
Advances on Microsupercapacitors: Real Fast Miniaturized Devices
toward Technological Dreams for Powering Embedded Electronics?
Khac Huy Dinh, Pascal Roussel,* and Christophe Lethien*

Cite This: ACS Omega 2023, 8, 8977−8990 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: Microsupercapacitors (MSCs) have emerged as the next generation
of electrochemical energy storage sources for powering miniaturized embedded
electronic and Internet of Things devices. Despite many advantages such as high-
power density, long cycle life, fast charge/discharge rate, and moderate energy
density, MSCs are not at the industrial level in 2022, while the first MSC was
published more than 20 years ago. MSC performance is strongly correlated to
electrode material, device configuration, and the used electrolyte. There are
therefore many questions and scientific/technological locks to be overcome in order
to raise the technological readiness level of this technology to an industrial stage:
the type of electrode material, device topology/configuration, and use of a solid
electrolyte with high ionic conductivity and photopatternable capabilities are key
parameters that we have to optimize in order to fulfill the requirements. Carbon-
based, pseudocapacitive materials such as transition metal oxide, transition metal
nitride, and MXene used in symmetric or asymmetric configurations are extensively investigated. In this Review, the current progress
toward the fabrication of MSCs is summarized. Challenges and prospectives to improve the performance of MSCs are discussed.

1. INTRODUCTION
Nowadays, the Internet of Things (IoT) is widely developed in
our daily life and has numerous advantages (i.e., autonomy; easy
access; speedy operation for smart devices, health, and
agriculture monitoring).1,2 IoT refers to the global network of
interconnected devices through the Internet combining wireline
and wireless connections to share and exchange data. The
application fields are various such as healthcare, industry,
agriculture monitoring, and transportation (Figure 1), but the
energy dependence is critical at the dawn of a climatic crisis.3−5

To get such autonomous and maintenance-free IoT devices,
energy storage is intensively integrated as the main power
source, but primary cell replacement or recharging of electro-
chemical energy sources is an issue. Among different kinds of
energy storage devices such as conventional capacitors or
batteries, electrochemical capacitors and supercapacitor tech-
nology6,7 are good candidates for fast rate application because of
their high power densities, high rate capabilities. and long-life,
With widespread system on a chip applications, where many
components (sensors,8 data management systems,9 radio
frequency transceivers,10 energy sources11,12) are integrated
on a millimeter chip for healthcare treatment in the body, eyes,
or heart with minimum incision, miniaturized devices with a
small footprint surface are thus necessary. Microdevices need
small energy storage systems to be autonomous.13,14 Batteries
and electrochemical capacitors are the most comment energy
storage system used. However, electrochemical capacitors have
high power density and a fast charge−discharge rate but lack

energy density compared to batteries.15 Therefore, electro-
chemical capacitor technology has to be downsized to at least
millimeter or, better, micrometer scale, leading to a new class of
miniaturized devices called microsupercapacitors (MSCs).1,16,17

Typically, a MSC is fabricated on a rigid (e.g., silicon)16,18 or a
flexible substrate (e.g., kapton)19−21 depending on the
applications. It consists of two current collectors, two electrode
materials made from thin or thick film technology deposition
methods separated by a solid (ideally) electrolyte with high ionic
conductivity. The key point for anMSC is related to its footprint
surface, which has to be limited, depending on the available size
of the power sources within the IoT device. In that case, to fulfill
this requirement, the current collectors, the electrode materials,
and the solid electrolyte have to be patterned to limit the
footprint surface.22

Unfortunately, while the first MSC was published more than
20 years ago,23,24 MSCs are not yet commercially off the shelf
and the technology is still not at an industrial level in 2023.
Various scientific and technological locks have to be overcome
in order to raise the TRL (technology readiness level) to an
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industrial stage. This Review will summarize the latest
developments in this domain and will give some prospects/
guidelines to be followed for the fabrication of the next
generation of MSCs.

2. DEVICE TOPOLOGY
The performance of MSCs is strongly correlated to the device
configuration. For conventional electrochemical capacitors
(EC), the most common configuration is the parallel-plate
one. In that setting, the two electrodes are contacted
(sandwiched) through a separator soaked in a liquid electrolyte.7

This configuration is thus widely used in EC but rarely selected
for MSC because (i) a separator could not be easily downsized
to millimeter or micrometer scale and (ii) the alignment of two
different substrates integrating each electrode material is also a

difficult task. The parallel plate configuration, or sandwich
structure, is nevertheless an efficient topology. However, the
large volume occupied by the MSC is the main limitation where
the volume is constrained within a miniaturized device. From
technological and miniaturization point of views, it is easier to
move from a parallel plate configuration to an interdigitated
topology1 (Figure 2).
It consists of two electrodes made of numerous inter-

penetrated fingers with no electrical connection between them.
The charge storage mechanism arises from ion conduction
between the two interdigitated electrodes.25

Due to the electrical connection in the same plane, this
configuration is ideal for an on-chip system where the surface is
generally limited. As described by its name, this setup mostly
contains electrodes deposited in the same plane and separated

Figure 1.Overview of the MSCs parameters, configuration, properties, and application fields. Reprinted with permission from ref 4. Copyright 2015,
American Chemical Society.

Figure 2. MSC based on an interdigitated topology with a symmetric configuration (a) or an asymmetric configuration (b).
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by a blank gap, as depicted in Figure 2b. Due to the gap between
the two electrodes, the amount of active material is reduced
regarding the footprint surface of the devices, resulting in the
decrease in capacitance. Consequently, it is mandatory to reduce
the gap between the two electrodes. The thickness of MSC is
controlled approximately by the thickness of the electrode.
Besides the topology itself, depending on the choice of the

different electrode materials�made from film deposition
methods�different classes of MSCs can be elaborated:

• When the electrodes are composed of the same (pseudo)-
capacitive material, the miniaturized device is called a symmetric
MSC (Figure 2a). Consequently, the cell voltage (ΔV) of the
MSC is limited to the electrochemical window stability of the
chosen electrode material, and only half of this electrochemical
window is used during the charge/discharge cycles.

• When the electrodes are composed of two different
(pseudo)capacitive materials, the MSC is then considered an
asymmetric one (Figure 2b). As a result, the MSC benefits from
the complementary working potential of the two electrodes, thus
improving the cell voltage.

•When the electrodes are composed of a (pseudo)capacitive
material combined with a Faradic material, the microdevice does
not fall into a class of MSC but is considered a hybrid
microdevice, where two different charge storage processes occur
within the two electrodes. Even if this class of microdevices is of
interest, it is out of the scope of this Review.

3. DEVICE PERFORMANCE: FROM MACRO- TO
MICROSCALE ELECTROCHEMICAL CAPACITORS

The fabrication techniques are an important aspect to be
considered to improve MSC performance. They are well
summarized in the literature26,27 and can be listed as
photolithography,28 femtosecond laser scribbling,29 focused
ion beam etching,30 and inkjet printing.31 Each technique has its
advantages and drawbacks. For example, photolithography is a
low cost lithography method (as compared to e-beam
lithography), but a maskless technique is cheaper yet less

precise than the photolithography method to pattern the
electrode material. In contrast, laser scribbling and ion beam
etching are defect-controllable techniques but limited to large-
scale production. For commercialization purposes, improving
fabrication techniques is necessary to meet the requirement of
mass production with high-resolution microdevices while
remaining cost-effective.
In electrochemical capacitors, the device performances

(capacitance, energy, and power) are reported in F g−1, Wh
kg−1, and W kg−1, taking into account electrode materials with a
high mass loading (>10 mg cm−2) and thickness (>100 μm).
These metrics are meaningless for miniaturized electrochemical
capacitors where the footprint surface is limited and, thus, the
key parameter: in that context, the capacitance, energy, and
power densities are preferably reported in F cm−2, mWh cm−2,
and mW cm−2, respectively; these metrics are relevant for MSCs
and reflect a pertinent overview of the MSC performance. The
thickness of the electrode (<50 μm) is significantly lower than
that of the bulk electrode of electrochemical capacitors.
Carbon-based MSCs are the first class of MSCs operating in

an organic electrolyte or ionic liquid where the charge storage
mechanism arises from ion electrosorption in porous carbon
electrodes: the performance of MSCs can be maximized if the
pore diameter of the carbon electrodematches the ion size of the
electrolyte.32 Activated carbon,18 carbon nanotubes,33 carbon-
derived carbide,34,35 graphene,19 MXene,36−38 and other
allotropes of the carbon are classically investigated as potential
electrode materials for MSCs. The cell voltage of this class of
MSCs is classically close to 3 V.
The second class of MSCs is based on pseudocapacitive

materials operating in an aqueous electrolyte (ΔV ∼ 1 V). The
charge storage process arises from a fast redox reaction occurring
at the surface or subsurface of transition metal oxides39−42

(MnO2, RuO2, ...) or transition metal nitrides
22,28,43−48 (VN,

WN, MoN, ...). The capacitance values issued from
pseudocapacitive materials (i.e., from a redox process) are
significantly higher than those of carbon materials.

Figure 3. Performance of MSC based on (a) nitrogen-doped graphene film. Reprinted with permission from ref 56. Copyright 2019, Royal Society of
Chemistry. (b) Vanadium nitride film. Reprinted with permission from ref 45. Copyright 2020, Royal Society of Chemistry.
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However, until now, the main drawback of the MSCs is their
relatively low energy density, due to the low amount of active
materials, related to the low thickness of the electrode materials.
Many attempts have been made to improve the performance of
MSC. Since the energy density (in mWh cm−2) of a MSC is
given by E = 1/2Cs × ΔV2, where Cs is the surface capacitance
(in mF cm−2) andΔV is the cell voltage (in volts), the schematic
strategy consists, thus, of increasing either (both) the
capacitance value Cs (surface or areal capacitance) or (and)
the cell voltage ΔV playing with the electrode material’s type or
(and) the device topology (parallel plate, interdigitated,
symmetric, or asymmetric, see Figure 2). The performance of
MSCs is not only related to its energy density, and in fact, it is
evaluated by many features, and an ideal MSC should combine
numerous properties such as a long life cycle, high rate
capabilities, environmental friendliness, and a low self-discharge
rate, besides the already evoked high energy and power densities.
Coulombic efficiency, which is the ratio of discharge to charge
capacity, can give an idea about the cycle life and rate capabilities
of MSCs.49 Depending on electrode material, Coulombic
efficiency can vary from 97% for the amorphous TiO2
Electrode50 to 100% (Fe,Mn)3O4 for spinel oxide.

51

Recently, alternate current (AC) line-filtering has been one of
the new important aspects to consider in the performance of
MSCs, opening new avenues for commercializing applications.
The fundamental mechanism relies on the frequency response,
particularly at 120 Hz, characterized by Nyquist and Bode plots
of MSCs.52 Since 2010, graphene double-layer capacitor reports
show that AC line filtering properties lead to new ways of
replacement of bulky electrolytic capacitors, especially for IoT
application.53 Following this, a conducting polymer54 and
MXene55 were also applied to AC line filtering. However, the
trade-off between capacitance and frequency is a problem to
overcome becauseMSCs are energy storage devices in general: a
large capacitance value leads to a high time constant (τ = RC),
giving rise to a limitation in the frequency domain for AC line
filtering.
Last but not least, one of the main limitations of the MSCs

deals with the development of all solid-state technology allowing
a high rate capability (with solid electrolyte showing high ionic
conductivity) while keeping the energy density at the highest
level.
Depending on the nature of the material electrode and

electrolyte,MSCs have to sacrifice one or some of those features.
For example, the nitrogen-doped graphene film electrode
showed 90.1% capacitance retention after 100 000 cycles with
a high mass loading of 11.2 mg cm−2, but the capacitance stayed
low at 20.6 mF cm−2 in an aqueous electrolyte56 (Figure 3a). In
contrast, a VN film electrode can archived up to 1.2 F cm−2 in an
aqueous electrolyte, but capacitance retention is about 80% after
50 000 cycles for a 16-μm-thick film45 (Figure 3b). Specifically, a
lower energy density than the practical requirement is a
challenge that limits the application of MSCs. A recent paper
published in 2023 shows a significant improvement of the
cycling and aging performance of sputtered vanadium nitride
films with no loss of the initial capacitance value after 150 000
cycles and no degradation of the electrode performance after 13
months.57

Up to now, there have been no commercially available MSCs
delivering sufficient performance for powering miniaturized IoT
devices. There are some issues both at the electrode material
level and at the electrolyte level. Various “classical” electrode
materials such as carbon-based, transition metal oxide, or nitride

and conductive polymers are currently integrated within aMSC.
Nevertheless, new materials are promising. Among others, we
can cite MXenes and ternary materials in a multicationic or
multianionic configuration in order to boost the performance of
such microdevices.

4. OVERVIEW OF THE MOST EXPLORED
(PSEUDO)CAPACITIVE ELECTRODE MATERIALS
FOR MSC

MSCs can be divided into two main classes based on the storage
charge mechanism, namely, electrical double layer capacitors
(EDLC) and pseudocapacitors.10 The EDLC stores charges via
an electrostatic charge absorption/desorption mechanism at the
electrode/electrolyte interface.58 The most common material
for such an MSC is porous carbonm where it is important to
match the pore size (from the electrode materials) with the ion
size (from the electrolyte) to maximize the storage capa-
bilities.16,32

On the other hand, pseudocapacitors store charges via fast
redox reactions at the surface or subsurface of the active material
without phase transformation of the electrode material.59

Conductive polymers and transition metal oxide or nitride are
well-known materials for such pseudocapacitors. 2D MXene
electrodes are challenging materials to be included within a pilot
production line of MSCs based on the vacuum deposition
technique. The charge storage process of the main transition
metal oxide and nitride material was unveiled by various groups
based on numerous in situ/operando techniques.
For example, the charge storage mechanism of transition

metal oxide material RuO2 upon protonation
60 is shown in eq 1:

(1)

where 0 < x < 2.
Among all of the pseudocapacitive materials, MnO2 is an

earth-abundant, environmentally friendly, low-cost oxide and
exhibits a pseudocapacitive behavior in neutral aqueous
electrolytes despite a low electronic conductivity. The charge
storage process in MnO2 consists of the fast intercalation of
protons (H+) and/or cations (C+ =Na+, Li+, K+, ...) coming from
the aqueous electrolyte at the surface or near the surface of the
MnO2 such as that described

39,40 in eq 2:

(2)

where C+ = Na+, Li+, K+, etc. and x and y correspond to the
number of moles of H+ and C+ intercalated in MnO2.
The charge mechanism of transition metal nitride such as

vanadium nitride (VN) is given in eq 3, where takes place from
OH− in formation of the double layer and fast redox reactions on
the surface of VNxOy:

(3)

The hydroxyl ion (OH−) is involved in the formation of the
electrical double layer as well as in the fast faradic redox reaction
occurring on the surface of the partially oxidized vanadium
nitride.44 While nanostructured VN particles were classically
used as an electrode material for macroscale electrochemical
capacitors, a question arises about the electrochemical behavior
of VN films for MSC. Consequently, the charge storage
mechanism of sputtered VN films for MSC was unveiled
recently in 1 M KOH by combining in situ atomic force
microscopy techniques, transmission electron microscopy, and
operando X-ray absorption spectroscopy measurement. This set
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of analyses revealed the presence of V3+ and V4+ elements within
the sputtered VN films. More specifically, it clearly evidenced a
change in oxidation state from V3+ to V4+ upon electrochemical
oxidation of the films in 1 M KOH.
Finally, since the introduction of MXene in 2011 from the

Barsoum and Gogosti groups (Drexel University, Philadelphia,
PA), two-dimensional transition metal carbide or nitride
materials have been investigated as pseudocapacitive electrodes
for both electrochemical capacitors and MSCs.36,61 Inves-
tigation of the charge storage process of the most studied Ti3C2
MXene material reveals that the surface chemistry of this 2D
material plays an important role depending on the used synthesis
process to transform MAX phase materials to a 2D MXene
electrode. The electrochemical properties of MXene are widely
correlated to the insertion behavior on cations (coming from the
electrolyte) between the sheets. In a neutral or basic electrolyte,
a large number of solvated cations (Li+, Na+, K+...) with
numerous sizes can be inserted in between the MXene layers.62

In acidic solutions such as 1 M H2SO4, oxygen terminations of
the Ti3C2 “clay electrode” with the protons coming from the
acidic electrolyte induce fast redox reactions revealing a
pseudocapacitive behavior.36 Finally, in a nonaqueous electro-
lyte such as the 1 M LiPF6/EC/DMC electrolyte, Ti3C2 MXene
synthesized via the Lewis acid molten salt method shows a fast
intercalation pseudocapacitance behavior attributed to the

insertion of a lithium cation between the MXene layers in a
large potential window.63

Porous carbons are the most popular electrode materials used
as an efficient electrode for MSC; the main issue consists of
depositing/growing the carbon electrode as a film with limiting
the footprint surface on a substrate.64 The charge storage
mechanism (electrosorption process) in the porous carbon is
similar to that of bulk electrodes for electrochemical capacitors
and is known as electrical double layer capacitance (EDLC).10

Therefore, the main challenge is to keep the large surface area of
the porous carbon and to match the pore size of this material
with the ion size coming from the electrolyte.
In 2010, carbon-based MSCs were proposed18 using either

carbon onions (onion-like carbon, OLC) or activated carbon
(AC) as the active electrode material. The carbon nanoparticles
were deposited from a colloidal suspension using an electro-
phoretic deposition technique (EPD) on interdigitated Ti/Au
current collectors made on a Si wafer. The OLCs are interesting
for high power applications, and the MSC made from OLC
reported a remarkable rate performance at 200 V s−1. MSCs
based on AC exhibited one of the highest energy densities (20
μWh cm−2) reported so far (in 2010) in an organic electrolyte (3
V). The collective fabrication of MSCs based on a carbide-
derived carbon (CDC) thin film was proposed in 2016.
Microfabrication techniques were used to deposit, pattern, and

Figure 4.Overview of the electrodematerial used inMSC. (a) Carbide-derived carbon on a Si wafer. Reprinted with permission from ref 16. Copyright
2016, American Association for the Advancement of Science. (b) laser-scribed grapheneMSC. Reprinted with permission from ref 19. Copyright 2013,
Springer Nature. (c) PANI. Reprinted with permission from ref 71. Copyright 2021, JohnWiley and Sons. (d) RuO2 film on 3D porous Au. Reprinted
with permission from ref 72. Copyright 2015, John Wiley and Sons. (e) RuO2 film on 3D scaffold. Reprinted with permission from ref 73. Copyright
2021, Elsevier.
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etch sputtered TiC film. After a chlorination process able to
convert TiC into TiC-CDC, the as-fabricatedMSC on a Si wafer
delivered both high areal energy (30 μWh cm−2) and high power
density (30 mW cm−2) in porous carbon nanosheets doped with
rich nitrogen, which are reported to deliver a high energy density
of 8.4 mWh cm−3 at a power density of 24.9 mW cm−3.65 Using a
controllable activation method, a 3D bicontinuous porous
carbonMSC is fabricated with an area energy density of 4.9 μWh
cm−2 and a volume energy density of 11.13 mWh cm−3.66 MSCs
based on N/O codoped graphene quantum dots showed an
energy density of 1.4 μWh cm−2.67 In 2013, M. F. El-Kady et al.
used a commercial LightScribe DVD burner process to make a
laser-scribed grapheneMSC (collective fabrication) wheremore
than 100MSCs were fabricated on a kapton film having the same
diameter as a DVD disc, as shown in Figure 4b, and delivered a
total power density of 200 W cm−3.19 Li et al. reported SiC@C
nanowire arrays delivering an energy density of 2.84 μWh cm−2

at a power density of 65.1 μW cm−2, which is 700% higher than
that of a pure SiC electrode, benefiting from a large cell voltage
of 2.6 V.68 Conductive polymers are also promising candidates
for wearable MSCs due to their flexible and printable abilities,
but they suffer from a low ionic transfer, and thus low cycling
stability and rate capability. To tackle the low cycling stability,
Tahir et al., in 2020, grew polypperol (PPy) in reduced graphene
oxide (rGO) on micropatterned Au, which achieved 82%
capacitance retention after 10 000 cycles in a 2 M KCl
electrolyte and the so-fabricated MSC delivered 4.3 μWh
cm−2 energy density at 0.36 W cm−2 power density.69 In 2021,
Chu et al. used polyaniline (PANI) ink with conductive
carboxylic multiwalled carbon nanotube (C-MWCNT) net-
works to increase the rate capability of the PANI electrode by
73.7%. The PANI ink can be printed on different substrates to
form flexible MSCs and deliver an energy density of 2.6 mWh

cm−3 and 84.6% capacitance retention after 1000 bending
cycles.70 Additionally, PANI with no additive is stable in air,
where a 96.6 mF cm−2 areal capacitance has been reported by
Chu et al. (Figure 4c). The MSCs based on PANI/CA (citric
acid) nanosheets delivered an energy density of 2.4 mWh cm−3

at a power density of 238.3 mW cm−3.71

Recently, pseudocapacitive materials such as transition metal
oxide or nitride have emerged as efficient material electrodes for
MSCs. Robert et al. reported a 16-μm-thick vanadium nitride
(VN) film deposited by magnetron sputtering delivering a
surface capacitance of 1.2 F cm−2 and a 25 mWh cm−2 of energy
density for the full MSC.45 Ferris et al. fabricated 3D MSCs by
electrodeposition of RuO2 material on porous Au, achieving a
capacitance value of 3 F cm−2 (Figure 4d).72

Using the same RuO2 material, but on a 3D scaffold made
using the deep reactive ion etching method on a silicon wafer,
Asbani et al. reported in 2021 a significant increased surface
capacitance value of 4.5 F cm−2 at 2 mV s−1. Besides a high areal
capacitance, one additional advantage of this design compared
to the previous one on porousmetal is its ability to work at a high
scan rate, keeping for instance more than 50% of the initial
capacitance at 100 mV s−1, as depicted in Figure 4e.73

Additionally, Bounor et al. reported a 3D MSC based on pulsed
electrodeposition74,75 MnO2 delivers energy densities in a range
of 0.05−0.1 mWh cm−2 at a power density > 1 mW cm−2.76 The
MSC performances are reported in Table 1.

5. EMERGINGMATERIALS FOR DESIGNING EFFICIENT
ELECTRODES FOR MSCS

New materials are currently being investigated as efficient
electrodes for MSCs. Ternary compounds�that is to say,
multicationic90 or multianionic91 materials�have recently been
shown to be good potential candidates to be used in MSCs,

Table 1. Electrochemical Performance of MSCs on Topology and Electrode Material

electrode material electrolyte
device
topology cell voltage specific energy specific power ref

AC 1 M Et4NBF4/anhydrous propylene carbonate symmetric 0−3 V 20 μWh cm−2 80 mW cm−2 16
TiC-CDC 2 M EMIBF4 in AN symmetric 0−0.9 V 30 μWh cm−2 30 mW cm−2 5
MnO2/PEDOT:PSS−rGO@CF Na2SO4−CMC asymmetric 0−2.8 V 295 μWh cm−2 14 mW cm−2 77
porous carbon EMIMBF4 symmetric 0−4 V 8.4 mWh cm−3 24.9 mW cm−3 65
porous carbon LiTFSi symmetric 0−2.5 V 1.53 μWh cm−2 7.92 mWh cm−2 66
graphene PVA/H3PO4 symmetric 0−1 V 1.4 μWh cm−2 25 mW cm−2 67
graphene PVA/LiOH symmetric 0−1 V 51.2 μWh cm−2 0.968 mW cm−2 31
G-CNT PVA/H3PO4 symmetric 0−1 V 1.36 μWh cm−2 0.25 mW cm−2 78
SWCNT PVA/H3PO4 symmetric 0−0.8 V 1 μWh cm−2 20 μW cm−2 79
carbon nanowire EMIMNTf2 symmetric 0−2.6 V 2.84 μWh cm−2 65.1 μW cm−2 68
polypperol//PEDOT 2 M KCl asymmetric 0−1.4 V 4.3 μWh cm−2 0.36 W cm−2 69
polyaniline PVA/H2SO4 symmetric 0−0.8 V 2.6 mWh cm−3 59.5 mW cm−3 70
polyaniline PVA/H2SO4 symmetric 0−0.8 V 2.4 mWh cm−3 238.3 mW cm−3 71
VN 1 M KOH symmetric 0−0.6 V 25 mWh cm−2 4 W cm−2 45
MnO2 5 M LiNO3 symmetric 0−1 V 0.05−0.1 mWh cm−2 >1 mW cm−2 76
Ti3C2Tx PVA/H2SO4 symmetric 0−0.5 V 0.32 μWh cm−2 11.4 μW cm−2 80
Ti3C2Tx PVA/H2SO4 symmetric 0−0.6 V 51.7 μWh cm−2 5.7 mW cm−2 81
hydrated RuO2 0.5 M H2SO4 symmetric 0−0.9 V 91 μWh cm−2 82
AC EMIM/TFSI symmetric 0−3 V 463.1 μWh cm−2 2.0 mW cm−2 83
Ti3C2Tx 1 M H2SO4 symmetric 0−1.2 V 75.5 mWh cm−3 1088 mW cm−3 84
VN//hRuO2 1 M KOH asymmetric 0−1.15 V 20 μWh cm−2 3 mW cm−2 85
P-TiON//VN LiCl/PVA asymmetric 0−1.8 V 32.4 μWh cm−2 0.9 mW cm−2 86
Ti3C2Tx//polypyrrole/MnO2 PVA/H2SO4 asymmetric 0−1.2 V 6.73 μWh cm−2 204 μW cm−2 87
Ti3C2Tx//AC PVA/Na2SO4 asymmetric 0−1.6 V 3.5 mWh cm−3 100 mW cm−3 88
Ti3C2Tx//rGO PVA/H2SO4 asymmetric 0−1 V 8.6 mWh cm−3 0.2 W cm−3 89
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taking benefits from the properties of the different elements.
High-density multicationic oxides (ternary transition metal
oxides) with one transition metal ion and one electrochemically
active or inactive metal ion have been widely investigated as an
alternative solution. The coexistence of two different cations in a
single crystal structure could improve the electrochemical
performance as compared to their constituting binary metal
oxides.92−94 In that context, the group of Brousse has recently
demonstrated that FeWO4 is an interesting negative electrode
for electrochemical capacitors.92 More especially, FeWO4 was
proposed as thin film electrode for MSC using deposition
method compatible with semiconductor techniques95 to be
integrated in a technological process on pilot production line.
Besides FeWO4, Fe2WO6 as a negative electrode was
synthesized by a polyol-mediated method and showed 240 F
cm−3 of volumetric capacitance with capacitance retention of
85% after 10 000 cycles (Figure 5a).96

Recent research has shown that Mn-based spinels, particularly
MnFe2O4, demonstrate a wide working potential range in an
aqueous medium and a pseudocapacitance mechanism close to
that of MnO2, suggesting favorable properties for both high-
energy and power applications.51,93,94 Sputtered TiVN ternary
films were also investigated as an electrode for MSC and exhibit
a surface capacitance value of 15 mF cm−2 in KOH aqueous
electrolyte.97

MXenes,36,98,99 the family of early transition metal carbides,
nitrides, or carbonitrides, have also been widely investigated as
efficient electrodes, due to the high rate/high capacitance
properties issued from their two-dimensional properties.100

Among MXene materials, Ti3C2Tx is the most common
candidate with both high conductivity and volumetric
capacitance. In 2019, Zhang et al. reported an MXene ink with
no additive that can be directly printed to form a MSC with a
volumetric capacitance of 562 F cm−3 and an energy density of
0.32 μWh cm−2.80 In 2020, Orangi et al. designed a 3D MSC by
direct printing of Ti3C2Tx MXenes, layer by layer, with flexible
properties due to a polymer substrate, delivering an areal
capacitance of 1035mF cm−2 and an energy density of 51.7 μWh

cm−2 (Figure 5b).81 Wu et al. used sodium ascorbate to cap in
MXene to improve the oxidation resistance in ambient air for
more than 80 days, and MSCs based on this material delivered
108.1 mF cm−2 of surface capacitance.101 To avoid the
restacking problem of MXene, in 2021, Tang et al. used a
controllable H2SO4 oxidation method to optimize the ion
pathway (Figure 5c). This method allows the scan rate to raise
impressive values up to 10 000 mV s−1 and an areal capacitance
of ∼3.2 F cm−2.102

6. DEVELOPMENT OF SOLID-STATE MSCS
InMSCs, as in other electrochemical energy storage systems, the
electrolyte plays a crucial role in making the ionic connection
between the two electrodes. Therefore, it drastically governs and
limits the performance ofMSCs such as the maximum operation
cell voltage, working temperature range, lifetime and capacitance
of the miniaturized devices, among others. The electrolyte can
be roughly divided into two categories: liquid and solid/quasi-
solid-state electrolytes.103 Among the liquid-based electrolytes,
aqueous ones have high ionic conductivity but suffer, besides a
low operating temperature range, from a restricted voltage
window (1.23 V) due to water electrolysis (electrochemical
water splitting).104 An organic electrolyte is classically used with
porous carbon electrodes allowing operation up to 3 V cell
voltage.105 More importantly, liquid electrolyte is difficult to
apply for MSCs due to leakage issues. On the other hand, solid-
state electrolytes can provide wide cell voltage with restricted
footprint area, making them some good compromise potential
candidates forMSCs. However, themain drawback of solid-state
electrolytes is their low ionic conductivity. In 2001, Yoon et al.
studied LiPON (Li2.94PO2.37N0.75) thin films, acting as a solid
electrolyte for RuO2 thin film microsupercapacitor, but the low
ionic conductivity induced some rate limitation and, thus, low
capacity and power density, besides no cycling performance.23

To increase the ionic conductivity of solid-state electrolytes,
using gel-polymer electrolytes such as hydrogel or ionogel is an
attractive solution. This kind of electrolyte consists of polymer
network with a solvent trapped inside. Among several polymers

Figure 5. Emerging materials as an efficient electrode for MSCs. (a) Fe2WO6 material. Reprinted with permission from ref 96. Copyright 2021,
Multidisciplinary Digital Publishing Institute. (b) Flexible MSC based on MXene in an aqueous electrolyte. Reprinted with permission from ref 81.
Copyright 2020, American Chemical Society. (c) MXene electrode with high surface and volumetric capacitance values. Reprinted with permission
from ref 102. Copyright 2021, John Wiley and Sons.
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(i.e., polyethylene oxide, polymethyl methacrylate, polyvinyli-
dene fluoride), polyvinyl alcohol (PVA) is an attractive
candidate due to its nontoxicity, chemical stability, and good
mechanical properties.106 Depending on the solvent nature

(water or ionic liquid), they are called hydrogels or ionogels

electrolytes, respectively. Many studies have been reported for

hydrogel electrolytes such as PVA/KOH and PVA/H2SO4.
103

Figure 6.Overview of solid-stateMSCs. (a) EMImTFSI-based ionogel electrolyte. Reprinted with permission from ref 5. Copyright 2022, Elsevier. (b)
Photopatternable [AMIM][OH]/SU-8 electrolyte for MSC. Reprinted with permission from ref 22. Copyright 2021, Elsevier.

Figure 7.Overview of several symmetric MSCs on rigid or flexible substrates. (a) Symmetric RuO2//RuO2 MSC. Reprinted with permission from ref
82. Copyright 2019, John Wiley and Sons. (b) Symmetric AC//AC MSC. Reprinted with permission from ref 83. Copyright 2021, Springer Nature.
(c) Symmetric MXene//MXene MSC. Reprinted with permission from ref 84. Copyright 2022, American Chemical Society.
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However, the major drawback of hydrogels is water evaporation,
which strongly limits their application for MSCs.
The water evaporation does not take place in ionogel

electrolytes, making them an interesting potential candidate
for solid state MSCs.19,107−109 Both the ionic and electrode
material compatibility need however to be considered to
maximize MSC performance.3 For this purpose, Guillemin et
al. added lithium and sodium salts to 1-ethyl-3-methylimidazo-
lium bis(trifluoromethanesulfonyl)imide-based (EMImTFSI)
ionogels (Figure 6a).5 The conductivity is only slightly
decreased, but global capacitive performance is greatly
enhanced, and 3D interdigitated MnO2/MnO2 MSCs have
been shown to keep 85% capacitance retention after 50 000
cycles.
For industrial application, it is however mandatory for MSCs

to be scaled up, and to restrict the surface of ionogel to several
square millimeters is an issue. Choi et al. reported photo-
patternable technology110 to produce solid electrolytes directly
on interdigitated MSCs based on vanadium nitride films. SU-8
photoresist was used as a host polymer matrix where 1-allyl-3-
methylimidazolium hydroxide ions [AMIM][OH] are trapped
within the matrix. Due to the photopatternable capability of SU-
8 photoresist, the [AMIM][OH]/SU-8 electrolyte was cast onto
VN/VN MSCs to form single devices as well as connected
devices (Figure 6b).22

7. FROM SYMMETRIC TO ASYMMETRIC
CONFIGURATION TO IMPROVE THE CELL VOLTAGE

As previously mentioned, another approach to strongly increase
energy density (square law) of MSCs is to increase the cell
voltage. The cell voltage of symmetric MSC (same material for
cathode and anode) is limited by the working potential windows
of the (pseudo)capacitive materials which is used in both of the
two electrodes. For example, ΔVVN = 0.6 V in 1 M KOH
electrolyte,45 ΔVTid3Cd2Tdx

= 0.6 V in PVA/H2SO4 gel electrolyte,
81

and ΔVMnOd2
= 1 V in 5 M aqueous LiNO3.

76 A symmetric MSC
based on hydrated RuO2 was proposed by Ferris et al. where the

pseudocapacitive material was deposited onto gold−copper 3D
porous current collectors (Figure 7a). This MSC (ΔV = 0.9 V)
exhibited a cell capacitance of 812 mF cm−2 at an energy density
of 329 mJ cm−2 (∼91 μWh cm−2).82 Gao et al. designed a MSC
composed of a wireless charging coil and electrode to form a
seamlessly integrated wireless charging MSC (Figure 7b). This
design gave a capacitance of 454.1 mF cm−2, a cell voltage of 3 V,
and an energy density of 463.1 μWh cm−2, coupled with a
contactless charging ability.83 Finally, as reported byHuang et al.
in 2022, MXene films drop-casted on a SiO2 substrate were
shown to exhibit a cell voltage ΔV = 1.2 V (Figure 7c). They
claimed that overpotential is due to the unsaturated chemical
oxygen bond on the SiO2 surface, reacting with MXene flakes
and building an electric field at the interface of MXene−SiO2.
The so-fabricated MSC delivered an energy density of 75.5
mWh cm−3.84

In contrast, asymmetric MSCs (hereafter, AMSCs) use two
different materials for the two electrodes. Consequently, the cell
voltage can be widened (Figure 2b) by appropriately combining
two different materials with complementary electrochemical
windows potentials. Note that, to reach this goal, a good charge
balancing has to be achieved between the two electrodes, by
tuning the electrode thicknesses. Benefiting from the comple-
mentary working potential window of VN and hydrated RuO2 in
1 M KOH electrolyte, Asbani et al. reported AMSC VN//
hRuO2 with a cell voltage of 1.15 V and an energy density of 20
μWh cm−2 at a power density of 3 mW cm−2 (Figure 8a). This
AMSC was 5 times better when compared to the symmetric
VN//VN and hRuO2//hRuO2 symmetric configuration.

85

Using VN as the negative electrode but poly(3,4-ethyl-
enedioxythiophene)-coated titanium oxynitride (P-TiON) as
the positive electrode, Yang et al. achieved AMSC P-TiON//
VN with a cell voltage of 1.8 V in a LiCl/PVA gel electrolyte and
an energy density of 32.4 μWh cm−2 at a power density of 0.9
mW cm−2 (Figure 8b).86 Li et al. reported an AMSC Ti3C2Tx//
polypyrrole (PPy)/MnO2 that can operate at a cell voltage of 1.2
V in a PVA/H2SO4 electrolyte, i.e., doubling the 0.6 V cell

Figure 8.Overview of several asymmetric MSCs on rigid or flexible substrates. (a) Asymmetric VN//RuO2MSC. Reprinted with permission from ref
85. Copyright 2021, Elsevier. (b) Asymmetric VN//TiON MSC. Reprinted with permission from ref 86. Copyright 2020, John Wiley and Sons. (c)
Asymmetric Ti3C2Tx//PPy/MnO2 MSC. Reprinted with permission from ref 88. Copyright 2020, Elsevier. (d) Asymmetric Ti3C2Tx//rGO MSC.
Reprinted with permission from ref 89. Copyright 2018, John Wiley and Sons.
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voltage of a symmetric MSC Ti3C2Tx (Figure 8c). This AMSC
Ti3C2Tx//polypyrrole (PPy)/MnO2 delivered an energy
density of 61.5 mF cm−2 at a power density of 6.73 μWh cm−2

and a flexible ability inherited from the conducting polymer
PPy.87 AMSC based on MXene and active carbon (AC) was
demonstrated by Xie et al.88 This AMSC Ti3C2Tx//AC
delivered a cell voltage of 1.6 V in PVA/Na2SO4 electrolyte
and an energy density of 3.5 mWh cm−3 at a power density of
100 mW cm−3. Couly et al. reported that AMSC Ti3C2Tx//rGO
(reduced graphene oxide) operated at a cell voltage of 1 V in
PVA/H2SO4 electrolyte and delivered an energy density of 8.6
mWh cm−3 at a power density of 0.2W cm−3 and good flexibility
due to the use of polyethylene terephthalate (PET) as a
substrate (Figure 8d).89

8. PERSPECTIVES AND CHALLENGES
In summary, MSCs are efficient miniaturized energy storage
devices with high power density, long cycle life, and fast charge/
discharge rate, but they suffer from low energy density.
Additionally, the technology readiness level (TRL) of such an
MSC is low, mainly due to the difficulty fabricating MSCs in a
solid-state configuration, i.e., with a solid electrolyte having no
solvent evaporation, good ionic conductivity, and a photo-
patternable capability to limit the footprint surface of the
electrolyte to a few square millimeters.
Moving from thin film to thick film is another solution for the

fabrication of high performance MSCs since energy density is
proportional to the amount of electroactive material. The main
challenges deal with the low electrical conductivity of thick films
and the ion diffusion within the electrode materials. It is also
mandatory to avoid a short circuit between the electrodes. For
the first point, it can be solved by employing high conductivity
material such as transition metal nitrides such as VN,31 W2N,

33

CrN,111 and TiN112 working as a bifunctional materials (current
collector and electrode material). For the second point and
specifically with pseudocapacitive film electrodes, an attractive
solution consists of “playing” with the nanostructured electrode
material as proposed for powder by Dunn et al.113,114 and Naoi
et al.115 Nanosized material allows the active material to be close
to the ion coming from the electrolyte solution. Consequently,
fast redox reactions occurs in nanostructured pseudocapacitive
materials, and the concept is known as extrinsic pseudocapaci-
tance. Following this downsizing engineering concept for
electroactive material but taking into account the use of thin
film deposition techniques for MSCs, it is interesting to tune the
filmmorphology to produce “porous” pseudocapacitive thin and
thick film electrodes combining very high capacitance values
with good rate capability. As an example, tuning the deposition
pressure during a sputtering process allows modification of the
film porosity.45 Another approach to tune the film porosity
consists of codepositing two elements while chemically etching
only one element after the deposition, such as proposed by Pech
et al. for 3DMSC based on a gold/copper alloy scaffold.82 A last
challenge/perspective in the field of MSC consists of the
integration of MXene electrode materials in a real device using
mass production deposition methods. Advanced microfabrica-
tion techniques such as laser scribbling and ion beam or plasma
etching processes are exciting solutions to solve the problem of
short circuiting during the fabrication process and then to
fabricate interdigitated MSCs at the wafer level.
To produce commercially off the shelf MSCs, it is impossible

to use liquid electrolytes due to leakage issues. Solid-state
ionogel electrolytes are interesting candidates to replace liquid

electrolytes because of their unique properties of no water
evaporation and photopatternable capabilities22 for the micro-
fabrication process. Additionally, a solid-state electrolyte can
extend the classical voltage window of liquid electrolytes, hence
the performance of MSCs.
At the electrolyte level, another challenge consists of using

active redox electrolytes. To improve the performance of an
electrochemical capacitor, an attractive solution consists of using
biredox ionic liquids to achieve bulk-like redox density at liquid-
like fast kinetics. The cation and anion of biredox ionic liquids
(IL) can bear moieties that undergo very fast reversible redox
reactions: a major demonstration116 was achieved by Fontaine et
al. in 2016 where BMIM-TFSI ionic liquid was functionalized
with anthraquinone (AQ) and 2,2,6,6-tetramethyl-piperidinyl-
1-oxyl (TEMPO) moieties. Consequently, the specific capaci-
tance values combine both the charge storage process coming
not only from the porous carbon electrodes but also from the
AQ and TEMPO moieties within the electrolyte. Based on this
proof of concept at the macroscale level for electrochemical
capacitors based on porous carbon electrodes, a major challenge
in the field of MSC could consist of reproducing these
experiments at the micro- or nanoscale level by trapping biredox
IL in a confined matrix combined with the ionogel approach
taking into account the limited footprint surface of MSCs.
Electrode material and device topology are also key

parameters that could be tuned to improve energy density in
order to develop the next generation of MSCs. Classical
materials such as carbon-based, pseudocapacitive material
(metal oxide, metal nitride, or conductive polymer) along with
new materials, namely, multicationic or MXene, are attractive
candidates at the electrode level to improve the capacitance
values. In that context, the key issue remains the deposition of
such electrodes as films on a substrate and the ability to pattern/
etch the film, taking into account an interdigitated shape.
Symmetric and asymmetric configurations are mainly reported
for MSCs based on pseudocapacitive materials. AMSCs
(asymmetric MSCs) benefit from the complementary working
potential window of the two electrodematerials to widen the cell
voltage of MSCs.
The progress keeps going, and many new strategies can be

expected to improve MSCs’ performance. At the material level,
the deposition/synthesis of new pseudocapacitive ternary
materials (multicationic or multianionic) is an attractive
solution to boost the capacitance value/potential windows of
an electrode. Nevertheless, stabilizing a phase is the biggest
challenge, but it was already demonstrated with various ternary
nitrides predicted by Ceder et al.,117,118 MnFe2O4 pseudocapa-
citive material,94 or FeWO4.

92 The pseudocapacitive behavior of
MnFe2O4 or FeWO4 is very interesting from a capacitance point
of view when tested in an aqueous electrolyte, but the cell
voltage of MSC will be limited by the electrochemical window
stability of water (1.23 V). An interesting approach for MSCs
could be related to the use of electrode materials showing
pseudocapacitive properties in an organic electrolyte as
demonstrated for bulk electrode by Simon et al. recently with
MXene Ti3C2Tx.

119 As a consequence, the cell voltage could be
increased up to 3 V, but the challenge consists of preparing
MXene films using the molten salt synthesis method proposed
by the authors.
For the MSC topology, asymmetric interdigitated MSCs have

many advantages over other configurations, especially for
connecting with microdevices. By combining with the 3D
electrode fabrication design,73 i.e., where the surface area of
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active materials is greatly increased, a significant increase in
surface capacitance of the electrode is expected for powering the
next generation of MSCs.
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