

indicate the 25th and 75th percentiles, respectively. *** p < 0.001, ** p < 0.01, * p < 0.05, 

Bonferroni-corrected.
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Fig. 5. 
Centroid CAPs for the seed-free analysis calculated using the training dataset for the 

MBME (left) and MB (right) data separately. CAPs were visually matched between the 

MBME and MB data. CAPs 1 – 4 matched while CAP5 differed. CAP1 showed areas 

of heightened co-activation in the visual and motor cortices. CAP2 showed largely global 

negative co-activation for the MBME data with heightened negative co-activation focused 

in the visual and motor cortices. CAP3 showed higher co-activation in the visual network, 

frontoparietal network, and subcoritcal region. CAP4 showed higher co-activation in the 

DMN and negative co-activation in the visual cortex.
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Fig. 6. 
Mean CAPs evaluated for MBME (left) and MB (middle) data separately and t-test results 

comparing MBME and MB data (right) for the seed-free analysis for the four CAPs that 

matched between MBME and MB data. CAPs were determined using the test dataset by 

assigning each frame to a CAP based on spatial similarity. Thus, mean CAPs closely match 

the centroid CAPs determined from the training data. As with the seed-based case, the 

patterns of co-activation are similar for the MBME and MB datasets; however, in general, 

significantly higher co-activation, both in the positive and negative direction, was seen for 

the MBME data compared to the MB data for the four CAPs (p < 0.001, cluster-size 

corrected).
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Fig. 7. 
Violin plots of the goodness of fit and CAP robustness for the seed-free analysis for the 

four CAPs that matched between the MBME and MB data. Metrics were computed using 

the test dataset. Spatial correlation (a) was higher for MBME vs. MB datasets for all four 

CAPs, while MSE (b) was lower for MBME vs. MB datasets for all CAPs except CAP2. 

Within-dataset variance (c) was also lower for MBME data compared to MB data for all 

CAPs except CAP2. Note: on each box, the central mark indicates the median, and the 

bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. *** p < 

0.001, ** p < 0.01, * p < 0.05, Bonferroni-corrected.
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Fig. 8. 
Violin plot of CAP reproducibility for the seed-free analysis using the test dataset for 

the four CAPs that matched between MBME and MB datasets. Between-session spatial 

correlation was computed using the mean of all timepoints assigned to each CAP for each 

subject and sequence. CAPs 1, 2, and 4 showed significantly higher spatial correlation for 

the MBME vs. MB data. Note: on each box, the central mark indicates the median, and the 

bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. *** p < 

0.001, ** p < 0.01, * p < 0.05, Bonferroni-corrected.
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