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Abstract

Optical coherence tomography (OCT) images of ex vivo human brain tissue are corrupted by 

multiplicative speckle noise that degrades the contrast to noise ratio (CNR) of microstructural 

compartments. This work proposes a novel algorithm to reduce noise corruption in OCT images 

that minimizes the penalized negative log likelihood of gamma distributed speckle noise. The 

proposed method is formulated as a majorize-minimize problem that reduces to solving an 

iterative regularized least squares optimization. We demonstrate the usefulness of the proposed 

method by removing speckle in simulated data, phantom data and real OCT images of human 

brain tissue. We compare the proposed method with state of the art filtering and non-local means 

based denoising methods. We demonstrate that our approach removes speckle accurately, improves 

CNR between different tissue types and better preserves small features and edges in human brain 

tissue.
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1. Introduction

Optical coherence tomography (OCT) is an imaging technique that uses low temporal 

coherence light to obtain cross sectional images of an object at 1−20 μm resolution.In 

addition, block-face imaging of OCT enables large volumetric reconstruction (tens of cubic 

centimeters) of ex vivo human brain tissues, by combining with serial sectioning using 

a vibratome (Magnain et al., 2014). The high resolution of OCT images and its ability 

to image in three dimensions makes OCT an attractive imaging modality to study 3D 

brain anatomy at microscopic resolution. Microstructural compartments attenuate the light 

propagating in the tissue with a rate determined by its scattering coefficient. The variations 

in tissue optical properties lead to variation of contrast in OCT images (Goodman, 1975, 

1976). Scattering coefficients have been related to brain tissue properties such as cell and 

myelin density (Farhat et al., 2011; Vermeer et al., 2014; Wang et al., 2017). OCT images 

have also been used to study pathological features in lesion, tumor, and neurodegenerative 

diseases (van Manen et al., 2018; Zysk et al., 2007). Recent studies have also shown that 

the intrinsic optical properties of ex vivo human brains provide distinctive identification of 

neuroanatomical features (Magnain et al., 2015a; 2015b; Wang et al., 2017).

Contamination of OCT images by speckle noise is a well known problem that results 

in reduced contrast visibility and inaccurate optical property estimation (Kirillin et al., 

2014; Lindenmaier et al., 2013; Schmitt et al., 1999). Speckle is a form of multiplicative 

noise that occurs in laser based imaging modalities due to the interference of scattering 

waves from surrounding regions (Goodman, 1975, 1976, 1985; Lim and Nawab, 1981; Tur 

et al., 1982). In ex vivo brain OCT images speckle results from scattering interference 

of the microstructural medium. Destructive interference reduces the OCT intensity, while 

constructive interference increases the intensity, giving speckle a high contrast appearance. 

Speckle significantly degrades the contrast-to-noise-ratio (CNR) between tissue structures 

and masks features that are similar in size to it, dramatically reducing the accuracy of 

quantitative analysis.

Speckle noise is typically eliminated by averaging over multiple OCT acquisitions with 

uncorrelated speckle patterns (Bashkansky and Reintjes, 2000; Desjardins et al., 2007). In ex 
vivo imaging, since fixed tissue lacks dynamic processes, uncorrelated speckle patterns are 

created with different incident wavefronts, angular compounding, frequency compounding 

or combining polarization modes. In a recent study, we used the average of 50% overlapping 

tiles to reduce speckle noise and achieve large volumetric reconstructions of ex vivo human 

brain tissue (Magnain et al., 2014; Wang et al., 2018a). The resulting reduced speckle 

contrast was inversely proportional to the square root of the number of images used to 

average. However, this type of speckle reduction method suffers from substantially increased 
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acquisition time. For example, acquiring 50% overlapped data takes four times longer than 

acquiring non-overlap data.

Several post processing tools that apply denoising algorithms to the acquired OCT data 

have been developed. The high-contrast appearance of speckle has led to the usage of 

filtering-based methods (Bernstein, 1987; Frost et al., 1982; Lee, 1980; Ramos-Llordén et 

al., 2015; Salinas and Fernandez, 2007; Yu and Acton, 2002) to remove speckle. Filtering 

methods generally work well in homogeneous regions but can distort tissue boundaries and 

blur structures, reducing the effective resolution of the image. Another class of denoising 

methods include additive noise removal methods applied to the logarithm of the OCT image. 

These methods are based on the assumption that, with averaging, the speckle distribution 

of log-transformed OCT intensity images approaches the Gaussian distribution (Xie et al., 

2002). State of the art log transformation based denoising methods include non-local means 

(NLM) (Aum et al., 2015; Buades et al., 2010; Coupé et al., 2009; Fischl and Schwartz, 

1999; Yu et al., 2016; Zhou et al., 2020), block matching 3D (BM3D) (Dabov et al., 2007), 

wavelet shrinkage denoising (Chong and Zhu, 2013; Mayer et al., 2012; Zaki et al., 2017) 

and constrained optimization (e.g. total variation constraint) methods (Fang et al., 2012; 

Feng et al., 2014; Gong et al., 2015; Wang et al., 2018b; Wong et al., 2010). One drawback 

of these approaches is that most of them assume zero mean noise, which does not hold 

for the log transformed speckle distribution, leading to a mean bias in the denoised result 

(Arsenault and April, 1976; Gong et al., 2015; Xie et al., 2002).

The advent of deep learning technology has also resulted in a number of promising learning 

based denoising methods. While these denoising methods have largely focused on removing 

additive noise, there is recent work in removing speckle in both supervised (Akter et 

al., 2020; Devalla et al., 2019; Menon et al., 2020; Qiu et al., 2020) and unsupervised 

manner (Huang et al., 2021; Mao et al., 2019) from OCT images. The supervised learning 

techniques rely on finding the mapping between averaged ground truth and noisy data. The 

unsupervised methods utilize noise2noise approach (Krull et al., 2018; Lehtinen et al., 2018) 

that trains on paired sets of noisy images. However, the generalizability of these methods 

remains untested for human brain imaging that differs in tissue contrast (signal intensities), 

image features, imaging resolutions, and signal to noise ratio. We are also limited in training 

these methods for human brain OCT due to the lack of available training data.

The final class of denoising methods remove multiplicative noise by optimizing a speckle 

distribution model. Speckle has been shown to be gamma distributed on OCT intensity 

images (Feng et al., 2014; Gong et al., 2015; Kirillin et al., 2014). Speckle in uniform media 

is modeled by the negative exponential distribution, a special case of the gamma distribution 

(Goodman, 1975). The speckle distribution of OCT amplitude, which is the square root of 

measured OCT intensity, is modeled by Rayleigh or Nakagami distributions (Karamata et 

al., 2005; Pircher et al., 2003; Yin et al., 2013), which are related to the square-root of the 

gamma distribution. OCT studies have also reported high goodness of fit for the generalized 

gamma distribution in applications such as cornea and skin imaging (Farhat et al., 2011; 

Jesus and Iskander, 2017; Raju and Srinivasan, 2002). While the gamma speckle model fits 

OCT data well, it is complicated and non-trivial to optimize. Log transformed denoising 

and the BM3D algorithm have been extended to use the gamma distributed multiplicative 
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speckle noise model to denoise synthetic aperture radar (SAR) images (Bioucas-Dias and 

Figueiredo, 2010; Parrilli et al., 2012).

In this study we propose a new approach to optimize the gamma distribution speckle 

model and remove multiplicative speckle noise from OCT images of ex vivo human brain 

tissue. The proposed method minimizes the negative log likelihood (NLL) of the gamma 

distribution penalized with a spatial regularization constraint. We provide novel theoretical 

understanding into the convexity of different terms forming the gamma NLL cost. We 

take advantage of this new insight to propose a majorize-minimize framework (Hunter and 

Lange, 2004; de Leeuw and Heiser, 1977) based method that optimizes the complicated 

cost function using simpler surrogate functions. The proposed minimization reduces to 

solving an iterative regularized least squares problem, which decreases the computation time 

compared to the existing NLM state of the art methods. We compare the performance of our 

technique with filtering methods, log-normal approximation method, NLM and SAR BM3D, 

and demonstrate the improvement in overall denoising accuracy, CNR between tissue types 

and in preservation of small features and edges of human brain tissue. We also demonstrate 

the generalizability of our approach in removing speckle across multiple tissue types and 

multiple imaging resolution scales, and its flexibility to work with convex regularization 

functions.

The work is organized as follows: we briefly describe the background on speckle likelihood, 

derive the proposed algorithm called MM-despeckle, demonstrate speckle removal results, 

discuss implications of our approach and present the conclusions.

2. Background

2.1. Speckle distribution in OCT images

Speckle noise in OCT intensity images (Goodman, 1976) is a form of multiplicative noise 

that is well described at an arbitrary voxel as

y2 = x2 ⋅ s, (1)

where y is the measured OCT amplitude and its square is the measured OCT intensity, 

x is the true OCT amplitude and s is the speckle noise corrupting the OCT intensity 

(i.e. the squared amplitude). The probability density function (PDF) describing the spatial 

distribution of speckle noise in OCT intensity data is modeled with a gamma distribution 

(ps(s; α, β)) (Feng et al., 2014; Gong et al., 2015; Goodman, 1975; Kirillin et al., 2014):

ps(s; α, β) = βα

Γ(α)sα − 1exp( − βs), (2)

with s > 0, α > 0 and β > 0. Here Γ( ⋅ ) is the gamma function, α is the shape parameter and 

β is the rate parameter of the gamma distribution.

2.2. Maximum likelihood estimation (MLE) for denoising

MLE is a commonly used procedure to denoise data. The main assumption for MLE 

methods is that we can model the likelihood distribution p(y ∣ x) of the acquired data. MLE 
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methods find an estimate x of the true signal x from the measured data y by maximizing the 

likelihood distribution. This is generally achieved by minimizing a penalized negative log 

likelihood (P-NLL) cost function

x = argmin
x

− log(p(y ∣ x)) + λR(x), (3)

where R(x) is a regularization or penalty function and λ is the regularization parameter. 

The penalty is put in place to constrain the generally ill-posed nature of the negative log 

likelihood minimization.

2.3. Majorize-minimize optimization framework

In this work we propose an optimization algorithm based on the majorize-minimize (MM) 

framework (Hunter and Lange, 2004) to minimize the P-NLL cost of OCT speckle. The MM 

framework can be used to minimize a complicated cost function indirectly by sequentially 

minimizing simpler convex functions that are tangential to, and greater than or equal to, the 

cost function. The tangential functions are referred to as majorants. A majorant G(x; x) of a 

cost function C(x), tangential to it at x = x, satisfies the following two criteria:

• The cost and the majorant meet only at a single point x:C(x) = G(x; x).

• The majorant function is greater than the cost function otherwise: 

C(x) < G(x; x), ∀x ≠ x.

These conditions theoretically guarantee that the sequential minimization of the majorant 

function also monotonically decreases and minimizes the cost C(x). In this work we find 

convex majorants for the gamma P-NLL cost function that can be minimized by solving 

least squares or a regularized least squares problems.

3. Theory

3.1. Negative log likelihood cost function

The likelihood of the OCT amplitude p(y ∣ x; α, β) is defined as the conditional probability of 

the measured amplitude y given the true signal amplitude x. The likelihood can be derived 

using the probability transformation rule as

p(y ∣ x; α, β) = ps s = y2

x2 ; α, β ⋅ ds
dy , (4)

where we have substituted s = y2

x2  from Eq. (1) into the speckle PDF (Eq. (2)). The derivative 

ds
dy = 2y

x2 , also follows from the multiplicative relationship in Eq. (1). Expanding the PDF 

and the derivative, the likelihood is derived as:

p(y ∣ x; α, β) = 2βα

Γ(α)y2α − 1x−2αexp −β y2

x2 . (5)
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In this paper we assume prior knowledge of gamma distribution parameters (α and β), and 

drop these terms from the likelihood notation to simplify it. Assuming all voxels to be 

independently distributed samples of the likelihood distribution, the joint likelihood can be 

derived as

p(y ∣ x) = 2βα

Γ(α)
M

∏
m = 1

M
ym

2α − 1xm
−2αexp −β ym

2

xm
2 , (6)

where M is the number of measurements (or voxels), m is the voxel index, 

y = y1, ⋯, yM ∈ RM is the vectorized measured OCT amplitude image of length M and 

x = x1, ⋯, xM ∈ RM is the vectorized true OCT amplitude image of length M.

The P-NLL cost for speckle noise follows as

x = argminx − log(p(y ∣ x)) + λR(x),

= argminx ∑
m = 1

M
2αlog xm + β ym

2

xm
2 + b + λR(x), (7)

where b = − Mlog 2βα

Γ(α) − ∑m = 1
M (2α − 1)log ym  is composed of constants that do not depend 

on x and are ignored in the minimization.

3.2. Majorant to the P-NLL cost function

The negative log likelihood (NLL) of the gamma distribution (Eq. (7)) for an arbitrary voxel 

is the sum of a logarithm function 2αlog xm  and the squared function βym
2 /xm

2. We assume 

xm, ym > 0 in our derivations because OCT amplitude and intensity are positive valued 

signals (Izatt et al., 2015). The logarithm term is strictly concave with a negative second 

derivative of −2α/xm
2. Similarly, the squared term is strictly convex with a positive second 

derivative of 6β ym
2 /xm

4 . Gamma NLL is thus non-convex and the sum of a strictly convex and 

a strictly concave function.

We take advantage of the property that the tangent to a strictly concave function majorizes 

the function (Hunter and Lange, 2004). We derive a convex majorant function by the 

summing the convex term with the tangent to the concave logarithm term. The logarithm 

tangent T xm; xm  at xm is derived in Appendix A as T xm; xm = 2α xm/xm + log xm − 1 . Let 

G(x; x) be the majorant function that is tangential to the gamma NLL at x = x1, ⋯, xM ∈ RM. 

The majorant function reduces to

G(x; x) = ∑
m = 1

M
2α xm

xm
+ log xm − 1 + β ym

2

xm
2 . (8)

The gamma majorant function is the sum of two convex functions. The minimum of the 

majorant G(x; x) can be analytically evaluated as xm = (β /α)xmym
23  by equating its derivative to 

0 (see Appendix B for derivation).
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Fig. 1 plots three example tangential majorant functions (G(x; x) from Eq. (8)) for a 1D 

gamma negative log likelihood cost function with parameters α = β = 1. The true intensity 

(x) was set to 1, and we see the NLL is minimum at x = 1. The majorants are convex and 

their minima (Appendix B) is marked in the figure. As the minimum of the majorants moves 

from the red to the purple curve, the estimation gradually approaches the minimum of the 

NLL cost function.

Now consider the following least squares problem G(x; x):

x = argmin
x

G(x; x), (9)

= argmin
x

∑
m = 1

M
xm − (β /α)xmym

23 2
. (10)

Note that while G(x; x) is not a tangential majorant of the gamma NLL, it shares the same 

minimum as the majorant G(x; x) . G(x; x) can be used to find the majorant minimum and 

can be solved using a least squares algorithm. In addition, G(x; x) combined with spatial 

regularization functions can be solved with standard regularized least square solvers (Barrett 

et al., 1994; Chambolle and Pock, 2011; Rudin et al., 1994).

Lastly, we have derived similar majorant expressions for the negative exponential 

distribution and the generalized gamma distribution, which are related to the gamma 

distribution in Appendix C and Appendix D respectively.

3.3. MM-despeckle algorithm to optimize gamma P-NLL cost

We propose a new majorize-minimize algorithm MM-despeckle that minimizes P-NLL 

majorants iteratively to indirectly minimize the gamma P-NLL cost. The minimization at 

each iteration is formulated as a regularized least squares problem by combining Eq. (9) 

with a regularization function R(x) :

x = argmin
x

G(x; x) + λR(x), (11)

= argmin
x

∑
m = 1

M
xm − (β /α)xmym

23 2
+ λR(x) . (12)

The method estimates the OCT amplitude x. The input to the algorithm is the noisy OCT 

amplitude image y obtained by taking the square root of the measured OCT intensity image. 

Please note that the OCT amplitude is positive, and thus the square root mapping is a one-

to-one function. Eq. (12) can be solved using standard regularized least squares algorithms 

such as (Chambolle and Pock, 2011; Rudin et al., 1994) for total variation regularization or 

Barrett et al. (1994) for quadratic smoothness regularization. The algorithm reduces to the 

following steps:
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1. Initialize x0 = y

2. {k + 1}th iteration: minimize the P-NLL majorant 

x k + 1 = argminxG x; x = x k + λR(x), where x k  is the minimum solution of {k} 

th iteration.

3. If not converged: x k = x k + 1  and repeat steps 2–3, Otherwise exit

4. The denoised amplitude x is squared to calculate the OCT intensity image.

We evaluated x k − x k + 1
2/ x k + 1

2 < 10−6 to determine convergence.

4. Experiments

We describe the imaging experiments conducted to acquire OCT images to evaluate the 

proposed MM-despeckle method.

4.1. OCT system description

We used a spectral domain OCT to image the human brain samples (Magnain et al., 2014). 

Briefly, the broadband light source is a superluminescent diode (LS2000B SLD, Thorlabs 

Inc., Newton, New Jersey) with a center wavelength of 1310 nm, spectral bandwidth of 170 

nm and an axial resolution of 3.5 μm in tissue. The spectrometer consisted of a 1024-pixel 

InGaAs line scan camera (Thorlabs Inc.), providing an acquisition rate of 46kHz per A-line 

and a depth of field of 1.5 mn in tissue. Three lenses (10 × water immersion objective, 10 × 

air objective, and 5 × air objective) were used in the sample arm, yielding a lateral resolution 

of 3.5 μm, 3.5 μm and 6 μm, respectively. To cover the large area of sample, the tissue was 

imaged in consecutive tiles. An overlap was used between tiles to perform registration and 

stitching.

4.2. Phantom samples and imaging description

We imaged a scattering phantom made by suspensions of monodisperse polystyrene 

microspheres with a refractive index of 1.57 at 1300 nm wavelength and a mean diameter of 

1 μm. The solution was diluted with five concentrations, representing scattering coefficients 

of 2 mm−1, 4 mm−1, 6 mm−1, 8 mm−1 and 10 mm−1 respectively. The range of phantom 

scattering coefficients matched the range of scattering coefficients of gray and white matter 

in ex vivo human brain samples. We measured the phantom samples with the 10 × air 

coupled objective. Each measurement consisted of a cross-sectional image with 5000 A-

lines, spanning a scanning range of 1.5 mm.

4.3. Ex vivo human brain imaging experiments

We describe the human brain tissue experiments and the denoising analysis in this section.

4.3.1. Brain samples—We obtained three postmortem human brain tissue samples from 

the Massachusetts General Hospital Autopsy Suite. Tissue blocks included hippocampus, 

visual cortex and cerebellum regions of the brain. This study and its use of postmortem 

tissue was approved by the Internal Revenue Board of the Massachusetts General Hospital. 

The samples had been fixed with 10% formalin for two months. The postmortem interval did 
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not exceed 24 h. The sample was mounted in a water bath and submerged in distilled water 

during OCT imaging.

4.3.2. Hippocampus imaging experiment—We imaged a hippocampal tissue block 

with serial sectioning using the 10x water immersion objective (Wang et al., 2018a). One 

volume consisting of 512 × 512 A-lines covered a field of view (FOV) of 1.5 × 1.5 mm. 

We imaged the tiles with 90% overlap, which resulted in each voxel measured 100 times. 

While it is uncommon to use such a big overlap between tiles, we intentionally performed 

this acquisition to obtain a high number of averages on each xy-location. Since the speckle 

patterns of adjacent tiles are uncorrelated, we achieved a 10 fold reduction in speckle 

contrast after 100 times averaging (Magnain et al., 2016), which provided a high quality 

reference image to compare with the proposed method. We stitched the 90% overlap tiles 

to reconstruct the full section of the hippocampal tissue. We also stitched the tiles with no 

averaging and gave this as input to the denoising methods. We used serial sectioning to cover 

the entire volume of the sample block (Wang et al., 2018a).

4.3.3. Cerebellum imaging experiment—We imaged the human cerebellum tissue 

block using the 5 × objective. One volume consisting of 450 × 450 A-lines covered a field of 

view (FOV) of 2.5 × 2.5 mm. We imaged the tiles with a 50% overlap (4 averages per voxel) 

and stitched the tiles to construct the full sample.

4.3.4. Visual cortex vessel imaging experiment—We imaged the human visual 

cortex tissue block used the 10 × water immersion objective. One volume consisting of 512 

× 512 A-lines covered a field of view (FOV) of 1.5 × 1.5 mm. We imaged the tiles with a 

50% overlap (4 averages per voxel) and stitched the tiles to construct the full sample. We 

additionally averaged the neighbouring voxels to a 20 μm isotropic voxel size.

5. OCT denoising analyis

We evaluated the denoising performance of the proposed method with simulations, phantom 

images and ex vivo human brain tissue images. This section describes parameter selection 

and evaluation methods and criteria.

5.1. Gamma distribution parameter fitting

We fit the gamma distribution parameters (α and β) to the images of uniform phantoms 

with scattering coefficients spanning from 4 mm−1 to 10 mm−1 (as described in Section 4.2). 

These values span typical ranges measured for gray matter and white matter tissue in the 

brain (Wang et al., 2017). Our fits showed that α varied between 0.99 to 1.2 and β varied 

between 0.78 and 1. Based on these estimates we chose an average parameter value of 1 for 

both parameters to remove speckles in ex vivo brain images. In our simulation we evaluated 

denoising performance with gamma distribution parameters covering this range, with both 

parameters set to 0.5, 1 and 1.5.
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5.2. Simulation setup

We evaluated our method with simulations. We simulated noisy images for this experiment 

by generating gamma distributed speckle (s ∼ p(s)) and multiplying it with the standard 

Shepp-Logan phantom image. We simulated 100 speckle realizations for three different 

gamma distributions with (α, β) parameters: (0.5, 0.5), (1, 1) and (1.5, 1.5). We set 

the maximum amplitude of the ground truth to 80 dB and speckle size to match with 

that observed in ex vivo brain images with 3 μm isotropic resolution. We compared the 

performance of the proposed MM-despeckle method with averaging, 2D median filtering, 

Lee-diffusion filter (Yu and Acton, 2002), wavelet filtering (Thakur and Anand, 2005; Zhang 

et al., 2016), optimized Bayesian NLM (OBNLM) for speckle removal (Coupé et al., 2009), 

BM3D applied to log transformed image (Dabov et al., 2007), BM3D for multiplicative 

noise used to remove speckle (SAR BM3D) (Parrilli et al., 2012) and MLE method to 

remove speckle with log-normal distribution assumption (Log Normal TV). We used total 

variation regularization for the MM-despeckle (MM-despeckle TV) and Log Normal TV 

method due to its ability to preserve edges well (Rudin et al., 1994):

RTV(x) = ∑
m

Dℎx m
2 + Dvx m

2, (13)

where Dh and Dv are first order finite difference matrices in the horizontal and vertical 

direction respectively and m is the voxel index.

5.3. Simulation evaluation

We evaluated the denoising performance of all methods in our simulation using peak signal-

to-noise ratio (PSNR) and compared their edge preservation capability using structural 

similarity index (SSIM) (Wang et al., 2003):

PSNR = MAXx
1

M xref − xden 2
2
, (14)

and

SSIM = 2μrefμden + c1 2σrd + c2

μref
2 + μden

2 + c1 σref
2 + σden

2 + c2
, (15)

where xref is the ground truth reference image, xden is the speckle removed denoised image, 

MAXx is the maximum possible intensity, M is the total number of image voxels, (μref, σref) 

and (μden, σden) are the mean and standard deviation of the reference and denoised images 

respectively, σrd is the covariance between reference and denoised image, and c1 and c2 are 

constants to stabilize the division.

PSNR and SSIM require a ground truth image for their calculation. However, ground truth is 

seldom known for real OCT images and reference free metrics such as contrast to noise ratio 

(CNR) and speckle contrast (SC) are commonly used to evaluate performance. Therefore 

we also calculated CNR and SC for our simulated data. Let (μ1, σ1) and (μ2, σ2) be the mean 
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and standard deviation of OCT intensity in two regions of interest (ROIs). CNR and SC are 

defined as

CNR = μ1 − μ2

σ1
2 + σ2

2 , (16)

and

SC = 0.5 ⋅ μ1

σ1
+ μ2

σ2
. (17)

We chose input method parameters that resulted in the highest PSNR across all 100 noisy 

images of the simulated speckle distributions. These parameters included: regularization 

parameter for MM-despeckle and Log Normal TV methods, filter size for median filtering, 

neighbourhood size for Lee-diffusion filtering, number of iterations for wavelet and Lee-

diffusion filtering, noise variance for BM3D, kaiser window parameter and search area 

diameter for SAR BM3D, and smoothing parameter for OBNLM. Other parameters were set 

to the same values as used in the respective papers for each method.

We implemented and tested MM-despeckle and Log Normal TV on MATLAB 2018b. We 

used MATLAB 2018b medfilt2 and ddencmp functions for median and wavelet filtering 

implementation. We used MATLAB software implementations of BM3D (Dabov et al., 

2007), SAR BM3D (Parrilli et al., 2012), Bayesian NLM (Coupé et al., 2009) and Lee-

diffusion filter (Loizou et al., 2014) made available by authors.

5.4. Ex vivo human brain denoising analysis

We despeckled the OCT en-face images using the 2D MM-despeckle method and compared 

the performance with Lee-diffusion filtering and SAR BM3D methods. Lee diffusion filter 

and SAR BM3D were selected as they performed best amongst the filtering and data 

driven methods, respectively, in our simulations. We evaluated the contribution of TV 

regularization by additionally comparing MM-despeckle TV with Log Normal TV in the 

hippocampus imaging experiment (Section 5.4.1). The results in the following sections are 

displayed on en-face images unless otherwise stated.

5.4.1. Hippocampus denoising evaluation—We segmented the noisy hippocampal 

image into gray matter (GM) and white matter (WM) by thresholding a median filter 

corrected image. We used a 3 × 3 2D median filter that covered 9 μm in x and y directions. 

The voxels above a manually selected threshold were labeled as GM and those below the 

threshold were labeled as WM. The same thresholding process was used to mark GM and 

WM ROIs in the reference image. We calculated the GM-WM CNR and the average SC for 

GM and WM ROIs to evaluate the denoising methods.

For each denoising method we chose input parameters that resulted in the least difference 

in average SC between the denoised image and the reference. We then compared the CNR 

and the PSNR of the denoised outputs. PSNR was calculated with the 100-average image 

as reference. Since speckle noise is multiplicative, the ratio of the denoised image with 
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the reference image is a good measure of intensity bias caused by the denoising methods. 

Ideally, we expect this ratio to be close to 1. Any deviation from that value is a measure 

of bias in the intensity estimates. We evaluated the intensity bias in the denoised images by 

calculating the ratio of the denoised image with the reference image. We then evaluated the 

shape and median intensity of the histogram of the ratio image to study intensity bias.

In addition, we calculated a reference-free correlation based edge preservation index (EPI) 

(Sattar et al., 1997) to compare the ability of the methods to preserve microstructural 

features. EPI was defined as the correlation between the Laplacian of the original noisy 

image In and the Laplacian of the denoised image Id (Sattar et al., 1997) and gives an 

estimate of the number of edges preserved after denoising:

EPI = Γ ΔIn − ΔIn , ΔId − ΔId

Γ ΔIn − ΔIn , ΔIn − ΔIn ⋅ Γ ΔId − ΔId , ΔId − ΔId

, (18)

where Γ s1, s2 = ∑(i, j) s1(i, j) ⋅ s2(i, j) and Δ is the Laplacian operator. For the purpose of EPI 

comparison we chose another set of input parameters that resulted in the same average 

SC across the two ROIs for all the methods. Specifically, we tuned MM-despeckle’s 

regularization parameter and Lee-diffusion filter’s neighborhood size and number of 

iterations to match the average SC of SAR BM3D with default parameters from Parrilli 

et al. (2012). We matched SC to allow us to assume that the uncorrected speckle level and its 

contribution to the EPI metric is the same for all methods. This enables us to deduce that the 

EPI differences we observe originate from differences in tissue edges and not uncorrected 

speckle. Lastly, we also compared computation time for all methods.

5.4.2. Cerebellum denoising evaluation—We manually selected GM and WM ROIs 

in the cerebellum image where we expect relatively uniform intensity, and chose input 

parameters for all the methods that resulted in the same CNR across the two ROIs. Here too 

we tuned the input parameters of MM-despeckle and Lee-diffusion filter to match the CNR 

of SAR BM3D with default parameters from Parrilli et al. (2012). We then compared the 

speckle contrast in GM and WM ROIs and the computation time. In addition, we segmented 

the image into GM and WM by manually thresholding the SAR BM3D corrected image. 

The voxels above the threshold were labeled as GM and those below the threshold were 

labeled as WM. We compared the GM - WM CNR of all the corrected methods with the new 

labels.

5.4.3. Vessel preservation evaluation—The visual cortex image was acquired to 

segment the vessels in GM and WM. Our goal here was to compare the quality of vessel 

preservation post denoising. Here we chose input parameters for MM-despeckle and Lee-

diffusion filter that matched in speckle contrast with SAR BM3D. Matching speckle contrast 

ensured that we were removing the same amount of speckle in all the three methods. We 

compared the quality of vessel preservation in the corrected images by visual inspection 

across the three methods. We calculated EPI to quantify edge preservation in each image. 

We also compared CNR between the GM and WM regions of the tissue.
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5.5. Optical property estimation analysis

We denoised the phantom image from Section 4.2 using 1D MM-despeckle (along x-axis) 

with a quadratic smoothness (Tikhonov) regularization (MM-despeckle QS)

RQS(x) = Dℎx 2
2, (19)

where Dℎ matrix calculates the finite difference along the x-axis. We chose to use a 

smoothness based Tikhonov regularization here because the phantom is uniform with no 

edges. We also denoised the phantom image using 1D median (6 μm and 60 μm filter 

size) and 1D Lee-diffusion filter (60 μm neighborhood size). A 6 μm median filter is in 

the range of what is generally used to denoise microstructure images. Filter size of 60 

μm are large filters that are not practical to use with human brain OCT images that have 

fine edges because they will blur the structure. However, for a uniform phantom we could 

test with larger filter sizes and give the filtering methods an advantage to learn from more 

voxels. We selected the MM-despeckle regularization parameter that resulted in least mean 

squared scattering coefficient error with ground truth coefficient. Data driven methods such 

as BM3D and NLM methods that are implemented for images with 2 or higher dimensions 

were not applicable for this phantom experiment.

We estimated pixel-wise scattering coefficients using a single scattering model based 

approximation method (Vermeer et al., 2014). The method approximates the scattering 

coefficient μs m, z0  at a voxel with x-axis coordinate m and z-axis (depth or slice direction) 

coordinate z0 as

μs m, z0 = x m, z0
2

∑z = z0 + 1
Z x[m, z]2

, (20)

where x m, z0
2 is the OCT intensity at the voxel, z describes the z-axis coordinate, Z 

is the total number of voxels along the z-axis. We estimated the scattering coefficients 

for the original image without speckle reduction, median filtering result, lee-diffusion 

filtering result and the proposed MM-despeckle QS method results. We compared the mean 

percentage error of the estimated coefficient with the ground truth across all five phantoms 

for all the denoising methods.

6. Results

In this section we compare and analyze MM-despeckle performance for all experiments. The 

images presented in the human brain tissues were en-face planes at a certain depth unless 

otherwise stated.

6.1. Simulation results

We present results of denoising simulated images that were corrupted by three different 

gamma distributions. Fig. 2 shows the (Fig. 2 a) ground truth phantom image, (Fig. 2 b) 

noisy image corrupted with gamma distributed speckle (α and β set to 0.5), (Fig. 2 c, d) 

average of 100 and 4 noisy images, (Fig. 2 e–l) denoised images of different algorithms with 

input parameters that resulted in overall highest PSNR, and (2 m) the two ROIs that were 
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used to evaluate CNR and SC. The 100 average image removes speckle the best but requires 

hundred times more time to acquire in a real imaging setting making it impractical for 

large-scale imaging applications. The 4 average case is commonly acquired in real imaging 

scenarios. We observe unresolved speckle in the average using 4 images wavelet-denoised 

images and in the log-transform methods including BM3D, Bayesian-NLM and the Log 

Normal TV method. The Log Normal TV method uses the same TV regularization as 

MM-despeckle, but fails to correct speckle due to mismatch in the noise model. Data-driven 

methods (BM3D, Bayesian NLM, SAR BM3D), median filtering and wavelet filtering 

show ringing and edge or line artifacts in their results, while the Lee-diffusion filtering 

result suffers from blurring. MM-despeckle TV is able to remove speckle and denoise the 

image without introducing significant artifacts or resolution reduction. SAR BM3D and Lee-

diffusion filter perform the best amongst the data-driven and filtering methods respectively, 

with the least artifacts, although still inferior to the results of MM-despeckle.

We confirm our qualitative observation by evaluating quantitative metrics that contribute 

to SNR, CNR and edge preservation (SSIM). Table 1 summarizes the mean and standard 

deviation values of PSNR, SSIM, CNR and SC calculated across all the denoised images. 

Here too the 100-average image demonstrates best PSNR, SC and SSIM. However, MM-

despeckle, all the data driven methods, Lee-diffusion filter and Log Normal TV outperform 

the 100 average CNR. MM-despeckle TV denoising leads to the highest mean PSNR, CNR 

and SSIM, and the lowest SC amongst the denoised images and the 4 average image. 

Our current results show that TV’s edge preservation along with accurate modeling of 

the speckle distribution have improved all four factors. The metrics also confirm that 

Lee-diffusion filter and SAR BM3D outperforms other filtering and data driven methods 

respectively. Based on this evaluation we compare real data results with SAR BM3D, 

Lee-diffusion filter and Log Normal TV in later sections.

6.2. Hippocampus imaging results

In this section we present the results of denoising OCT images of the human hippocampus 

sample. We show a hippocampus OCT image slice at 145 micron depth from the surface 

in Fig. 3. We found the following parameters to be the best choice when matching the 

speckle contrast of denoised image with the reference: (i) regularization parameter of 

3600 for MM-despeckle TV, (ii) regularization parameter of 2.5 for Log Normal TV, (iii) 

neighborhood size of 14 μm and 5 iterations for Lee-diffusion filter, and (iv) search area 

of 117 μm and Kaiser window parameter of 2 for SAR BM3D. These optimal values 

reduced to 2200 (MM-despeckle TV regularization), 0.9 (Log Normal TV regularization), 

9 um (Lee-diffusion neighborhood) and 3 iterations (Lee-diffusion) when matched to SAR 

BM3D’s speckle contrast for EPI calculation.

Fig. 3 a is the noisy OCT image acquired with no averages and (Fig. 3b) is the 100-average 

reference image.We show the result of denoising the noisy image in Fig. 3a using Log 

Normal TV, MM-despeckle TV, Lee-diffusion filter and SAR BM3D methods in Fig. 3c–f 

respectively. Fig. 3g shows the segmentation of GM and WM used for CNR calculation. 

We have zoomed into a region containing gray and white matter, and also containing low 
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and high contrast edges in each of the images to qualitatively demonstrate edge preservation 

performance.

SAR BM3D and Log Normal TV were unable to effectively remove speckle resulting in a 

noisy image, while the Lee-diffusion filter blurred the edges in the image, as can be seen in 

the zoomed region. Log Normal TV method resulted in pepper noise that can be seen in the 

additional zoomed in image with red border. In contrast, the MM-despeckle TV method was 

able to remove speckle and preserve both low and high contrast edges.

Fig. 4 shows the ratio images (top) and the associated histogram (bottom) for all the 

methods. The green line in the histogram marks ratio =1, when the average and denoised 

image intensity match, while the red line is the median of the ratio image. Prevalence 

of intensity bias (including reduction in dynamic range) will shift the histogram from a 

center value of 1. Changes in dynamic range will also be visible as an altered shape 

of the histogram that is deviated from a delta function at 1 (e.g. skewed or widened 

distribution). TV based methods lower the intensity resulting in a median value lower 

than 1. Lee-diffusion filter and SAR BM3D increase the intensity resulting in a median 

value higher than 1. The ratio image median was shifted by 26%, 30%, 15% and 7% 

for Log Normal TV, Lee-diffusion filter, SAR BM3D and MM-despeckle TV (proposed) 

respectively. MM-despeckle adds the least intensity bias compared to all methods. We also 

observe a larger tail in the histograms of Lee-diffusion filter and SAR BM3D suggesting 

altered dynamic range compared to the reference image.

Table 2 summarizes the metrics calculated to quantitatively evaluate the denoising 

performance of Fig. 3. SAR BM3D result had the lowest CNR and highest SC amongst the 

denoising methods because it was unable to remove speckle well. Lee-diffusion filter did not 

preserve edges well as it smoothed the images and had the lowest EPI. Log Normal TV was 

unable to remove all speckles resulting in higher SC and also relies more on TV resulting 

in smoothing of edges (i.e. low EPI) compared to MM-despeckle TV. MM-despeckle TV 

outperformed other methods in intensity bias, SC, edge preservation and PSNR. In addition, 

MM-despeckle TV along with Lee-diffusion filter and Log-Normal TV resulted in higher 

CNR than the reference image. Log-Normal TV demonstrates marginally higher CNR than 

other methods. It is important to point out that when images are smoothed then CNR and 

SC can increase at the cost of blurring edge structures. Thus there is a trade-off between 

the CNR/SC and the EPI metric. The high CNR observed in Lee-diffusion filter and Log-

Normal TV filter comes at the cost of higher smoothing of edges in the images. However, 

MM-despeckle TV is able to retain edges better and increase CNR, demonstrating overall 

superior performance.

Importantly, MM-despeckle TV demonstrated higher CNR and matched the SC value of the 

reference OCT image that took 100× longer to acquire. High CNR between tissue types, 

high EPI and low SC in an image facilitates tissue segmentation and analysis algorithms. 

Our results strongly suggest that we can reduce the overall acquisition time by using 

MM-despeckle TV to effectively reduce speckle and improve CNR in original no-average 

data, instead of acquiring multiple averages. Lastly, Lee-diffusion filtering and Log Normal 

TV are faster than MM-despeckle TV, followed by SAR BM3D.
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6.3. Cerebellum imaging results

Fig. 5 a shows a noisy cerebellum OCT image tile at a 520 μm depth that was acquired with 

a 6.5 μm resolution.The two boxes in the noisy image are the two manually chosen ROIs 

in GM (yellow) and WM (blue) that were used to evaluate speckle contrast and to choose 

CNR-matched input parameters for all methods. SAR BM3D with 39 voxel (253.5 μm) 

search area and Kaiser window parameter of 2 resulted in a CNR of 2.85 between the GM 

and the WM ROI. We found MM-despeckle TV regularization of 2000 and Lee-diffusion 

filter neighborhood size of 32.5 μm and 5 iterations to be optimal to achieve same CNR 

as SAR BM3D. The cerebellum tissue had deposits of unknown cause that showed up as 

high intensity features in the image (an example is marked with a green arrow). Fig. 5 b–d 

show the denoising results for the three methods. As expected from the results, Lee-diffusion 

smooths the deposit leading to a blooming effect, while both MM-despeckle TVs and SAR 

BM3D preserve this feature well. We also observe that SAR BM3D result suffers from edge 

artifacts (red arrows), giving rise to spurious edges where none exist.

We evaluated denoising performance by comparing SC calculated for ROIs in Fig. 5 a, and 

overall GM-WM CNR using labels shown in Fig. 5 e. Table 3 summarizes our evaluation. 

MM-despeckle TV demonstrated the highest reduction (86%) in SC compared to other 

methods. MM-despeckle TV is the only method that improved the overall CNR while the 

other two methods reduced the CNR. We attribute the reduction in CNR in SAR BM3D to 

edge artifacts that lead to non-smooth intensities in otherwise locally smooth regions. The 

reduction in CNR in Lee-diffusion performance is likely due to excess smoothing that led 

to the displacement of GM into WM regions, making WM more non-uniform and bringing 

its mean intensity closer to GM. Blurring and edge artifacts drastically affect CNR in this 

dataset compared to hippocampus data (see Table 2) because the signal intensity and true 

GM-WM CNR is lower in the cerebellum. In addition, as the cerebellum image is from a 

deeper depth than the hippocampus image in Fig. 3, the SNR was also lower, making the 

denoising more challenging. MM-despeckle TV demonstrates better performance than SAR 

BM3D and Lee-diffusion filter for cerebellum denoising. We also report computation time in 

Table 3, where, similar to our previous results, MM-despeckle is in the middle - faster than 

SAR BM3D but slower than Lee-diffusion filtering.

6.4. Vessel preservation results

Fig. 6 shows a noisy visual cortex image with 20 μm resolution and speckle contrast 

matched denoising results of the MM-despeckle TV, Lee-diffusion filter and SAR BM3D 

methods. The low intensity region is the WM, while the high intensity region is the cortical 

ribbon of the GM. Vessels show up as bright thin edges with dark end points in WM and are 

smaller low intensity spots in the GM. The GM vessels can be similar in size to the speckle 

(some are highlighted with arrows in the zoomed in image) and challenging to preserve with 

denoising. We evaluate how well the vessels were preserved after denoising with each of the 

methods. SAR BM3D with default parameters of 39 voxel (780 μm) search area and Kaiser 

parameter of 2 resulted in a SC value of 0.32. We found MM-despeckle TV regularization 

of 300 and Lee-diffusion filter neighborhood size of 60 μm and 5 iterations to be optimal to 

achieve same SC as SAR BM3D. Here we calculated SC in manually labeled GM and WM 

regions.
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In WM, the Lee-diffusion filter result is blurry, while MM-despeckle TV and SAR BM3D 

denoise and preserve vessels well. We highlight the GM performance in the zoomed in ROI 

images. The Lee-diffusion filter and SAR BM3D are unable to preserve smaller vessels 

that are 20 −30 μm in diameter and are blurred out in the images shown. In contrast, MM-

despeckle TV denoises the GM and preserves the smaller vessels. We have also highlighted 

two vessels (red arrows) closer to GM-WM boundary, where thin high intensity streaks 

are visible. Our method is the only one that preserves such low contrast features. Overall, 

MM-despeckle TV demonstrated the best vessel preservation in both GM and WM.

Table 4 reports the GM-WM CNR and EPI calculated for images in Fig. 6. The first 

column shows the GM and WM ROI in the imaged slice that was used for CNR evaluation. 

All images were matched to an SC value of 0.32. The CNR of all methods is similar 

with SAR-BM3D and Lee-diffusion filter being marginally better than MM-despeckle TV. 

However, in confirmation with our qualitative assessment, EPI of MM-despeckle TV is 

substantially higher than other methods demonstrating the best preservation of edge features 

such as vessels.

6.5. Scattering coefficient results in phantom

Fig. 7 compares the ground truth scattering coefficient (μs) with that estimated from 

phantom data. We compare estimates from four methods : (1) without speckle reduction, 

(2) median filtering (6 μm and 60 μm filter sizes), (3) Lee-diffusion filtering (60 μm 

neighborhood size) and (4) the proposed MM-despeckle QS.

We show the comparisons for the 6 mm−1 coefficient phantom in Fig. 7 a. We mark the 

ground truth coefficient that was estimated from the mean of 5000 A-lines in the plot to 

demonstrate that the coefficient estimation method from Vermeer et al. (2014) predicts the 

theoretical ground truth with high accuracy. The median of the noisy estimate and the 6 μm 

median filter estimate suffer from a 33% and 17% error. The median of MM-despeckle 

QS and the 60 μm filtering methods match the ground truth well with less than 2% 

error. However, MM-despeckle QS outperforms the filtering methods by demonstrating a 

much smaller variance in the estimate. Thus, the proposed method was consistently able to 

estimate the coefficient for all A-lines.

Fig. 7 b. plots the mean percent error for the coefficient estimates of all five phantoms. 

MM-despeckle QS (2.97% median error) demonstrates an order of magnitude lower error 

across all phantoms compared to noisy estimate (77.85% median error), median filtering 

(6 μm – 64.74 % and 60 μm – 32.21 % median error) and Lee-diffusion filtering (14.32% 

median error). We also want to note that the filtering accuracy was higher with a 60 μm 

filter compared to 6 μm filter here because we are using a uniform phantom (no edges). 

However, such large filter sizes are unsuitable to use in biological microstructure imaging 

because it substantially smooths boundaries and features that are smaller than the filter 

size. In contrast, MM-despeckle QS smooths within a 3 μm radius and is therefore more 

applicable for preserving microstructure as well.
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7. Discussion

In this work we proposed a new majorize-minimize-based optimization method called MM-

despeckle to remove gamma distributed multiplicative speckle noise from OCT images. 

There are three major contributions in this work.

1. We provided novel theoretical insight into the non-convex structure of gamma 

NLL by breaking it down into a sum of a convex and a concave function. 

Based on this theoretical result MM-despeckle minimized the gamma P-NLL 

cost function by solving a series of regularized least-squares problems.

2. We demonstrated that MM-despeckle removes speckle and preserves 

microstructure in OCT images of human brain samples. This model and the 

proposed framework is also applicable to other OCT images contaminated by 

speckle noise.

3. We also showed that MM-despeckle results in high-quality images that are 

comparable to ones that would otherwise require 90 times longer acquisition 

time in ex vivo OCT imaging, demonstrating the potential of MM-despeckle to 

reduce acquisition time as well.

MM-despeckle minimizes a P-NLL based cost function that is standard for statistical 

estimation problems. We showed results from both total variation regularization (MM-

despeckle TV) and quadratic smoothness-based spatial regularization (MM-despeckle QS). 

This demonstrates the flexibility of our method to integrate seamlessly with convex 

regularization functions relevant to speckle removal. However, care should be taken to 

tune the regularization parameters to the dataset being denoised because the optimum value 

will depend on the experimental settings such as spatial resolution and selective depth, 

and on the tissue being imaged. We have matched metrics like speckle contrast and CNR 

between methods or with a reference to select the regularization parameter for denoising 

tissue data. When a reference is unknown edge preservation metric like EPI could be 

used to find a suitable SC/CNR threshold that reduces speckle while preserving tissue 

structures. In addition, one could also make use of automated regularization parameter 

selection methods based on local variance estimators, L-curve trade-off and generalized 

cross-validation criteria (Dong et al., 2011; Kilmer and O’Leary, 2001)

The second input to MM-despeckle is the choice of gamma distribution parameters (α 
and β). In the real data experiments presented we set these parameters to 1 because that 

matched the fits reported in literature (Goodman, 1975) as well as those obtained by uniform 

phantoms with scattering coefficients spanning 4 mm−1 to 10 mm−1. We demonstrated 

successful denoising of gray matter and white matter tissue from multiple human brain 

areas using this assumption. However, prior literature has reported statistically significant 

differences in gamma parameters between normal and pathological tissue (Kirillin et al., 

2014). This work suggests that multiple tissue types with vastly different parameters could 

exist where choosing a constant parameter, as we have done, might not work well. For such 

cases MM-despeckle could also be extended to incorporate different gamma parameters for 

each tissue region instead of a constant value, where the parameters can be fit to each tissue 

region (Kirillin et al., 2014).
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Deep learning methods to remove speckle show promise in denoising OCT images. Existing 

methods have shown comparable and in some cases improved denoising performance 

compared to NLM and BM3D approaches (Huang et al., 2021; Menon et al., 2020) when 

applied to applied to OCT images such as those of retina and cornea. However, those 

methods do not utilize the speckle noise model or the OCT physics based model to denoise. 

It is also unclear how well they generalize to higher resolutions and ex vivo human brain 

OCT images. The resolution generalization is specifically interesting because we observed 

worse performance of data driven methods such as SAR BM3D with increasing image 

resolutions where the SNR is lower and microstructure intensity is more varying. We 

view combining optical and speckle modeling with deep learning based optimization as 

an interesting future direction that could benefit both accuracy and computational speed 

of OCT postprocessing methods. In addition, we have demonstrated that MM-despeckle 

generalizes well across varying tissue contrast, features and imaging resolutions. Our 

approach might also be useful in the future to generate training data or to compare against 

when testing for generalizability of deep learning methods.

We also demonstrated in our phantom experiment that denoising with MM-despeckle 

prior to scattering coefficient estimation improves estimation accuracy by a large margin, 

reducing both bias and variance of the estimates. This is a promising result because 

scattering coefficients are important biomarkers for disease and related to tissue properties 

such as myelin density. We will further perform detailed coefficient analysis on tissue 

images in future work to study if the improvement in accuracy is retained in images with 

microstructure edges.

Finally, while the examples in this paper primarily focus on OCT imaging, MM-despeckle 

is relevant and potentially applicable to several other applications such as RADAR, SONAR 

and other optical imaging modalities where gamma distribution-based speckle noise has 

been shown to be problematic.
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Appendix

Here we derive expressions for tangent to the logarithm function, minimum of the gamma 

distribution majorant, the negative exponential majorant and generalized gamma distribution 

majorant.
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Appendix A. Tangent to the logarithm part of the majorant

We define the tangent with a general equation of a straight line: y = tx + c, where t is the 

slope of the tangent and c is the y-intercept point. The slope of the tangent to f(x) = 2αlog(x)
at x is the value of the gradient f ′(x) at x and is calculated as

t = f ′(x) = 2α
x . (A.1)

The y-intercept can be calculated by plugging in the slope and a point on the tangent into 

the tangent line equation and solving for c. The point (x, 2αlog(x)) can be used to find the 

y-intercept because it lies on the tangent and meets f(x) at x. We derive the y-intercept as

c = y − tx, (A.2)

= f(x) − f ′(x)x, (A.3)

= 2αlog(x) − 2α
x x, (A.4)

= 2α(log(x) − 1) . (A.5)

The tangent equation after substituting for slope and y-intercept from Eqs. (B.1) and (B.5) is 

given by

T (x; x) = 2α(x/x + log(x) − 1) . (A.6)

Appendix B. Gamma distribution majorant minimum

We equate the partial derivative of the majorant G(x; x) (Eq. (8)) w.r.t xm to zero and solve 

for the minimum. The derivative ∂G(x; x)
∂xm

 is given by

∂G(x; x)
∂xm

= 2α
xm

− 2βym
2

xm
3 . (B.1)

The minimum can be calculated as

∂G(x; x)
∂xm

= 0, (B.2)

2α
xm

− 2βym
2

xm
3 = 0, (B.3)
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xm = βym
2xm

α
3 . (B.4)

Appendix C. Negative exponential distribution (NED)

Gamma distribution reduces to the negative exponential distribution pNED(s)  when its 

parameters α = β = 1,

pNED(s) = p(s; 1, 1)
= e−s,

(C.1)

We derive the likelihood, the P-NLL cost and the majorant for the NED distribution by 

substituting α = β = 1 in Eqs. (2), (7) and (8) respectively:

NED joint likelihood:

pNED(y ∣ x) = ∏
m = 1

M
2ymxm

−2exp −ym
2 /xm

2 . (C.2)

NED P-NLL cost:

x = argminx − log pNED(y ∣ x) + λR(x),

= argminx ∑
m = 1

M
2log xm + ym

2

xm
2 + C + λR(x),

(C.3)

where C = − Mlog(2) − ∑m = 1
M log ym .

NED majorant:

GNED(x; x) = ∑
m = 1

M
2 xm

xm
+ log xm − 1 + ym

2

xm
2 . (C.4)

Appendix D. Generalized Gamma distribution (GGD)

Probability density function of a generalized gamma distribution pGGD(s; α, β, ξ) is given by,

pGGD(s; α, β, ξ) = ξβξα

Γ(α)sξα − 1exp −(βs)ξ
(D.1)

where α and ξ are shape parameters and β is the rate parameter. All three GGD parameters 

are positive: α > 0, β > 0 and ξ > 0. The gamma distribution is a special case of the GGD 

with ξ = 1. We derive analytical expressions of joint likelihood, P-NLL cost and majorant of 

GGD in the same way we solved for gamma distribution. The three quantities reduce to:
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GGD joint likelihood:

pGGD(y ∣ x) = pGGD ym
2

xm
2 ; α, β, ξ ⋅ ds

dy , (D.2)

= 2ξβα M ∏
m = 1

M
ym

2ξα − 1xm
−2ξαexp −β ym

2

xm
2

ξ

. (D.3)

GGD P-NLL cost:

x = argminx − log pGGD(y ∣ x) + λR(x),

= argminx ∑
m = 1

M
2ξαlog xm + β ym

2

xm
2

ξ

+ C + λR(x),
(D.4)

where C = − Mlog 2ξβα − ∑m = 1
M (2ξα − 1)log ym .

GGD majorant:

GGGD(x; x) = ∑
m = 1

M
2ξα xm

xm
+ log xm − 1 + β ym

2

xm
2

ξ

. (D.5)

References

Akter N, Perry S, Fletcher J, Simunovic M, Roy M, 2020. Automated artifacts and noise removal 
from optical coherence tomography images using deep learning technique. In: 2020 IEEE 
Symposium Series on Computational Intelligence. SSCI 2020, pp. 2536–2542. doi: 10.1109/
SSCI47803.2020.9308336.

Arsenault HH, April G, 1976. Properties of speckle integrated with a finite aperture and 
logarithmically transformed. J. Opt. Soc. Am 66 (11), 1160–1163. doi: 10.1364/JOSA.66.001160.

Aum J, Kim J. h., Jeong J, 2015. Effective speckle noise suppression in optical coherence tomography 
images using nonlocal means denoising filter with double Gaussian anisotropic kernels. Appl. Opt 
54 (13), D43.

Barrett R, Berry M, Chan TF, Demmel J, Donato J, Dongarra J, Eijkhout V, Pozo R, Romine C, 
van der Vorst H, 1994. Templates for the solution of linear systems: building blocks for iterative 
methods. Soc. Ind. Appl. Math doi: 10.1137/1.9781611971538.

Bashkansky M, Reintjes J, 2000. Statistics and reduction of speckle in optical coherence tomography. 
Opt. Lett 25 (8), 545–547. [PubMed: 18064106] 

Bernstein R, 1987. Adaptive nonlinear filters for simultaneous removal of different kinds of noise in 
images. IEEE Trans. Circuits Syst 34 (11), 1275–1291.

Bioucas-Dias JM, Figueiredo MA, 2010. Multiplicative noise removal using variable splitting 
and constrained optimization. IEEE Trans. Image Process 19 (7), 1720–1730. doi: 10.1109/
TIP.2010.2045029. [PubMed: 20215071] 

Buades A, Coll B, Morel JM, 2010. Image denoising methods. a new nonlocal principle. SIAM Rev. 
52, 113–147.

Chambolle A, Pock T, 2011. A first-order primal-dual algorithm for convex problems with applications 
to imaging. J. Math. Imaging Vis 40, 120–145.

Varadarajan et al. Page 22

Neuroimage. Author manuscript; available in PMC 2023 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Chong B, Zhu Y-K, 2013. Speckle reduction in optical coherence tomography images of human finger 
skin by wavelet modified BM3D filter. Opt. Commun 291, 461–469.

Coupé P, Hellier P, Kervrann C, Barillot C, 2009. Nonlocal means-based speckle filtering 
for ultrasound images. IEEE Trans. Image Process 18 (10), 2221–2229. doi: 10.1109/
TIP.2009.2024064. [PubMed: 19482578] 

Dabov K, Foi A, Katkovnik V, Egiazarian K, 2007. Image denoising by sparse 3-{D} transform-
domain collaborative filtering. IEEE Trans. Image Process 16, 2080–2095. [PubMed: 17688213] 

Desjardins AE, Vakoc BJ, Oh WY, Motaghiannezam SMR, Tearney GJ, Bouma BE, 2007. Angle-
resolved optical coherence tomography with sequential angular selectivity for speckle reduction. 
Opt. Express 15 (10), 6200–6209. [PubMed: 19546925] 

Devalla SK, Subramanian G, Pham TH, Wang X, Perera S, Tun TA, Aung T, Schmetterer L, Thiéry 
AH, Girard MJ, 2019. A deep learning approach to denoise optical coherence tomography images 
of the optic nerve head. Sci. Rep 9 (1), 1–13. doi: 10.1038/s41598-019-51062-7. [PubMed: 
30626917] 

Dong Y, Hintermüller M, Rincon-Camacho MM, 2011. Automated regularization parameter selection 
in multi-scale total variation models for image restoration. J. Math. Imaging Vis 40 (1), 82–104. 
doi: 10.1007/s10851-010-0248-9.

Fang L, Li S, Nie Q, Izatt JA, Toth CA, Farsiu S, 2012. Sparsity based denoising of spectral 
domain optical coherence tomography images. Biomed. Opt. Express 3 (5), 927–942. [PubMed: 
22567586] 

Farhat G, Czarnota GJ, Kolios MC, Yang VXD, 2011. Detecting cell death with optical coherence 
tomography and envelope statistics. J. Biomed. Opt 16 (2), 26017.

Feng W, Lei H, Gao Y, 2014. Speckle reduction via higher order total variation approach. IEEE Trans. 
Image Process 23 (4), 1831–1843. [PubMed: 24808350] 

Fischl B, Schwartz EL, 1999. Adaptive nonlocal filtering: a fast alternative to anisotropic diffusion for 
image enhancement. IEEE Trans. Pattern Anal. Mach. Intell 21 (1), 42–48.

Frost VS, Stiles JA, Shanmugan KS, Holtzman JC, 1982. A model for radar images and its application 
to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Mach. Intell PAMI-4 
(2), 157–166. doi: 10.1109/TPAMI.1982.4767223. [PubMed: 21869022] 

Gong G, Zhang H, Yao M, 2015. Speckle noise reduction algorithm with total variation regularization 
in optical coherence tomography. Opt. Express 23 (19), 24699–24712. [PubMed: 26406671] 

Goodman JW, 1975. Statistical properties of laser speckle patterns. In: Dainty JC (Ed.), Laser Speckle 
and Related Phenomena, pp. 9–75.

Goodman JW, 1976. Some fundamental properties of speckle ∗. J. Opt. Soc. Am 66 (11), 1145–1150.

Goodman JW, 1985. Statistical Optics. Wiley Series in Pure and Applied Optics. Wiley, New York.

Huang Y, Zhang N, Hao Q, 2021. Real-time noise reduction based on ground truth free deep 
learning for optical coherence tomography. Biomed. Opt. Express 12 (4), 2027–2040. doi: 
10.1364/boe.419584. [PubMed: 33996214] 

Hunter DR, Lange K, 2004. A Tutorial on {MM} Algorithms. Am. Stat 58, 30–37.

Izatt JA, Choma MA, Dhalla AH, 2015. Theory of optical coherence tomography. In: Optical 
Coherence Tomography: Technology and Applications, Second Edition. Springer International 
Publishing, pp. 65–94.

Jesus DA, Iskander DR, 2017. Assessment of corneal properties based on statistical modeling of OCT 
speckle. Biomed. Opt. Express 8 (1), 162–176. [PubMed: 28101409] 

Karamata B, Hassler K, Laubscher M, Lasser T, 2005. Speckle statistics in optical coherence 
tomography. J. Opt. Soc. Am. A 22 (4), 593–596. doi: 10.1364/JOSAA.22.000593.

Kilmer ME, O’Leary DP, 2001. Choosing regularization parameters in iterative methods for ill-posed 
problems. SIAM J. Matrix Anal. Appl 22 (4), 1204–1221.

Kirillin MY, Farhat G, Sergeeva EA, Kolios MC, Vitkin A, 2014. Speckle statistics in OCT 
images: Monte Carlo simulations and experimental studies. Opt. Lett 39 (12), 3472. doi: 10.1364/
ol.39.003472. [PubMed: 24978514] 

Varadarajan et al. Page 23

Neuroimage. Author manuscript; available in PMC 2023 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Krull A, Buchholz T-O, Jug F, 2018. Noise2Void - learning denoising from single noisy images. 
In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern 
Recognition, 2019-June, pp. 2124–2132.

Lee J-S, 1980. Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. 
Pattern Anal. Mach. Intell PAMI-2 (2), 165–168. [PubMed: 21868887] 

de Leeuw J, Heiser WJ, 1977. Convergence of correction matrix algorithms for multidimensional 
scaling. In: Lingoes J. (Ed.), Geometric Representations of Relational Data. Mathesis Press, Ann 
Arbor, Michigan, pp. 735–753.

Lehtinen J, Munkberg J, Hasselgren J, Laine S, Karras T, Aittala M, Aila T, 2018. Noise2Noise: 
learning image restoration without clean data. In: 35th International Conference on Machine 
Learning, vol. 7. ICML 2018, pp. 4620–4631.

Lim JS, Nawab H, 1981. Techniques for speckle noise removal. Opt. Eng 20 (3), 472–480. doi: 
10.1117/12.7972744.

Lindenmaier AA, Conroy L, Farhat G, DaCosta RS, Flueraru C, Vitkin IA, 2013. Texture analysis of 
optical coherence tomography speckle for characterizing biological tissues in vivo. Opt. Lett 38 
(8), 1280. doi: 10.1364/ol.38.001280. [PubMed: 23595458] 

Loizou CP, Theofanous C, Pantziaris M, Kasparis T, 2014. Despeckle filtering software toolbox for 
ultrasound imaging of the common carotid artery. Comput. Methods Programs Biomed 114 (1), 
109–124. doi: 10.1016/j.cmpb.2014.01.018. [PubMed: 24560276] 

Magnain C, Augustinack JC, Konukoglu E, Boas D, Fischl B, 2015. Visualization of the 
cytoarchitecture of ex vivo human brain by optical coherence tomography. In: Optics in the Life 
Sciences, p. BrT4B.5.

Magnain C, Augustinack JC, Konukoglu E, Frosch MP, Sakadzic S, Varjabedian A, Garcia N, 
Wedeen VJ, Boas DA, Fischl B, 2015. Optical coherence tomography visualizes neurons in human 
entorhinal cortex. Neurophotonics 2 (1), 1–8.

Magnain C, Augustinack JC, Reuter M, Wachinger C, Frosch MP, Ragan T, Akkin T, Wedeen VJ, 
Boas DA, Fischl B, 2014. Blockface histology with optical coherence tomography: a comparison 
with Nissl staining. Neuroimage 84, 524–533. doi: 10.1016/j.neuroimage.2013.08.072. [PubMed: 
24041872] 

Magnain C, Wang H, Sakad ž i ć S, Fischl B, Boas DA, 2016. En face speckle reduction in 
optical coherence microscopy by frequency compounding. Opt. Lett 41 (9), 1925–1928. [PubMed: 
27128040] 

van Manen L, Dijkstra J, Boccara C, Benoit E, Vahrmeijer AL, Gora MJ, Mieog JSD, 2018. The 
clinical usefulness of optical coherence tomography during cancer interventions. J. Cancer Res. 
Clin. Oncol 144 (10), 1967–1990. [PubMed: 29926160] 

Mao Z, Miki A, Mei S, Dong Y, Maruyama K, Kawasaki R, Usui S, Matsushita K, Nishida K, Chan K, 
2019. Deep learning based noise reduction method for automatic 3D segmentation of the anterior 
of lamina cribrosa in optical coherence tomography volumetric scans. Biomed. Opt. Express 10 
(11), 5832–5851. doi: 10.1364/boe.10.005832. [PubMed: 31799050] 

Mayer MA, Borsdorf A, Wagner M, Hornegger J, Mardin CY, Tornow RP, 2012. Wavelet denoising of 
multiframe optical coherence tomography data. Biomed. Opt. Express 3 (3), 572–589. [PubMed: 
22435103] 

Menon SN, Vineeth Reddy VB, Yeshwanth A, Anoop BN, Rajan J, 2020. A novel deep learning 
approach for the removal of speckle noise from optical coherence tomography images using gated 
convolution–deconvolution structure. In: Advances in Intelligent Systems and Computing, Vol. 
1024, pp. 115–126.

Parrilli S, Poderico M, Angelino CV, Verdoliva L, 2012. A nonlocal SAR image denoising algorithm 
based on LLMMSE wavelet shrinkage. IEEE Trans. Geosci. Remote Sens 50 (2), 606–616. doi: 
10.1109/TGRS.2011.2161586.

Pircher M, Gotzinger E, Leitgeb RA, Fercher AF, Hitzenberger CK, 2003. Speckle reduction in 
optical coherence tomography by frequency compounding. J. Biomed. Opt 8 (3), 565–569. doi: 
10.1117/1.1578087. [PubMed: 12880365] 

Qiu B, Huang Z, Liu X, Meng X, You Y, Liu G, Yang K, Maier A, Ren Q, Lu Y, 2020. Noise reduction 
in optical coherence tomography images using a deep neural network with perceptually-sensitive 

Varadarajan et al. Page 24

Neuroimage. Author manuscript; available in PMC 2023 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



loss function. Biomed. Opt. Express 11 (2), 817–830. doi: 10.1364/boe.379551. [PubMed: 
32133225] 

Raju BI, Srinivasan MA, 2002. Statistics of envelope of high-frequency ultrasonic backscatter from 
human skin in vivo. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49 (7), 871–882. [PubMed: 
12152941] 

Ramos-Llordén G, Vegas-Sánchez-Ferrero G, Martin-Fernandez M, Alberola-López C, Aja-Fernández 
S, 2015. Anisotropic diffusion filter with memory based on speckle statistics for ultrasound 
images. IEEE Trans. Image Process 24 (1), 345–358. doi: 10.1109/TIP.2014.2371244. [PubMed: 
25415987] 

Rudin LI, Osher S, Fatemi E, 1994. Nonlinear total variation based noise removal algorithms. Physica 
D 60, 677–686.

Salinas HM, Fernandez DC, 2007. Comparison of PDE-based nonlinear diffusion approaches for 
image enhancement and denoising in optical coherence tomography. IEEE Trans. Med. Imaging 
26 (6), 761–771. [PubMed: 17679327] 

Sattar F, Floreby L, Salomonsson G, Lövström B, 1997. Image enhancement based on a nonlinear 
multiscale method. IEEE Trans. Image Process 6 (6), 888–895. doi: 10.1109/83.585239. [PubMed: 
18282982] 

Schmitt JM, Xiang SH, Yung KM, 1999. Speckle in optical coherence tomography. J. Biomed. Opt 4 
(1), 95. doi: 10.1117/1.429925. [PubMed: 23015175] 

Thakur A, Anand RS, 2005. Image quality based comparative evaluation of wavelet filters 
in ultrasound speckle reduction. Digit. Signal Process 15 (5), 455–465. doi: 10.1016/
j.dsp.2005.01.002.

Tur M, Chin KC, Goodman JW, 1982. When is speckle noise multiplicative? Appl. Opt 21 (7), 1157. 
doi: 10.1364/ao.21.001157. [PubMed: 20389823] 

Vermeer KA, Mo J, Weda JJA, Lemij HG, de Boer JF, 2014. Depth-resolved model-based 
reconstruction of attenuation coefficients in optical coherence tomography. Biomed. Opt. Express 
5 (1), 322–337.

Wang H, Magnain C, Sakadzic S, Fischl B, Boas DA, 2017. Characterizing the optical properties 
of human brain tissue with high numerical aperture optical coherence tomography. Biomed. Opt. 
Express 8 (12), 5617–5636. [PubMed: 29296492] 

Wang H, Magnain C, Wang R, Dubb J, Varjabedian A, Tirrell LS, Stevens A, Augustinack JC, 
Konukoglu E, Aganj I, Frosch MP, Schmahmann JD, Fischl B, Boas DA, 2018. as-PSOCT: 
volumetric microscopic imaging of human brain architecture and connectivity. Neuroimage 165, 
56–68. [PubMed: 29017866] 

Wang S, Huang T-Z, Zhao X-L, Mei J-J, Huang J, 2018. Speckle noise removal in ultrasound images 
by first- and second-order total variation. Numer. Algorithms 78 (2), 513–533.

Wang Z, Simoncelli EP, Bovik AC, 2003. Multi-scale structural similarity for image quality 
assessment. In: Conference Record of the Asilomar Conference on Signals, Systems and 
Computers, Vol. 2, pp. 1398–1402. doi: 10.1109/acssc.2003.1292216.

Wong A, Mishra A, Bizheva K, Clausi DA, 2010. General Bayesian estimation for speckle noise 
reduction in optical coherence tomography retinal imagery. Opt. Express 18 (8), 8338–8352. doi: 
10.1364/OE.18.008338. [PubMed: 20588679] 

Xie H, Pierce LE, Ulaby FT, 2002. Statistical properties of logarithmically transformed speckle. IEEE 
Trans. Geosci. Remote Sens 40 (3), 721–727.

Yin D, Gu Y, Xue P, 2013. Speckle-constrained variational methods for image restoration in optical 
coherence tomography. J. Opt. Soc. Am. A 30 (5), 878–885. doi: 10.1364/JOSAA.30.000878.

Yu H, Gao J, Li A, 2016. Probability-based non-local means filter for speckle noise suppression in 
optical coherence tomography images. Opt. Lett 41 (5), 994. doi: 10.1364/ol.41.000994. [PubMed: 
26974099] 

Yu Y, Acton ST, 2002. Speckle reducing anisotropic diffusion. IEEE Trans. Image Process 11 (11), 
1260–1270. doi: 10.1109/TIP.2002.804276. [PubMed: 18249696] 

Zaki F, Wang Y, Su H, Yuan X, Liu X, 2017. Noise adaptive wavelet thresholding for speckle noise 
removal in optical coherence tomography. Biomed. Opt. Express 8 (5), 2720–2731. [PubMed: 
28663901] 

Varadarajan et al. Page 25

Neuroimage. Author manuscript; available in PMC 2023 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Zhang J, Lin G, Wu L, Cheng Y, 2016. Speckle filtering of medical ultrasonic images using 
wavelet and guided filter. Ultrasonics 65, 177–193. doi: 10.1016/j.ultras.2015.10.005. [PubMed: 
26489484] 

Zhou Q, Guo J, Ding M, Zhang X, 2020. Guided filtering-based nonlocal means despeckling of 
optical coherence tomography images. Opt. Lett 45 (19), 5600. doi: 10.1364/ol.400926. [PubMed: 
33001958] 

Zysk AM, Nguyen FT, Oldenburg AL, Marks DL, Boppart SA, 2007. Optical coherence tomography: 
a review of clinical development from bench to bedside. J. Biomed. Opt 12 (5), 51403–514021.

Varadarajan et al. Page 26

Neuroimage. Author manuscript; available in PMC 2023 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Example majorants of gamma distribution. We show three tangential majorants of the 

gamma negative log likelihood distribution with true intensity x = 1. The distribution 

parameters (α, β) were set to 1. The minimum of the each majorant is also marked.
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Fig. 2. 
Simulation results comparing denoising performance of the proposed method with 

averaging, filtering methods, data driven NLM methods and other likelihood based 

denoising methods. The ground truth image for this example was corrupted by gamma 

distributed speckle noise with both parameters set to 0.5.
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Fig. 3. 
Performance of Log Normal TV, MM-despeckle TV, Lee-diffusion filter and SAR BM3D 

denoising methods when applied to remove speckle from human hippocampus OCT data at 

2.9 μm isotropic voxel size. MM-despeckle preserves edges better that Lee-diffusion filter 

and reduces speckle better than Log Normal TV and SAR BM3D.
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Fig. 4. 
Intensity bias evaluation: The images show ratio of denoised result with 100-average 

reference image. The red solid line is the median ratio value and green broken line is the 

ideal ratio = 1 line. MM-despeckle demonstrates the least intensity bias. Log Normal TV 

reduces the intensity while Lee-diffusion filtering and SAR BM3D increases the intensity.
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Fig. 5. 
Denoising performance comparison in cerebellum images. We compared MM-despeckle TV, 

Lee-diffusion filter and SAR BM3D methods. ROIs in (a) are in locally smooth GM and 

WM regions, whose CNR was matched across all denoising methods. The same ROIs were 

used to evaluate SC. Labels in (d) were used to evaluate overall GM-WM CNR.
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Fig. 6. 
OCT image of vessels in the visual cortex and the corresponding denoised images for 

MM-despeckle TV, Lee diffusion filter and SAR BM3D methods. GM ROI is zoomed in to 

highlight the smallest vessels with radius of 20–40 μm and to evaluate their preservation post 

denoising.
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Fig. 7. 
Scattering coefficient estimation: We compared the accuracy of the scattering coefficient 

estimate of MM-despeckle QS with Tikhonov regularization, median filtering with 6μm 

and 60 μm filter sizes and Lee-diffusion filter with 60 μm neighborhood size, in a uniform 

phantom with scattering coefficient 6 mm−1 in (a). We plot the mean percent error calculated 

across all phantoms with different scattering coefficients in (b).

Varadarajan et al. Page 33

Neuroimage. Author manuscript; available in PMC 2023 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Varadarajan et al. Page 34

Table 1

Mean and standard deviation values of PSNR, SSIM, CNR and SC calculated for all methods compared 

in the simulation. The mean and standard deviation were calculated across the results of the three gamma 

distributions that were simulated.

Methods PSNR SSIM CNR SC

Noisy Data 12.77 ± 0.83 0.05 ± 0.02 0.09 ± 0.02 1.15 ± 0.31

100 Averages 31.83 ± 2.43 0.21 ± 0.01 0.26 ± 0.01 0.23 ± 0.03

4 Averages 13.6 ± 5.00 0.08 ± 0.05 0.15 ± 0.04 0.61 ± 0.16

MM-despeckle TV 22.1 ± 1.97 0.13 ± 0.03 0.35 ± 0.05 0.33 ± 0.04

SAR BM3D 20.65 ± 4.11 0.13 ± 0.03 0.3 ± 0.03 0.35 ± 0.07

BM3D 20.16 ± 1.5 0.11 ± 0.03 0.32 ± 0.01 0.34 ± 0.05

Bayes-NLM 20.49 ± 2.08 0.1 ± 0.03 0.32 ± 0.02 0.34 ± 0.06

Lee-diffusion filter 21.92 ± 0.98 0.13 ± 0.01 0.32 ± 0.01 0.35 ± 0.03

Median filter 18.59 ± 1.6 0.08 ± 0.03 0.25 ± 0.04 0.48 ± 0.12

Wavelet filter 15.84 ± 0.75 0.05 ± 0.01 0.23 ± 0.05 0.68 ± 0.17

Log Normal TV 21.12 ± 2.17 0.12 ± 0.03 0.35 ± 0.1 0.35 ± 0.13
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Table 2

Quantitative metrics (CNR, SC, EPI and computation time) evaluating denoising performance of MM-

despeckle TV, Lee-diffusion filter and SAR BM3D methods when applied to hippocampus image in Fig. 

3.

Methods CNR SC EPI PSNR Time (s)

Noisy Data 0.82 1.47 - 19.33 -

100-avg Data 2.15 0.7 - - -

MM-despeckle TV 2.8 0.7 0.75 28.13 284.72

SAR BM3D 1.55 0.9 0.53 25.11 452.07

Lee-diffusion filter 2.77 0.71 0.08 27.61 8.53

Log Normal TV 2.92 0.73 0.62 26.76 12.76
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Table 3

Quantitative metrics (SC, CNR and computation time) evaluating denoising performance of MM-despeckle 

TV, Lee-diffusion filter and SAR BM3D methods when applied to cerebellum image in Fig. 5.

Method SC CNR Time (s)

Noisy Data 0.86 0.14 -

MM-despeckle TV 0.12 0.22 32.97

SAR BM3D 0.13 0.13 76.75

Lee-diffusion filter 0.16 0.12 4
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Table 4

Quantitative metrics (CNR and EPI) evaluating denoising performance of MM-despeckle TV, Lee-diffusion 

filter and SAR BM3D methods in Fig. 6. Average speckle contrast of all three methods was matched to 0.32.

ROI Method CNR EPI

Noisy Data 1.39 -

MM-despeckle TV 1.5 0.7

SAR BM3D 1.52 0.34

Lee-diffusion filter 1.53 0.2
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