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ABSTRACT: We recently observed artificial temperature gradients in
molecular dynamics (MD) simulations of phase-separating ternary lipid
mixtures using the Martini 2 force field. We traced this artifact to
insufficiently converged bond length constraints with typical time steps and
default settings for the linear constraint solver (LINCS). Here, we
systematically optimize the constraint scaffold of cholesterol. With massive
virtual sites in an equimomental arrangement, we accelerate bond
constraint convergence while preserving the original cholesterol force
field and dynamics. The optimized model does not induce nonphysical
temperature gradients even at relaxed LINCS settings and is at least as fast
as the original model at the strict LINCS settings required for proper
thermal sampling. We provide a python script to diagnose possible
problems with constraint convergence for other molecules and force fields. Equimomental constraint topology optimization can also
be used to boost constraint convergence in atomistic MD simulations of molecular systems.

1. INTRODUCTION
Molecular dynamics (MD) simulations give us a molecularly
detailed view of biological processes. To reach relevant length
and time scales, the number of degrees of freedom can be
reduced by coarse graining (CG). As one of the most
successful approaches, the Martini force field1,2 on average
maps four non-hydrogen atoms into a single bead. With the
Martini force field, integration time steps of up to about Δt =
30 fs can be used, compared to the 2 fs typical in all-atom
simulations. CG force fields make it possible to study phase
separation in lipid bilayers3,4 as possible models for the lipid
rafts5,6 implicated in a myriad of cellular processes.7−9

However, we recently observed unphysical temperature
gradients across the liquid-ordered (Lo) and liquid-disordered
(Ld) phase boundaries in Martini 2 simulations of phase-
separating ternary lipid mixtures.10 We traced these gradients
to an insufficient convergence of the highly coupled bond-
length constraints in the Martini 2 cholesterol model,10,11 with
cholesterol being a major component of phase-separating lipid
membranes. Insufficient constraint convergence also affects
other observables at typical time steps, such as the diffusion
coefficient or the contact fraction,12 which describes the degree
of the phase separation in the system.
Slow convergence of the linear constraint solver

(LINCS)13,14 is expected for any system with strongly coupled
constraints. In Martini 2, this includes sterols such as
cholesterol and ergosterol. In atomistic simulations, the issue
arises, e.g., for angle-constrained butane or pentane, where
LINCS fails entirely13 or cholesterol with all bonds con-
strained.10 Thus, an easy-to-use tool to estimate the required

LINCS settings for proper convergence and a strategy to
ameliorate bond length constraint issues would be valuable.
Here, we present a general method based on rigid-body

mechanics15 and the use of virtual sites16 to optimize the
LINCS convergence behavior of highly constrained topologies.
Applied to the Martini 2 cholesterol topology, we obtain a
cholesterol model that is optimized in terms of LINCS
convergence but fully retains the original parametrization of
the molecule in terms of force field and dynamics. First, we
recapitulate the fundamental problem with the joint use of
coupled constraints and the LINCS algorithm. We provide a
set of guidelines that can help to avoid the creation of such
constraints, and we present a script that enables the detection
of constraint-related issues without explicitly performing any
simulation. We apply the script to assess the behavior of
constrained molecules in the Martini 3 small-molecule library17

and different atomistic cholesterol topologies. Second, we
modify the cholesterol constraint topology to reduce the time-
step dependence and the temperature gradients of the system.
Finally, we perform Martini 2 simulations of (i) a single
cholesterol molecule, (ii) a phase-separating lipid bilayer, and
(iii) a G-protein-coupled receptor (GPCR) embedded in a
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cholesterol-containing membrane using both the original
Martini 2 and our optimized cholesterol models to
demonstrate the improvements introduced by our model.

2. THEORY
2.1. LINCS Constraint Algorithm. As discussed in detail

in the original LINCS papers,13,14 the intramolecular bond-
length constraints are enforced after an unconstrained step
according to

r r M B B M B B r d( ) ( )n n n n n
T

n n1 1
unc 1 1 1

1
unc=+ + + (1)

where rn+1
unc is the position after the unconstrained time step n +

1,M is the diagonal matrix of particle masses, Bn is the gradient
matrix of the constraint equations at time step n, and the
vector d contains the prescribed length of the constraints. A
key step in enforcing the constraints with eq 1 is the inversion
of BnM−1Bn

T, a square matrix of dimensions K × K with K
being the number of distance constraints. To reduce the
computational cost, one rewrites the inverse in the form

B M B S I A S( ) ( )n n
T

n
1 1 1= (2)

where S is a diagonal matrix defined as the inverse square
root13 of the diagonal of BnM−1Bn

T. Its elements are
S m m m m/( )ii i i i i

1/2
A B A B

= [ + ] with iA and iB indexing the two
sites in distance constraint i = 1, ..., K. Note that eq 20 in ref 13
actually defines the inverse of S. An is a sparse symmetric
matrix with zeros along its diagonal. The off-diagonal elements
of An are given by the cosine of the angle between the
constraints multiplied by a dimensionless mass factor. In
LINCS,13 the inverse I A( )n

1 is evaluated approximately in
terms of a truncated geometric series

I A I A A A A( ) ...n n n n n
p1 2 3+ + + + + (3)

This expansion is only applicable if the largest absolute value of
the eigenvalues of An is less than one, max( ) 1imax = | | < ,
and it converges poorly as the magnitude of the eigenvalue
approaches one. As the authors of LINCS note, angle-
constrained butane has λmax = 0.8 while angle-constrained
pentane has λmax = 1.2.13 The reason for coupled constraints

being prone to fail is that increasing powers (p) of the An
matrix represent the coupling effect of constraints that are p
constraints away. The largest power p in the truncated series in
eq 3 corresponds to the requested LINCS order (lincs_-
order). In coupled triangles, the third constraint away from a
given constraint is already the constraint itself. As such, for
highly coupled geometries, the expansion in eq 3 usually
converges slowly or not at all. Consequently, the Gromacs MD
simulation engine18 internally doubles the requested
lincs_order for all constraints involved in triangular
arrangements.14

As the An matrix can be diagonalized, one can conveniently
assess the convergence of eq 3 with increasing lincs_-
order based on how fast λmaxp decreases. Under typical bond
distortions, λmax is approximately 0.4.14 Combined with
lincs_order = 4, the error of the expansion is
proportional to ( ) 0.4max

lincs order 4=_ . Here, we use this
relationship as a rule-of-thumb to estimate the lincs_-
order required for convergence.
2.2. Rigid-Body Mechanics. In Newton’s equations of

motion, the mechanics of a rigid body is completely specified
by the zeroth, first, and second moments of its mass
distribution, namely, the total mass (M), the center of mass
(CoM) vector (R), and the inertia tensor (X). Therefore, one
is free to alter the positions of a set of rigidly connected,
massive, noninteracting particles as long as M, R, and X are
kept constant. Sets of points that possess the same M, R, and X
are called equimomental systems.15 Naturally, to preserve the
dynamics of the system, the massless interacting sites must
subsequently be reconstructed around the new “scaffold” of
massive noninteracting particles. This well-known concept is
the basis of virtual sites in MD.16

While finding equimomental systems is trivial for rigid linear
molecules, it becomes increasingly complicated for planar and
nonplanar molecules due to couplings between M, R, and X.
Recently, Laus and Selig presented a general procedure to
generate equimomental systems from a regular tetrahedron.15

Here, we only present a brief outline of the theory. The central
object of the formalism is the pseudo inertia tensor given by

X X X X X MR
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(4)

The X̃ matrix can be readily constructed from outer products
of the homogeneous coordinates of the particle positions

r r rr ( , , , 1)i i x i y i z
T

, , ,= as

mX rr
i

N

i i i
T

1

=
= (5)

where mi are the masses of the individual particles. It is clear
from eq 4 that setting the center of mass of a point cloud R = 0
and orienting it such that X is diagonal produces a pseudo

inertia tensor M a b cX diag( , , , 1)2 2 2= that is also
diagonal. This transformation can be expressed as

X GXGT= (6)

where G is an element of the special Euclidean group SE(3) in
the 4 × 4 matrix representation, and it encodes the translation
and rotation of the point cloud of rigidly connected particles.
Moreover, the individual terms in eq 5 are rank 1 matrices.
Because four points not in a common plane already result in a
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full-rank matrix, any general rigid body can be replaced by a
rigid structure with a minimum of four points.
Following ref 15 and without loss of generality, we assume in

the following that we are in the principal frame of the rigid
body, where by an appropriate translation and rotation the
center of mass has been placed at the origin and the tensor of
inertia is diagonal. The pseudo tensor of inertia is then also
diagonal, M a b cX diag( , , , 1)2 2 2= . We define the diagonal
matrix M a b cD X( / ) diag( , , , 1)1/2= = and vectors q i that
satisfy r Dqi i= . Then, X̃ can be decomposed as

m m MX rr D q q D D ID
i

N

i i i
T

i

N

i i i
T T T

1 1

= = =
= = (7)

where I is the 4 × 4 identity matrix. The last identity

m Mq q I
i

N

i i i
T

1

=
= (8)

follows from the fact that MX DDT1= by construction.
Following ref 15, we now introduce a rotation in four
dimensions, U ∈ SO(4), to define rotated 4-vectors q Uqi i= .
This 4D rotation leaves the pseudo inertia tensor unchanged

m m MX Dq q D DUq q U D DD

X

i

N

i i i
T T

i

N

i i i
T T T T

1 1

= = =

=
= =

(9)

where we used eq 8 and UUT = I. The 4D rotations by U thus
correspond to the required equimomental transformations.15

However, to interpret the 4D-rotated vectors s DUqi i= in
terms of point masses in 3D, care must be taken to adjust also
the masses mi by mutiplying them with the square of the fourth
element of the rotated 4-vector, m m s( )i i i ,4

2= . This ensures
that s r r rr s / ( , , , 1)i i i i x i y i z

T
,4 , , ,= defines transformed 3D

positions r r r( , , )i x i y i z
T

, , , with transformed masses mi′ that
together leave X̃ and thus the inertia tensor, center of mass,
and total mass unchanged. Importantly, the resulting masses

are bounded by 0 ≤ mi′ ≤ M with ∑imi = ∑imi′ = M. In
addition to the fact that 4D rotations allow one to create all
possible equimomental systems, one has considerable freedom
in fixing certain positions or masses of the final system.15 We
note that in this process one can also change the number of
mass points, e.g., by reducing the number of sites to the
minimum of four for a general rigid body.15

3. METHODS
3.1. Topology Optimization to Minimize λmax. We

developed a python script using the MDAnalysis19 package to
compute λmax from a single molecular configuration. The use of
a single configuration is justified only if the constrained
particles do not undergo significant fluctuations during their
motion. This condition holds for the Martini 2 cholesterol
model as the two coupled triangles never substantially deviate
from coplanarity. On the basis of the framework for the
generation of equimomental systems15 introduced in the
previous section, we minimized λmax of An computed by the
script with respect to equimomental configurations of a fixed
number of rigid sites. In this way, we aimed at reducing the
lincs_order required for properly constraining Martini 2
cholesterol.
We optimized the cholesterol model by minimizing the

largest eigenvalue λmax of the constraint matrix An as follows
(see Figure S1 for illustration).

1. First, we decoupled the masses of the four beads
involved in the two coupled constraint triangles from the
interaction sites by introducing four additional non-
interacting sites positioned initially at the location of the
respective interacting bead. The cholesterol tail bead
forming the fifth massive site was left unchanged
throughout the optimization, being connected to the
rest of the molecule by a flexible bond and thus not part
of any constraint. The four newly introduced beads
initially inherited the masses of the original beads, while
the original beads became massless virtual interaction
sites. As a result of the decoupling, the optimized model
has 12 beads, 4 more than the original model.

Figure 1. Constraint topology of the original and optimized cholesterol model in Martini 2. (Left) Structural formula. (Center) Martini 2 bead
representation of the original cholesterol model rendered using VMD28 (gray, interacting beads carrying masses; magenta, virtual sites). (Right)
Bond graph of the original and optimized models. Light and dark gray circles represent massive sites (with and without interactions, respectively),
magenta circles are virtual sites in the original topology, and light pink circles are the newly introduced virtual sites (black lines, constrained bonds
involving massive sites; magenta lines, constrained bonds between massive and virtual sites; blue line, flexible bond; green dashed line, flexible bond
angle; red dotted line, flexible dihedral angle connecting the two constrained polyhedra, O.O.P, virtual sites out-of-plane with respect to the
defining particles).
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2. Second, we iteratively optimized the positions and
masses of the four newly introduced massive sites in an
equimomental manner. We used eq 7 to find the matrix
D̃ and vectors q i (i = 1, ..., 4) for the four massive sites.
Then, at each iteration step, we generated random four-
dimensional rotations U ∈ SO(4) for small rotation
angles. The application of D̃U to q i produced new
homogeneous coordinate vectors ri and hence provided
new positions ri′ and masses mi′. Following Laus and
Selig,15 this procedure guaranteed that M, R, and X
remained fixed throughout the optimization process.

3. Then, we computed the An matrix of the newly
generated configuration with modified positions and
masses of the four massive constrained particles and
determined λmax and the estimate of the required
lincs_order. Following a Monte Carlo scheme,
we accepted any new configuration that lowered λmax
and repeated the refinement (steps 2 and 3) until a
sufficiently low value was reached. To avoid pathological
structures, we specified a minimum distance of 2.7 Å
between any two beads as a constraint for the
optimization.

4. After the iterative equimomental optimization of the
masses and positions of the four newly introduced sites
(black circles in Figure 1, right), the relative positions of
the seven massless virtual sites (four originally massive
interaction sites plus the three original virtual sites;
shown as pink and magenta circles in Figure 1, right)
were reconstructed in the reference frame of the four
new sites.

3.2. MD Simulations. To compare the geometric proper-
ties of the original Martini 2 cholesterol model and our
optimized model, we performed MD simulations of single
isolated cholesterol molecules in the NVT ensemble using the
two topologies. The simulations were 50 ns long each with
time steps of 10 fs and lincs_order = 4. This
combination of settings ensured sufficient convergence of the
molecular properties.
We also performed MD simulations of ternary phase-

separating lipid mixtures based on the simulations of Thallmair
et al.10 Systems consisting of 1276 dipalmitoyl-phosphatidyl-
choline (DPPC), 912 cholesterol, and 950 dilinoleoyl-
phosphatidyl-choline (DLiPC) molecules corresponding to a
molar ratio of 0.42/0.28/0.30 were built using the program
insane.py in a random distribution.20 The bilayers were solvated
in a 0.15 M NaCl solution. This resulted in an overall number
of 38 917 CG water beads (10% of which were antifreeze
particles) and 428 NaCl ion pairs. All simulations were
performed with Gromacs18 version 2020.1. Energy minimiza-
tion of the initial structures using a steepest descent algorithm
was followed by two 500 ps pre-equilibration runs with time
steps of 1 and 10 fs, respectively. The equilibration was
concluded by a run of 1 μs, which is long enough for phase
separation to occur. During production, we simulated
750 000 000 steps corresponding to 7.5 μs with Δt = 10 fs,
15 μs with Δt = 20 fs, and 22.5 μs with Δt = 30 fs. The MD
parameters and settings corresponded to the “New-RF”
values.21

During the simulations, the pressure was maintained at 1 bar
using a Parrinello−Rahman barostat22 with semi-isotropic
coupling. We employed a coupling constant of τp = 12.0 ps and
a compressibility of β = 3 × 10−4 bar−1. The temperature was

kept constant at 310 K using a velocity rescaling thermostat23

with a coupling constant of τT = 1.0 ps. One thermostat was
used for the solvent beads (water, antifreeze, and ion beads)
and a second independent thermostat for the lipids.
We assessed the two different constraint topologies of

cholesterol on the membrane properties by performing runs
with the original Martini 2 cholesterol model and with the
optimized geometry of virtual sites. We simulated both models
using lincs_order = 4, 6, and 8 and time steps of Δt = 10,
20, and 30 fs to check for possible temperature gradients and
to evaluate the dependence of structural and dynamic
properties on the lincs_order and the time step.
To investigate the differences in lipid−protein interactions,

we performed simulations of a β2-adrenergic receptor (β2AR,
PDB ID: 2RH1) embedded in an asymmetric lipid bilayer
consisting of 65% POPC and 35% cholesterol in the upper
leaflet and 55% POPC, 35% cholesterol, and 10% PIP2 in the
lower leaflet. The initial configuration was obtained from Song
et al.24 (personal communication) and simulated using
lincs_order = 4, 6, and 8 and time steps of Δt = 10,
20, and 30 fs to assess the impact of improper constraining on
the interactions of β2AR and cholesterol. Three replicas of 15
μs length were simulated with each combination of lincs_-
order and time step, and the first 5 μs of every trajectory
were discarded from analysis as equilibration. All reported
quantities were averaged over the three replicas.
3.3. Analysis. To assess the achieved improvements in the

optimized cholesterol model, we computed a range of
observables for the original and optimized cholesterol models.
To show that our approach does not alter the original model in
any detectable fashion, we extensively compared the solvent-
accessible surface area (SASA) and the equilibrium and RMSD
values of pairwise bead distances of the single isolated
cholesterols. The SASA was computed using gmx sasa and
a probe sphere of radius 1.85 Å, while the bead distances were
computed using a PLUMED 2.725 script.
In the systems containing lipid bilayers, we computed the

temperature of the different lipids using the Gromacs18 tool
gmx traj. For the different cholesterol models, the
temperatures calculated from the kinetic energies were
corrected for the respective numbers of free and constrained
degrees of freedom. The standard Martini 2 cholesterol
consisting of eight beads has 3N = 24 degrees of freedom.
However, the three massless virtual sites do not contribute to
the kinetic energy. Together with the 5 constraints imposed on
the structure, they leave only 10 degrees of freedom. Hence, a
correction of 24/10 was applied to the temperature values. The
same reasoning results in a correction factor of 36/10 for our
optimized model.
To gain deeper insights into the temperature gradients of the

phase-separating systems, we computed the lateral distribution
of temperature in the membrane and its difference between
DLiPC and DPPC lipids (ΔT) with an in-house Python script
using the MDAnalysis library.19 The kinetic energy of the lipids
was calculated through Ek = mv2/2, where v is the velocity and
m is the mass of the particle. According to the equipartition
theorem, the temperature was then obtained as
T E k N2 /(3 )k B DoF= , where kB is Boltzmann’s constant and
NDoF is the number of actual degrees of freedom (corrected for
the constraints). Finally, the temperature was binned into 2D
histograms. For ease of representation, we averaged the 2D
temperature maps along the axis parallel to the boundaries
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between the Lo and Ld regions, that is, between the low- and
high-temperature domains.
The gmx mindist tool was used to compute the contact

fraction between DPPC and DLiPC lipids defined as12

f
c

c cmix
DLiPC DPPC

DLiPC DPPC DLiPC DLiPC
=

+ (10)

where cA−B is the number of contacts between species A and B
within a cutoff radius of 0.7 nm. The contacts were evaluated
based on the PO4 bead of the lipids.
The lateral diffusion coefficients of the phospholipid species

were calculated from the mean square displacement of their
CoM. The trajectories of individual lipids were unwrapped
using the NPT-corrected scheme of von Bülow et al.26 and
analyzed with a Generalized Least Squares estimator27 to
obtain the diffusion coefficients. The lateral motion of the
lipids was measured with respect to the CoM of the entire
bilayer, thereby eliminating the drift of the overall CoM.
We analyzed the protein−lipid interaction between the β2-

adrenergic receptor and cholesterol using the PyLipID
package.24 Similar to the original paper, we used 0.475 and
0.80 nm for the dual cutoffs that deal with the “rattling effect”
in lipid binding.24 The binding sites were required to consist of
at least four residues. We computed the per-residue and per-
binding-site lipid count, occupancy, duration, residence time,
and unbinding rate koff for each combination of lincs_-
order and time step, as in simulations of membranes without
proteins. Additionally, we calculated the SASA and binding
pose RMSD for the binding sites. The per-residue and per-
binding-site observables computed by PyLipID were averaged
over the 50 highest scoring residues and the top 3 scoring
binding sites, respectively. See the original PyLipID paper24 for
more details about the quantities.

4. RESULTS AND DISCUSSION
4.1. Cholesterol Optimization Decreases λmax. In

addition to three virtual sites, the Martini 2 model of
cholesterol contains five massive sites, four of which form
two coupled triangles. The original and optimized cholesterol
models are illustrated in Figure 1.
Due to the presence of the coupled triangles, λmax ≈ 0.95

and the estimated lincs_order is 72. Here and in the
following, the internal doubling by Gromacs is not taken into
account.14 The reason behind the high eigenvalues is closely
related to the unequal masses and coupled, far-from-equilateral
triangles involved in the constraints. While the use of equal
masses and equilateral triangles would completely distort the
topology of cholesterol, it would result in λmax ≈ 0.50 and
lincs_order = 5. The excessively large lincs_order
of the original Martini 2 cholesterol is not only infeasible in
simulations but would also be applied to all constraints in the
system, not just the coupled ones with convergence issues.
Using the procedure outlined in the Methods section, we

reduced λmax from 0.95 to 0.80, corresponding to a decrease in
the required lincs_order from 72 to 16. Even though the
topology optimization described above efficiently reduced the
required lincs_order, large distortions of the geometry of
the original model can cause other instabilities. In the case of
cholesterol, a further reduction in lincs_order was not
possible, because the resulting topologies had massive beads
that were too close. Due to the proximity of these massive
beads, the integration of the equations of motion produced

overly large deviations from the prescribed values, leading to a
different kind of LINCS instability.
4.2. Optimized Model Leaves Cholesterol Geometry

Intact. We verified that the optimization procedure does not
alter the configurations of the interacting beads by running
simulations of a single cholesterol molecule in vacuum with
both models. Our optimized model excellently reproduces the
mean SASA value and its distribution (see Figure S2). To
further prove the correctness of the optimized model, we
computed all pairwise particle distances (Tables S1 and S2).
The optimized model reproduces the mean values of all
distances of the original model up to a precision of 0.02 Å as
well as their standard deviation (compare Tables S3 and S4).
Furthermore, we computed the probability density functions of
the single bond, angle, and dihedral angle of the cholesterol
models that do not rely on constraints or virtual sites. The
distributions are virtually indistinguishable (Figure 2).
4.3. Optimized Model Eliminates Artificial Temper-

ature Gradients in Phase-Separating Systems. We
extensively compared the properties of lipid bilayers containing
cholesterol described with the original and optimized model

Figure 2. Bonded interactions in the original (blue) and optimized
(red) cholesterol models. (a) Probability density function of the bond
length rC1−C2. Bond lengths: 0.42 ± 0.05 nm (original), 0.42 ± 0.05
nm (optimized). (b) Probability density function of the angle
ϕR3−C1−C2. Angles: 2.32 ± 0.33 rad (original), 2.33 ± 0.33 rad
(optimized). (c) Probability density function of the dihedral angle
ΘROH−R2−R3−C1. Dihedral angles: 3.15 ± 0.24 (original), 3.15 ± 0.24
(optimized).
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using a range of Δt and lincs_order values. As a first test,
we evaluated the average temperature difference between
DLiPC and DPPC lipids, ΔT = TDLiPC − TDPPC. For the
original cholesterol model, the insufficient convergence of the
LINCS algorithm led to the development of significant
temperature differences, as shown in Figure 3. With the least
strict LINCS settings (lincs_order = 4) and largest time
step (30 fs), the differences can reach ΔT = 56 K between the
two lipid types (Figure 3a). Decreasing the time step to 20 fs is
not adequate even when lincs_order = 8 is used. To
recover a temperature difference below 2 K with the original
model, one has to use a 10 fs time step, incurring a significant
penalty in the simulation performance.
The magnitude of the temperature gradient is even more

striking when one examines the different membrane domains
as a function of position (see Figure 3b and 3c). The reasons
for the even larger temperature differences are that the
individual phases are not composed uniquely of single lipid
types and that the Lo phase contains the majority of cholesterol
along with DPPC. We found a temperature difference between
the two halves of the simulation box as high ΔT ≈ 80 K.
In contrast to the original cholesterol model, we observed

only small temperature differences between the two
phospholipid types with the optimized model. Even for a low
lincs_order = 4 and long time step of 30 fs, the
temperature difference is only 3.9 K (Figure 3a). For
lincs_order = 6 and a 30 fs time step, ΔT drops to 0.2
K. Moreover, the temperature difference between the two
membrane domains was in all cases under 8 K and became
negligible for time steps below 30 fs or lincs_order = 8
for a 30 fs time step.
4.4. Properties of Phase-Separating System Con-

verge When Temperature Gradients Are Eliminated. As
a test of the dynamic properties, we computed the ratio of
diffusion coefficients of DPPC and DLiPC lipids. As a probe of
the local structure, we calculated the lipid−lipid contact
fraction defined in eq 10. Results are shown as a function of the
observed artificial temperature difference ΔT between DLiPC
and DPPC lipids (Figure 4). Both quantities are greatly
affected by ΔT and can only be considered converged within
the sampling uncertainty when ΔT < 2 K (vertical dashed
line). For the original cholesterol model, this requires a short
time step of 10 fs; by contrast, for the optimized cholesterol
model we have converged results in all cases except for the
lowest lincs_order = 4 combined with the longest time
step of 30 fs. Both models converge to the same values at small

ΔT, further supporting the consistency of our optimization
procedure.
As another property impacted by temperature gradients, we

computed the distribution of cholesterol along the membrane
normal. Figure 5 indicates that while the cholesterol
distribution is quite sensitive to the combination of time step
and LINCS settings in the original model, all curves are on top
of each other in the optimized model. Moreover, the original
model converges to our optimized model in the limit of ΔT ≤
2 K, that is, at small time steps and high lincs_order
settings. The slight asymmetry in the width and height of the
cholesterol populations of the two leaflets is due to the
position restraints along the z axis of the DLiPC lipids in one
of the two leaflets, which was applied to suppress membrane
undulations.29

Figure 3. Temperature difference ΔT between DLiPC and DPPC lipids and between different phases in MD simulations of phase-separated
bilayers using the original and optimized Martini 2 cholesterol model. (a) ΔT between DLiPC and DPPC lipids as a function of time step and
lincs_order. We consistently set lincs_iter = 1. (b, c) Local temperature T along the x axis of the simulation box using the original (b)
and optimized (c) Martini 2 cholesterol models. Note the different temperature scales in b and c.

Figure 4. Effect of artificial temperature gradient in the membrane on
its dynamic and static properties. (a) Ratio of the lateral diffusion
coefficients of DPPC and DLiPC lipids. (b) Lipid−lipid contact
fraction. Both quantities are shown as a function of the observed
temperature difference ΔT of DLiPC and DPPC lipids in the
respective systems. LINCS settings and time steps are indicated (see
legend in a). Filled and empty symbols correspond to the original and
optimized models, respectively, while colors red, green, and blue
indicate the time step size. The vertical dashed line indicates the value
of ΔT = 2 K, below which both observables appear to be ΔT
independent within statistical uncertainties.
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4.5. Cholesterol−β2AR Interactions Are Only Weakly
Affected by Insufficient Constraining.We investigated the
interactions between cholesterol and a β2AR in a mixed-lipid,
asymmetric bilayer, as described in the Methods section. Here,
we analyzed the difference between the temperature of
cholesterol and the reference temperature of the thermostat
ΔTchol = Tref − Tchol. The observed ΔTchol values as a function
of time step and lincs_order are shown in Figure 6 for

the original (top) and optimized models (bottom). The large
(>2 K) values of ΔTchol indicate that the protein−lipid systems
also suffer from the LINCS convergence issues observed in the
phase-separating bilayers, albeit to a much lesser extent. This is
due to a lower local cholesterol concentration compared to the
Lo phase of the ternary system. By contrast, the systems
simulated using the optimized model show virtually no

temperature differences (see Figure 6 bottom) irrespective of
the chosen parameters.
Despite the significant values of ΔTchol, the observables

computed with PyLipID24 for the system containing β2AR do
not exhibit systematic changes as a function of ΔTchol in the
case of the original model or significant differences between
the two models (see Figures 7, S3, and S4). However, the

system with the least strict settings (and largest ΔTchol) tends
to be an outlier. Therefore, we discourage the use of
lincs_order = 4 in combination with a long time step
of Δt = 30 fs in the investigated system. We also note that
while there are no systematic differences between the two
cholesterol topologies, the quantities determined using the
optimized model have smaller variances (Figures S3 and S4).
Moreover, if the lipid bilayers exhibit phase separation and
thus have larger local cholesterol concentrations, we expect an
increased impact of the nonconverged constraints on the
protein−cholesterol interactions.
4.6. Optimal Cholesterol Model Improves Computa-

tional Performance. Results reporting on the computational
efficiency of the original and the optimized cholesterol models
in the phase-separating lipid bilayer are listed in Table 1. For
details about the overall hardware configuration and the
efficiency of the β2AR-containing simulations, we refer to
section 6 of the Supporting Information and Table S5,
respectively. For the given settings, MD simulations with the
optimized cholesterol model incurred a performance penalty of
∼10−15% in all cases. Because this comparison does not take
into account whether the physics of the system is correct or
not, we also compared the performance of the previously
recommended parameters for proper LINCS convergence
(lincs_iter = 2, lincs_order = 12, Δt = 20 fs) and
(lincs_iter = 3, lincs_order = 12, Δt = 30 fs).10

Requiring the temperature gradient to be negligible (|ΔT| < 2
K, based on the convergence of properties in Figure 4), one

Figure 5. Number density of cholesterol (using the center of mass)
along the membrane normal direction in the original (a) and
optimized (b) models. Solid, dashed, and dotted lines correspond to
the time step size. Blue, green, and red colors indicate lincs_-
order = 4, 6, and 8, respectively.

Figure 6. Temperature difference ΔTchol between cholesterol and the
thermostat target temperature (310 K) in simulations of β2AR-
containing membranes using the original (top) and optimized Martini
2 cholesterol model (bottom) as a function of time step and
lincs_order. Value of lincs_iter was in all cases kept equal
to 1.

Figure 7. Duration of cholesterol contact (a) and occupancy (b)
averaged over the top 3 binding sites and top 50 residues, respectively,
in the β2AR-contaning membranes as a function of the temperature
difference ΔTchol between cholesterol and the thermostat target
temperature (310 K). Filled and empty symbols correspond to the
original and optimized models, respectively, while colors red, green,
and blue indicate the time step size.
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needs to perform simulations of the original model at Δt = 20
fs using lincs_iter = 2, lincs_order = 12, resulting
in 1623 ns/day, while it suffices to run the optimized model
using lincs_iter = 1, lincs_order = 4, which allows
the simulation of 1752 ns/day. The same is true at 30 fs, where
one would have to run the original model with lincs_iter
= 3, lincs_order = 12, giving 2264 ns/day. Our
optimized model can run with lincs_iter = 1, lincs_-
order = 6 with a performance of 2453 ns/day, which
represents a similar gain in performance. We conclude that
MD simulations of the phase-separating bilayer model are at
least as fast with the optimized cholesterol model as with the
original model.
Crucially, using our optimized model, other constrained

molecules present in the simulation box are not subjected to
the overly high LINCS requirements of the original cholesterol
model. We evaluated the computational cost of unnecessarily
constraining molecules in the simulations of the membrane-
embedded β2AR using the same LINCS settings as for the
protein-less phase-separating lipid bilayer. The protein model
contains 462 constraints that do not require strict LINCS
settings. The use of the optimized model results in an ∼30%
performance increase compared to stricter LINCS settings10

(see Table S5).
4.7. Perspective on Other Potentially Affected

Molecular Topologies. 4.7.1. Martini 3 Small-Molecule
Library Does Not Suffer from LINCS Convergence Issues.
The representation of a rigid topology by two connected
triangular constraints, the so-called hinge model, as it is used in
cholesterol, served as a blueprint for the Martini 3 topologies
of a number of small molecules. Therefore, we assessed the
quality of the constraint topology in terms of λmax for 77
constrained Martini 3 small molecules17 (available at https://
github.com/ricalessandri/Martini3-small-molecules) by esti-
mating the required LINCS order for convergence and by
performing explicit simulations (see Tables S6−S8). Our
python script identified the molecules BZTA (benzothiazole),
BZTH (benzothiophene), and MINDA (1-methylindazole) as
having the largest eigenvalues of λmax = 0.76. While these λmax
values are not excessively large, the reason behind them is the
same as that for cholesterol: uneven masses and slightly
distorted triangles. All three molecules were of planar,
trapezoidal geometry with constraints applied to the four
sides and the longer diagonal. As a test, we “flipped” the
constraint along the diagonal of the molecules to constrain the
other, shorter diagonal, which resulted in a decrease of λmax in
all three cases (BZTA and BZTH, 0.76−0.71; MINDA, 0.76−
0.65).

In MD simulations using the new-rf input parameters21 and
various combinations of lincs_order and time step, we
found that all differences between the solute temperature and
the thermostat reference temperature were less than 1.5 K and
that the temperature difference between the solute and the
solvent never exceeded 2 K (Tables S6−S8). Interestingly,
“flipping” the diagonal constraint in the molecular topologies
did not produce a clear improvement (Tables S6−S8), most
likely due to the only moderately large λmax values.
The explicit simulations fully support our conclusions drawn

based on λmax. Remarkably, the eigenvalue analysis of all 77
molecules took less than 3 min on a standard laptop, while the
explicit simulations require tests using various lincs_-
order and time step values and take a few hours per system
using high-performance computers (running on a single node,
12 000 particles, and 15 million integration steps).
Finally, the topologies involve 2-to-1 mappings of non-

hydrogen atoms to CG beads and contain “tiny” beads. The
standard Martini 3 parameters of the “tiny” beads restrict the
time step Δt to well below 30 fs.30 While we did not encounter
any crashes during the explicit simulations of the above
systems, caution must be taken when other molecules with
“tiny” beads are present.

4.7.2. Atomistic Topologies with All Bonds Constrained
Suffer from Poor Constraint Convergence in LINCS. In our
previous study, we showed that atomistic systems containing
cholesterol also can suffer from temperature gradients due to
nonconverged constraints.10 Two examples are the
CHARMM36 force field with hydrogen mass repartitioning
(HMR)31 and the CHARMM36 model with hydrogens
modeled as virtual sites (VIS).32,33 To allow time steps of up
to Δt = 5 fs, both models constrain all bonds. Although these
cholesterol models do not contain any coupled triangles, larger
rings of five or six atoms are present (Figure 1, left). Similar to
three-membered rings, the resulting coupled constraints affect
the convergence of the LINCS algorithm.
We analyzed the largest eigenvalues λmax of the An matrix for

the standard CHARMM36 cholesterol model as well as the
HMR and VIS ones using our script. While the standard
CHARMM36 cholesterol model is typically run by constrain-
ing solely bonds involving hydrogen atoms, HMR and VIS
constrain all bonds to enable larger time steps. As expected, the
standard CHARMM36 model34 has a low λmax value of 0.06
because no coupled constraints are present. The other two
models, however, exhibit considerably higher λmax values of
0.73 (HMR) and 0.71 (VIS). For proper convergence, they
would require lincs_order = 11 and 10, respectively.
Note that the internal doubling of lincs_order is not
initiated by Gromacs for these topologies because no
constrained triangles are present.
This shows that also for atomistic systems in which all bonds

are constrained, the analysis of the eigenvalues of the An matrix
is a valuable diagnosis tool. Our script can be used to detect
potential convergence issues of the LINCS algorithm and
estimate the required LINCS settings.18

5. CONCLUSIONS
For phase-separating lipid bilayers, Martini 2 simulations with
typical parameter settings have recently been found to suffer
from substantial artificial temperature gradients across the
phase boundaries. The locally different temperatures impacted
other physical properties of the system such as the ratio of
diffusion coefficients between the saturated and the unsatu-

Table 1. Performance Comparison for MD Simulations of
Phase-Separating Lipid Bilayers Using the Original and
Optimized Cholesterol Modelsa

lincs_order

original optimized

Δt [fs] 4 6 8 4 6 8

30 2925 2801 2741 2608 2453 2403
20 2081 1887 1892 1752 1714 1664
10 1150 1076 1050 963 931 904

aListed are simulated times in units of nanoseconds per day of wall-
clock time. Results are shown as a function of time step Δt and
lincs_order at fixed lincs_iter=1.
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rated lipids, the degree of phase separation,10,11 and the
distribution of cholesterol along the membrane normal
direction (Figures 4 and 5). The origin of the artifact was
traced back to insufficient convergence of the highly coupled
bond constraints in cholesterol, one of the major components
in such bilayers.
Here, we used the mechanics of rigid bodies15 to develop an

optimization strategy for constraint molecular topologies to
achieve quicker constraint convergence with the LINCS
algorithm. We did not consider alternative ways of solving
the constraint equations or other numerical methods to invert
the matrix I − An in LINCS. In the optimization of the
constraint topology, we minimized the largest absolute value of
the eigenvalues of the An matrix, λmax. We also provide a
python script to rapidly evaluate the quality of the constraint
topology in terms of λmax (available at https://github.com/bio-
phys/constraint-coupling-analysis). We demonstrate the opti-
mization strategy for the Martini 2 cholesterol model. By fully
preserving the force field and the dynamics in the limit of
infinitesimal time steps and perfect accounting for the
constraints, the optimized model reproduces the single-
molecule properties of the original model such as the
solvent-accessible surface area or the bond/angle/dihedral
distributions. With the exception of the largest time step and
lowest lincs_order considered, the new model did not
develop artificial temperature gradients in the phase-separating
bilayer. The optimized model is publicly available at the
Martini Web site (http://cgmartini.nl/images/parameters/
ITP/martini_v2.0_CHOL_02-optLINCS.itp).
We further investigated the magnitude of the artifacts and

their impact on cholesterol−protein interactions using a
membrane-embedded β2-adrenergic receptor. Whereas the
temperature of the original cholesterol model deviated
significantly from the target temperature of the thermostat at
larger time steps, there were no significant differences observed
in lipid organization and dynamics around the protein between
simulations with the original and the optimized cholesterol
model. For MD simulations of membrane proteins with the
optimized cholesterol model, we recommend the combined
use of at least lincs_order = 6 with at most a 30 fs time
step.
In the optimization of the cholesterol model, we ensure that

the energetic and dynamic properties of the original model are
fully maintained. The four additional beads in the constraint
topology incur a computational cost. On the other hand, the
stricter LINCS settings required for the original Martini 2
cholesterol model also impact the computational cost. In MD
simulations of phase-separating ternary lipid mixtures with
LINCS settings chosen to ensure similarly small temperature
gradients, we achieved comparable performance with the
original and optimized cholesterol model in terms of simulated
time per wall-clock time (ns/day). The performance advantage
of the optimized model increased to ∼30% in the presence of
the membrane protein β2AR because the increase in the
lincs_order required for the original cholesterol model
applies also to constraints in the membrane protein.
We also analyzed the constraint topologies of the Martini 3

small-molecule library17 for the highest λmax, and we performed
explicit simulations for the three molecules with the largest
eigenvalues λmax that corroborated the eigenvalue analysis.
Overall, even for the largest λmax = 0.76 we did not observe
appreciable temperature gradients. The analysis and optimiza-
tion method presented here can be readily incorporated into

automatic topology builders and is potentially useful for other
constrained molecules as well as rigid-body simulations.
We conclude by emphasizing the generality of the procedure

described here to optimize the molecular constraint scaffold for
rapid constraint convergence with LINCS. Possible applica-
tions include automated topology building of molecules,35,36

e.g., at the Martini 3 level of coarse graining.35,36
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