Skip to main content
. 2023 Mar 16:1–44. Online ahead of print. doi: 10.1007/s10311-023-01589-z

Table 9.

Comparison of recently developed metal–organic frameworks for carbon dioxide capture and sequestration

MOFsa BET surface area (m2/g) Pressure (atm) Temperature (°C) CO2 uptake (mmol g−1) Selectivity Potential application Reference
Cd-4TP-1 728.6 1 0 2.7 Post-combustion Pachfule and Banerjee (2011)
MIL-101(Cr/EDTA-Ac) 1259 1 25 2.46 CO2/N2: 9.46 Post-combustion Chen et al. (2018a)
Ni-MOF-74 0.7 25 5.2 Bae et al. (2014)
MIL-101(Cr) 495.23 2 25 5.7 CO2/N2: 57 Post-combustion Lin et al. (2014)
MIL-101(Cr,Mg) 3274 1 25 3.28 CO2/N2: 41 Post-combustion Hu et al. (2014)
BUT-161 308 1 25 2.14 O2/N2: 57 & CO2/CH4: 10 Post-combustion and biogas upgrading Zhang et al. (2019)
MAF-X27(ox) 1167 1 25 6.7 CO2/N2: 262 Post-combustion Liao et al. (2015)
Mg-MOF-74 1174 1 25 8.6 CO2/CH4: 10.1 Post-combustion and biogas upgrading Bao et al. (2011)
Co-MOF-74 957 1 25 7.5 Yazaydin et al. (2009)
Al(HCOO)3(ALF) 1.18 50 4.3 CO2/N2: 350 Post-combustion Evans et al. (2022)
MOF-177-EDTA-20% 855 1 25 2.83 Gaikwad et al. (2021)
MOF-177-TEPA-20% 585 1 25 3.82 Gaikwad et al. (2021)
MW-180–30 1 25 2.02 CO2/N2: 29.7 Post-combustion Chen et al. (2019)
MOF-1 [Ni-(4PyC)2·DMF] 1 30 4.1 CO2/N2: 82 Post-combustion Nandi et al. (2017)

MOFs, metal–organic frameworks; BET, Brunauer; Emmett and Teller technique. CO2, carbon dioxide; N2, nitrogen; and CH4, methane

aAll reported adsorbents are commercial and/or patented names