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Abstract

Osteosarcoma (OS) is the most common primary malignant bone cancer with a high tendency 

for metastasis. Although treatment strategies involving surgery and chemotherapy have improved 

outcomes for patients with OS, the prognosis of recurrent OS is quite unsatisfactory. Primary 

reasons leading to mortality in OS patients are resistance to currently used therapies and 

the subsequent lung metastasis. Immunotherapy, however, has been shown to be a promising 

therapeutic strategy against OS. As research progresses, immunotherapy is gradually becoming 

irreplaceable. This article provides a critical evaluation of several therapeutic strategies for OS 

including immunomodulation, vaccine therapy, and immunologic checkpoint blockade.
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1. Introduction

Osteosarcoma (OS), the most common primary bone tumor, has the highest incidence in 

adolescents and children with the second highest incidence in adults over the age of 60 

[1]. The current clinical treatment involves surgery and chemotherapy that has shown to 

enhance the 5-year survival rate by >70% in patients with OS, however, it failed in OS 

patients with metastasis [2]. Additionally, it is more imperative than ever in those subjects 

with OS who have metastasis to other sites at the time of initial diagnosis [3]. Mainstream 

chemotherapeutic agents used in the treatment of OS include methotrexate, doxorubicin, 
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ifosfamide, and cisplatin and have extensive side effect profiles. Side effects of these 

agents such as ototoxicity, mucositis, leukopenia, thrombocytopenia, and nephrotoxicity 

are problematic and challenging [4–6]. An appropriate command of the immune system 

using therapeutic agents is essential for tumor control and may provide better outcomes for 

patients with OS.

In this article, a critical discussion with the emphasis on immunotherapeutic strategies used 

for treating OS is presented. Strategies include immunomodulation, vaccines, blockage of 

immunologic checkpoints, and targeted therapy. Immunomodulation consists of activating 

components of the innate immune system, resulting in upregulating Natural Killer (NK) 

cells, monocytes, and macrophages, in an attempt to attack tumor cells [7]. Numerous 

clinical trials have been done on immunotherapies determining the efficacy and application 

towards treating OS [8,9]. The poor prognosis in patients with OS is a result of early 

hematogenous spread and resistance to therapy. Additionally, current treatments encounter 

bottlenecks in chemotherapy resistance and tumor immune escape, which are largely 

promoted by the microenvironment and tumor stem cells [10,11]. Novel immunotherapeutic 

strategies consisting of the application of tumor vaccines, genetically modified T cells, 

immune checkpoint inhibitors, and combination therapies can be used to mitigate treatment 

side effects, and improve the quality of life in patients with OS [12].

Thus, the focus of the article is on the immunotherapeutic strategies used in the management 

of OS highlighting the underlying mechanisms of action of immunotherapeutics with a view 

towards the future where cultivating the strength of these treatments could potentially lead 

towards a cure for OS.

2. Interaction of Tumor Cells with Immune cells in the Tumor 

Microenvironment

The immune system consists of an intricate organization of cells that protect and fight 

against viruses and bacteria. The innate immune system consists of macrophages, NK cells, 

Dendritic Cells (DCs), neutrophils, eosinophils, and basophils. These cells are the primary 

defense against foreign pathogens. Mast cells and macrophages start the inflammatory 

response through various cytokines which interact with other immune cells. Antigen 

presenting cells, such as DCs, present foreign antigens to be recognized by adaptive 

immune cells. These adaptive immune cells consist of CD4+ T helper lymphocytes, B 

lymphocytes, and antigen-specific T lymphocytes. The adaptive and innate immune systems 

are interconnected and thus work together to eliminate foreign pathogens and remove 

damaged cells [13,14]. Normally, the adaptive and innate immune systems can detect tumor 

cells and destroy them through NK cells, secretion of interferon gamma (IFN-γ), and 

activating DCs. However, some cancerous cells evade this response and survive by various 

mechanisms like downregulating Major Histocompatibility Complex (MHC), recruiting 

regulatory T cells and myeloid suppressor cells, changing the tumor microenvironment, 

and upregulating inhibitory ligands and receptors on tumor cells and T cells, respectively 

[15,16] (Figure 1).
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3. Macrophages in the Tumor Microenvironment and Novel Therapies

The immune microenvironment in osteosarcoma consists of both adaptive and innate 

immune cells, specifically T lymphocytes and macrophages [17]. These immune cells 

can be found in the adjacent lymphoid structures or in the core of the tumor [18]. OS 

cells are able to modulate both immune systems and therefore induce an immune-tolerant 

state which is conducive of metastasizing tumor cells [19]. OS patients that have higher 

immune scores with increased immune cells infiltrating the microenvironment have been 

documented to have a better prognosis than OS patients with lower immune scores 

[20]. Hence, the cross talk with tumor cells and the tumor immune microenvironment 

may be indispensable to further study and research for developing immunotherapies. 

Furthermore, macrophages are at a higher proportion of immune cells when compared 

to other immune cells in the tumor microenvironment of OS [21]. This reinforces the 

high plasticity of macrophages especially when presenting with inverse phenotypes and 

activating signals. For example, the pro-inflammatory phenotype of macrophages M1 and 

the anti-inflammatory phenotype M2, both serve different purposes depending on the 

immune response. When the immune system triggers tumor suppression, M1 macrophages 

serve as the major defense cells and cytokines such as IL-12, IL-6, and IL-1 are secreted 

[22–24]. In contrast, immune suppression is associated with the M2 macrophage response 

leading to tumor metastasis. Research has revealed that a higher proportion of tumor 

associated macrophages correlated with worse prognosis in most solid cancers and the M2 

related cytokines showed increased events of lung metastasis in OS [25–27]. Interestingly, 

shifting the macrophage response from the M2 to M1 phenotype decreased incidence 

of lung metastasis in OS, further strengthening the role macrophages play in the tumor 

microenvironment [28]. However, controversy remains whether macrophages are pro-tumor 

or anti-tumor in the OS microenvironment. Previous research showed increased infiltration 

of macrophage in OS tumor cells, decreased rates of metastasis, and increased overall 

survival outcome, whereas M2 macrophage infiltration was associated with a poor prognosis 

[29,30]. Therefore, recent therapies have attempted to influence macrophage response 

within the tumor microenvironment. For example, All-Trans Retinoic Acid (ATRA) was 

proven to reduce pulmonary metastasis in OS through potentially indirectly deviating 

macrophages from M2 polarization [31,32]. Moreover, naturally occurring substances such 

as dihydroxycoumarins were also studied to induce macrophage polarization from M2 to 

M1 phenotype in OS treatments [33]. Dihydroxycoumadins inhibit the production of growth 

factors like TGF-β and cytokines such as IL-10. They also reduce the phosphorylation 

of STAT3 during M2 polarization, interfering with its activation [33,34]. Zoledronic acid, 

another potential therapeutic for OS, has been shown to interfere with M2 polarization 

causing macrophages in the tumor microenvironment to polarize back to the M1 phenotypes 

[35]. In a randomized study using zoledronate, however, the treatment using this agent did 

not result in improved outcomes in patients with OS [36]. Similarly, another study revealed 

zoledronate may induce bipotent macrophages by deleteriously polarizing to CD68+/

CD163+ [37]. CD163 staining is associated with higher cMaf expression (a transcription 

factor associated with M2 macrophage polarization) while CD68 is stated to be an M1-

polarized macrophage marker [38]. Therefore, the therapeutic potential of zoledronate still 

needs future research to elucidate whether it has a positive or negative effect on OS. 
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Another novel immunomodulatory drug that increases inflammatory cytokines and triggers 

macrophage polarization is Mifamurtide [39]. Studies have demonstrated the potential of 

mifamurtide as an anti-tumor agent not only by restricting M2 initiation via decreased Akt 

phosphorylation and decreasing STAT3 levels, but also by shifting macrophage polarization 

to the intermediate phenotype M1-M2 [40]. Macrophage polarization has been a promising 

target for novel therapies in modulating the progression of OS.

4. Immune Checkpoint Inhibitors

Recent research has focused on immune checkpoint inhibitors and their association with 

the inhibition of tumor progression. Immune checkpoints enable immune tolerance against 

cancer in addition to preventing autoimmune disorders. Programmed death receptor-1 

(PD-1) and CTLA-4 are the main inhibitory receptors on T cells and have been major 

candidates as targets for novel therapies against OS [41]. Normally, activated T cells express 

PD-1 on the surface and suppress the immune response through PD-L1, the ligand for 

PD-1, that is usually expressed on tumor tissues. Studies showed that anti-PD-1 therapy 

redirecting M2 macrophages to M1 resulted in regression of lung metastasis in a murine 

model of OS [42]. The efficacy of nivolumab in a murine model of OS was investigated 

and revealed nivolumab treated mice had significantly fewer rates of metastatic lung lesions, 

however, primary tumor volume and growth were not affected [43]. Another study revealed 

high levels of PD-L1 in OS patients and expression of PD-L1 was positively correlated 

with Tumor-Infiltrating Lymphocytes (TILs). The overall survival time of patients with 

low PD-L1 expression was 89 months and those with high levels of PD-L1 had a median 

survival duration of 28 months [44]. Hingorani et al. [45] revealed increased expression of 

immunosuppressive monocytes and increased CTLA-4 in T cells in patients with pediatric 

sarcoma. High levels of PD-1 expression was also noted on peripheral CD8+ and CD4+ 

T cells in OS patients and CD4+ T cells in patients with metastasis had significantly 

higher expression levels of PD-1 [46]. Moreover, combination therapy for OS has shown 

promising results using anti-CTLA-4 and anti-PD L1 antibodies which showed improved 

overall survival in a murine model with OS, whereas no benefits were noted when treated 

with anti-CTLA-4 antibody alone [47]. Although the therapeutic effects of combination 

immune checkpoint inhibitors have not been confirmed in clinical trials, there have been 

several reports that immunotherapies with nivolumab plus ipilimumab showed considerable 

tumor remission in metastatic OS patients [48,49]. Immunotherapies, however, do not 

come without adverse effects. Immune check point inhibitors like anti-PD-1 inhibitors are 

antigen agnostic which results in severe immune hyperactivation. This cytokine storm can 

result in encephalopathy, coagulation disorders, cerebrovascular events, and cardiovascular 

related events. The toxicities from these therapies can be neutralized by using steroids but 

impairs the effectiveness of the immunotherapies as a result. Studies showed concomitant 

medication of PD-1/PD-L1 immune check point therapies with prednisone can worsen the 

clinical outcomes in patients with OS [50,51]. Tocilizumab, an antibody that targets IL-6, 

was shown to successfully reduce adverse reactions from immunotherapies in a wide variety 

of models [52]. This reinforces the fact that antagonists of cytokine receptors in addition to 

immune check point inhibitor therapy can be a therapeutic option to help better manage OS 

in the future.
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5. Adoptive T-Cell Therapy

Active and adoptive immunotherapies are used in the treatment of OS. Active 

immunotherapies using DCs, pulsed vaccines, and cytokines influence immune responses 

towards tumor cells. Adoptive immunotherapy involves administering ex vivo-expanded 

tumor specific cytotoxic immune cells [53]. This process includes harvesting autologous 

immune cells, expanding them using ex vivo cultures with modified T cell receptors or 

Chimeric Antigen Receptors (CAR) for adoptive therapy [54,55].

Tumor Associated Antigens (TAA) are recognized by engineered CAR T cells. The CAR 

includes an ectodomain consisting of a single chain variable fragment of an antibody which 

is able to identify TAAs. The endodomain is derived from CD3 zeta chain involved in 

intracellular signaling. The structure as a whole allows T cells to identify TAAs and result 

in tumor cytotoxicity in an MHC independent pathway [56]. HER2 has been shown to be 

expressed by OS cells in 40-60% of primary OS samples and the safety of HER2 CAR-T 

cells have been researched without dose limiting toxic reactions [57,58]. Interestingly, even 

with low levels of HER2 expression, CAR-T cells have been shown to effectively target 

HER2 which reinforces the potential CAR-Ts have to subvert cancerous cells. A recent 

study showed metastatic tumors that were not sensitive to chemotherapy were effectively 

depleted by CAR-Ts engineered on IL-11 receptor alpha chain and HER2 in OS murine 

models [57,59]. Additionally, CAR-T cells have been shown to inhibit Insulin-Like Growth 

Factor 1 (IGF-1) and receptor tyrosine and prolong the survival in OS mouse models [60]. 

The limitations using CAR-T include its side effects such as encephalopathies, end organ 

damage, and systemic inflammatory syndromes [61,62]. Future studies on CAR-T cell 

therapy will require addressing the drawbacks to this therapy and limiting the side effects in 

patients with OS.

Superior to CARs in targeting efficacy is the T Cell Receptors (TCRs) because they are able 

to interact with both surface antigenic peptides presented by HLA and tumors intracellularly 

[63]. This feature of TCRs allows for more advanced applications in solid tumors. Germline 

antigens from cancer cells are expressed in a reduced manner in tissues from different 

histologic origins. The germ cells lack MHC expression and are therefore protected from 

TCR T cell immunotherapy [64]. A specific cancer germline antigen, NY-ESO-1, is found in 

31% of OS tumors and TCR therapy targeting this antigen is currently under investigation. 

Recent research revealed that the engineered CD8+ T cells can encode MHC-I restricted 

TCRs for therapy. Lu et al. [65] used CD4+ T cells transduced with MHC-II-restricted TCRs 

in patients with OS which resulted in objective partial responses in patients with metastatic 

lesions of the lung.

6. Cancer Vaccine Therapies

Cancer vaccines have been studied and implemented to have anti-tumor effects by 

stimulating the immune response in patients. Peptides, DNA, RNA, and tumor antigens 

have been presented on cells to initiate the immune system [66]. Marcove et al. [67] 

initiated the use of autologous tumor lysates as vaccine therapies for cancer and resulted 

in increased survival rates in OS patients. Cancer vaccines have been classified into 
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non-cell based, autologous, and tumor cell vaccines. Innate immune cells such as DCs, 

T cells, and macrophages are exploited using the immune cell vaccines. However, there 

are limitations to this mode of therapy mainly due to the immunosuppressive molecules 

within the tumor environment. The most widely used vaccination approach is through 

using DCs. These professional antigen presenting cells endocytose and present to naïve 

T cells that ultimately differentiate into tumor killing cells [68]. DC vaccines are able to 

reduce immunosuppression caused by cancerous cells and the latest FDA approved drug, 

ilixadencel, has shown great success [69]. The process of engineering DC vaccines first 

involves isolating peripheral mononuclear cells that are then pulsed with tumor antigen ex 

vivo. These cells are then injected back into the patient (Figure 2) [68]. DC vaccines can 

be classified based on the type of pulsed antigens for example, DCs can be co-cultured 

with tumor specific proteins, transfected with DNA coding for tumor antigens, or tumor 

lysates [69]. Studies have shown promising clinical responses with DCs pulsed with peptides 

from specific cancer germline antigens against OS [70]. Furthermore, combinational therapy 

using DCs and drugs targeting TGF-β suppresses the rates of metastasis through remodeling 

the tumor microenvironment [71]. CD14+ monocytes and CD34+ have been the main source 

of DCs in clinical trials in humans, however, Zhou et al. [72] affirmed that conventional type 

1 dendritic cells can elicit tumor-specific T cell cytotoxicity in a murine OS model. This 

finding advances the horizon for using and developing DC vaccines for OS.

In addition to DCs, macrophages and γδ T cells have been used in tumor vaccines in 

the form of Chimeric Antigen Receptor Macrophages (CAR-Ms) and peptide-pulsed γδ 
T cells. CD8+ T cells are primed by the γδ T cells [73]. The γδ T cells have been 

reported to be superior to DC vaccines due to its HLA-independent manner in activating 

cytotoxic activity towards cancer cells [68]. Research revealed that γδ T cells can attack 

OS cells despite the limited susceptibility of cancer cells towards γδ T cell toxicity [74]. 

Rapamycin, an mTOR inhibitor can magnify the γδ T cell response by increasing tumor 

penetration [75]. Additionally, researchers recently manufactured novel CAR-Ms in order 

to phagocytose tumor cells, promote a pro-inflammatory tumor microenvironment through 

M2 to M1 polarization, and presenting antigens to naïve T cells subsequently influencing 

them to turn into cytotoxic T cells. An engineered anti-HER2 CAR-M induced a significant 

decrease in tumor burden and increased survival in murine models with metastatic lung 

cancer [76]. Polymer nanocarriers were fabricated in order to deliver genes encoding 

interferon-γ and CAR to macrophages in vivo and was able to code tumor specific CAR 

expressing macrophages in situ [77]. Collectively, these studies have potential to further our 

understanding of using γδ T cell and CAR- M vaccines against OS.

Autologous tumor vaccines are beneficial in that they bypass the culture ex vivo process 

and DC isolation and instead directly influence the DC response in vivo. As tumor cells 

are isolated from patients, they are expanded and irradiated before being re-infused [78]. A 

recent study revealed a combined autologous tumor vaccine with IL-2 together in canines 

with OS and resulted in prolonged survival compared to those that received amputation [79]. 

The safety and efficacy of single or combined autologous tumor cell vaccines has yet to 

be elucidated in human subjects. Viral and peptide vaccines have similar mechanisms of 

action by presenting the antigen to DCs in vivo. The tumor associated antigen Papilloma 

Binding Factor (PBF) derived peptide vaccine has long been researched for HLA-A2/A24+ 
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OS patients. PBF is a transcription factor whose levels have been shown to reach up to 92% 

in OS patients. Peptides from PBF A24.2 are shown to activate cytotoxic T cells in OS 

patients positive with HLA-A24, and therefore can trigger the immune response to eliminate 

cancer cells [80]. A study was performed in creating a peptide tetramer targeting LSA and 

QVT peptides which showed toxicity against HLA-A11+PBF+ cells from OS [81]. Other 

vaccines such as those based on HER2 have been underappreciated by benefits seen in OS 

canine models. The recombinant listeria vaccine that targeted HER2 showed reduced levels 

of metastasis and improved prognosis when compared to the control group [82].

7. Cytokines

Studies revealed that cytokines can influence the immune response by interacting with 

immune therapeutic cells and other inflammatory cytokines such as IL-8, TNF-α which 

are correlated with the progression of OS [83]. Potentially the cytokine-based approaches 

have been the most widely used in immunotherapeutics and have been used for cancer 

therapy for over three decades. Their ability to activate T cells and modulate antigen 

presentation makes it a viable therapy option [53]. Macrophages release cytokines which 

then engage in then engage in the inflammatory response during cancerous states. IL-12, an 

immune-positive regulating cytokine can promote B and T cell differentiation, proliferation, 

and antibody formation. It has an integral role in reducing gastrointestinal bleeding caused 

by chemotherapy and improving patient tolerance to cancer radiotherapy. A study revealed 

that tumor cells from high grade OS patients were lysed by IL-15 induced NK cells [84]. 

In primary metastatic OS patients who were administered IL-2, a survival rate of more than 

40% was documented at 3 years [85]. Limitations, however, exist with using cytokines due 

to their toxic side effect profile in patients with OS from administering a sufficient dose to 

activate the immune system [86].

8. Cytokines

Treatments for OS are transitioning from the standard therapies of chemotherapy 

and surgery towards more novel approaches such as immunotherapy. With improved 

understanding of the immune response to OS, many patients will benefit from 

immunotherapies for years to come. However, to date, new immunotherapeutic drugs 

have been limited in the use for OS. The main obstacle being limited T cell infiltration 

and immune hyperresponsiveness. Additionally, the tumor microenvironment makes these 

therapies difficult to penetrate into and kill cancer cells. Generally, immunotherapy shows 

promising data for treating OS, however further research is needed to determine more 

precise curative effects.
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Figure 1: 
Interaction of Tumor cells with various immune cells. Tumor cells release tumor antigen 

which is taken up by the Dendritic Cells (DCs) to present to CD4+ T cells followed 

by the activation of CD8+ T cells. NK cells, B cells, T-Regulatory Cells (TREG) and 

Myeloid Suppressor Cells (MDSC) in the tumor microenvironment regulate the activation 

and function of DCs, CD8+ T cells and tumor cell. Expression of regulatory T cells and 

immune checkpoint proteins allow the tumor to evade the immune response.
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Figure 2: 
Process of engineering ex vivo DC vaccines. Progenitor cells are derived from patients and 

loaded with tumor antigens which subsequently active cytotoxic T cells to kill cancer cells.
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