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Abstract 

The usage of antiretroviral treatment (ART) has considerably decreased the morbidity and mortality related to HIV-1 
(human immunodeficiency virus type 1) infection. However, ART is ineffective in eradicating the virus from the 
persistent cell reservoirs (e.g., microglia), noticeably hindering the cure for HIV-1. Microglia participate in the progres-
sion of neuroinflammation, brain aging, and HIV-1-associated neurocognitive disorder (HAND). Some methods have 
currently been studied as fundamental strategies targeting microglia. The purpose of this study was to comprehend 
microglia biology and its functions in HIV-1 infection, as well as to look into potential therapeutic approaches target-
ing microglia.
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Introduction
Microglia are important for brain health because they 
engage in a variety of brain functions and help to main-
tain the physiological structure of the brain [1]. Microglia 
are cells in the brain’s innate immune system that may 
generate immune responses [2, 3], repair tissue dam-
age, and contribute to the regeneration and reconstruc-
tion of the brain’s structure and function. Microglia are 
known as central nervous system (CNS) macrophages, 
which are one of the primary cell reservoirs of hidden 
HIV-1 [7]. However, microglia may become uncontrolled 
or imbalanced in other situations, causing brain injury or 
pathological phenomena (e.g., neuroinflammation) and 

inducing or exacerbating neurodegenerative lesions [4, 
5].

Even though effective antiretroviral therapy (ART) has 
significantly lowered human immunodeficiency virus 
type 1 (HIV-1) infection and mortality rates, no definitive 
HIV-1 treatment has been established. The major hurdle 
to HIV-1 eradication is the presence of latent HIV-1 in 
cells and anatomical reservoirs [6]. The cells mentioned 
above are considered to contribute to the occurrence of 
drug tolerance and reseed peripheral tissue. In addition, 
HIV-1-infected microglia induce neuroinflammation, 
accelerate brain aging, and promote HIV-1-associated 
neurocognitive disorder (HAND). Accordingly, eradicat-
ing the infected cells from the cerebrum is critical for 
achieving virus eradication. Therefore, learning more 
about microglia biology, their involvement in HIV-1 
infection, and potential treatments will help prevent 
HAND and cure HIV-1.

The biology of microglia
Microglia are CNS immunocytes discovered by out-
standing scientists in the nineteenth and twentieth cen-
turies [8]. At an early developmental stage in the yolk sac, 
microglia are produced from the monocyte/macrophage 
lineage rather than the neural lineage (e.g., neurons, 
astroglia, and oligodendroglia) [9, 10]. Microglia pre-
cursor cells penetrate the developing brain and help to 
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maintain brain development, homeostasis, structure, and 
functions [11–14]. Numerous macrophage populations 
within and surrounding the brain should be addressed in 
addition to the parenchymal microglia in the brain tissue 
(e.g., meningeal, perivascular, and choroid plexus mac-
rophages) [15].

In recent years, evidence has accumulated to support 
the hypothesis that microglia are immunoregulatory 
cells that constantly exert critical impacts on the CNS. 
They help to maintain normal cerebrum homeostasis 
while also generating potent reactions in the presence of 
inflammation stimuli, damage, hypoxic-ischemic status, 
and other detrimental status affecting cerebral normal 
functions. Stimulated microglial cells take on an amoe-
boid form and replicate and migrate to the site of injury 
to defend the CNS [16]. Nevertheless, over-activation 
and/or persistent stimulation of microglial cells with 
excessive inflammation mediators may result in neuro-
toxicity [17]. Thereby, microglia can contribute to neuro-
cognitive degeneration by increasing pro-inflammation 
chemotactic factors, cell factors, and neurotoxins, which 
can affect stellate cells and nerve cells and induce neuron 
injury [18].

Roles in HIV‑1 infection
Susceptibility to HIV‑1
The presence of HIV-1 and simian immunodeficiency 
(SIV) virus infection increases the percentage of activated 
monocytes as well as monocyte/macrophage turnover in 
tissue [19]. According to Rappaport et  al., migration of 
the CD14+CD16+monocytes subpopulation, which is 
highly susceptible to HIV-1 infection, through the BBB 
into the CNS is essential in the pathogenesis of HAND 
[20].

Not only does HIV-1 require the presence of CD4 
to enter CNS cells, but it also requires the presence of 
chemokine receptor type 4 (CXCR4) or CC-chemokine 
receptor (CCR) 5 co-receptors and CCR3 receptors to 
generate valid infections. It is worth noting that CCR5 
is strongly linked to viral invasion and the progression 
of neurological diseases. CCR3 and CCR5 expression is 
detected on the surface of microglial cells, making them 
more susceptible to HIV-1 infection [21].

HIV-1 has been shown to infiltrate macrophages and 
microglia through CD4 mediation. Microglia infection 
is thought to be produced by infected mononuclear cell 
transmigration, which appears early in infections. In 
recent years, a subgroup of infected mononuclear cells, 
HIV+, CD14+, and CD16+ mononuclear cells, has been 
discovered to prefer penetrating the blood–brain barrier 
(BBB) [22]. The cells described above express junction 
proteins [e.g., activated leukocyte cell adhesion molecule 
(ALCAM), junctional adhesion molecule-A (JAM-A), 

and CCR2] that help them penetrate the BBB. However, 
those infected mononuclear cells might infect microglia.

On the other hand, Microglia may ingest infected 
CD4+ T cells that migrate to the cerebrum [23]. Although 
not demonstrated, this later causal connection may be 
more likely to promote viral proliferation than free virus 
exposure [24]. Regardless of the infection mechanism, 
cerebral microglia appear to be susceptible to HIV-1 
infection. Infection happens in microglia even with the 
high expression level of cell restrict factor SAMHD1 
[Sterile alpha motif (SAM) domain and histidine–aspar-
tate (HD) domain 1] [25], which is probably attributed 
to its phosphorylation by cyclin-dependent kinase 1 
(CDK1), that occurs in cells cycling between G0 and G1 
status [26].

Microglia have been discovered to be susceptible to 
HIV-1 infection both in  vitro and in  vivo [27]. Cosenza 
et al. and Churchill et al. identified HIV-1 proteins, DNA, 
and RNA in microglia from autopsy tissues from HIV-1 
patients, though it should be noted that the patients in 
question died from severe HAND [28, 29]. According to 
a new study, microglial cells were subjected in patients 
with suppressed virus levels who died of causes unre-
lated to HIV-1 [30]. The study employed a cohort of 16 
patients on ART with confirmed long-term HIV-1 con-
trol from the National Neuro AIDS Tissue Consortium 
(NTTC). The researchers employed the high-specificity 
technique to identify and measure DNA and RNA of 
HIV-1 at the cell level. As revealed from the outcomes, 
perivascular macrophages and microglial cells had HIV-1 
DNA, other than stellate cells. When HIV-1 RNA was 
not detected in cerebrospinal fluid (CSF) or blood, the 
researchers observed HIV-1 RNA in the described cells 
in 6 of 16 individuals, showing that viruses might be pro-
duced in the CNS.

Besides, as previous research has shown, microglia are 
prone to infections in  vitro. Certain in  vitro models of 
infection-prone human microglial cells have been devel-
oped [31–35]. Moreover, a few latency models based on 
the aforementioned models have been created and have 
proven to be useful tools for investigating the infection 
process and molecule-level causal connections under-
lying the prevalence and treatment of latent HIV-1 in 
microglial cells [21, 36]. It has been proven that viruses 
were discovered in the CSF of subjects on effective ART 
with non-detectable plasmatic HIV-1, implying that 
HIV-1 may also be generated in the cerebrum [37, 38].

Main HIV‑1 reservoir in the brain
The following are the standards for cellular reservoirs: (i) 
the identification of integrated DNA of HIV-1 in the host 
genome of long-life cells, (ii) the identification of causal 
links allowing the viruses to persistently exist in cellular 
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reservoirs, including the causal links capable of establish-
ing and maintaining a hidden infection, and (iii) forming 
of duplication-competent particulates after the stimula-
tion of reservoirs [39]. Additionally, two criteria for a real 
reservoir have been presented in microglia, such as the 
detection of integrated HIV-1 DNA within long-life cells 
and the identification of causal links allowing the viruses 
to remain in cellular reservoirs [40]. Furthermore, due to 
ethical and technological obstacles, it is not possible to 
investigate whether microglia are capable of producing 
replication-competent viruses in humans.

Meanwhile, using immunohistochemistry and the new, 
highly sensitive in situ hybridization methods RNAscope 
and DNAscope, researchers detected HIV-1 in cerebral 
macrophages and microglia rather than astrocytes [30]. 
Additionally, the infection is believed to be unproductive. 
As a result, they may not serve as real HIV-1 reservoirs 
[41]. In contrast, it has been revealed that macrophages 
and microglia are susceptible to HIV-1 infection and 
assist a valid infection [27]. As aforesaid, the valid infec-
tion in microglia within the CNS is correlated with 
HAND in humans and animals (e.g., the macaques) [7]. 
For this reason, macrophages and microglia can be con-
sidered true reservoirs in the cerebrum.

Microglia are generated in the yolk sac from erythro-
myeloid progenitors and penetrate the developing CNS 
during the embryogenetic process [42]. On that basis, 
they are the predominant resident cells in the cerebrum 
that can function as cerebral macrophages. Due to their 
long half-life of years, they have a stable population [43]. 
In contrast to macrophages, they are capable of cellu-
lar division, allowing HIV-1 to survive in the cerebrum 
[44]. Moreover, according to a recent study, microglia are 
extremely sensitive to the HIV-1 virus [45]. Generally, the 
microglia may form one of the primary HIV-1 reservoirs 
in the cerebrum.

Promotion of neuroinflammation
Microglia are long-lived cells that induce immunological 
responses, allowing peripheral immunocytes to penetrate 
the CNS and maintaining CNS homeostasis [46]. They 
may be the critical cells to initiate and sustain positive 
feedback loops of persistent inflammatory events within 
the CNS.

When microglial cells are activated, they undergo 
functional, morphological, and phenotypic changes, and 
in  vivo positron emission tomography (PET) image for-
mation has established the role of microglia stimulation 
in the HIV-1 infection process [47, 48]. Once microglia 
are stimulated, genetic expression variations induce 
facilitated growth and variations in cell signaling (e.g., 
the production and release of pro-inflammation cell fac-
tors, chemotactic factors, and effector molecules) [49, 

50]. The release of the above-mentioned molecules [e.g., 
matrix metalloproteinases (MMPs) and ROS) directly 
damages nerve cells, resulting in neuronal function loss 
and neurotoxic effects [51, 52], which eventually facili-
tates microglia stimulation. Furthermore, virally induced 
chemokine secretion [e.g., CCL2 (C–C motif chemokine 
ligand 2)] promotes the dissemination of chronic inflam-
matory events [53–56]. CCL2 stimulates microglial cells, 
regulates their migratory activities, and facilitates self-
proliferative activities [57] while recruiting peripheral 
macrophages and T cells to the CNS. More immune-
mediated damage, microglia stimulation, and the recruit-
ment of immune cells are induced by these cells.

As revealed from recent findings, HIV-1 infection is 
capable of creating inflammation surroundings induced 
by virus proteins [transactivator of transcription (Tat) 
and gp (glycoprotein) 120] and pro-inflammation cell 
factors [tumor necrosis factor-alpha (TNF-α), interleu-
kin (IL)-8, IL-6, and IL-1β] [58, 59]. The HIV-1 Tat pro-
tein can stimulate the NLR and upregulate caspase-1 
and IL-1β levels in microglial cells, resulting in the pro-
duction of IL-6 and TNF-α, and the intensification of 
pro-inflammatory response [60]. Microarray analyses 
were conducted by adopting cerebrum specimens from 
HIVE sufferers, HIV/noE, and HIV-controls. Significant 
microglial genes (e.g., immunity activation and func-
tions, kinases, phosphatases, and pro-/anti-apoptosis and 
neurotrophy factors) were found to undergo remarkable 
changes during the process of HIV-1 infections, dem-
onstrating that microglial functions are damaged and 
exhibit a proinflammation trend [50]. Nevertheless, the 
specific mechanisms of HIV-1-associated chronic neu-
roinflammation should be studied further because they 
may be influenced by specific infectious pathogens as 
well as the subsequent immune response.

Acceleration of brain aging
Inflammatory microglia are likely to trigger or speed up 
cerebral aging via the interference with the physiology 
repairment and restoration process [61]. HIV-1, in par-
ticular, infects microglia, causing severe neuroinflamma-
tion and neuronal death if left untreated, culminating in 
brain structure and function loss [62–64].

First, after being infected with HIV-1, microglia’s abil-
ity to fight infection, and also their ability to repair and 
regenerate, may be impaired [65]. Secondly, microglia 
may generate excessive neurotoxic factors such as oxy-
gen free radicals (ROS) (e.g., arachidonic acid, quino-
linic acid, and nitric oxide) [66]. It has been found that 
ROS is associated with neuronal cell death, neuroin-
flammation, and corresponding neurodegeneration, all 
of which accelerate brain aging [67–69]. For this reason, 
HIV-1 infection of the nervous system can accelerate 
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brain aging by triggering neurotoxic immune responses 
in microglia. Thirdly, infection-related cytokines may 
become uncontrolled, and inflammatory cytokines will 
take over, causing pathological damage, inhibiting regen-
eration and repair, and interfering with brain physiologi-
cal functions. The relevant destructive factors consist of 
IL-17A [70–74] and TNF-α [75]. Specifically, IL-17A is 
a marker of a key T helper cell population implicated in 
the pathogenesis of autoimmune and degenerative disor-
ders. The role of IL-17A has been shown to be varied, as 
it not only contributes to pathogenic inflammation but 
also supports innate-like acute immune responses, and 
it is widely accepted that IL-17A causes diseases by acti-
vating glial cells. During inflammatory conditions, BBB 
endothelial cells express tumor necrosis factor superfam-
ily (TNFSF) receptors and interact with TNFSF ligands 
in soluble form as well as on invading immune cells. 
TNFSF receptors and ligands are also found on CNS-
invading effector immune cells as well as CNS-resident 
cells. Hence, this receptor-ligand interaction has a sig-
nificant influence on the outcome of neuroinflammatory 
disease. Inflammatory cytokines may be generated locally 
in the brain, while HIV-1 infection may cause peripheral 
inflammatory cytokine to be overproduced, i.e., cytokine 
storm, and released into the bloodstream, affecting 
the BBB and the entire brain [76]. Fourthly, HIV-1 may 
remain in the brain for a period of time, resulting in a 
persistent low-grade inflammatory response. Taber et al. 
discovered that HIV-1 infection increased microglial 
activation in the hippocampus and neocortex through 
an analysis of autopsy reports from chronically HIV-
1-infected patients, demonstrating that HIV-1-associ-
ated chronic neuroinflammatory responses may result in 
decreased neurons as well as neuronal cell death [77]. On 
the other hand, chronic HIV-1 infection causes neuroin-
flammation as well as microglial activation [78]. There is 
also mounting evidence supporting the production and 
deposition of β-amyloid-like peptides, which are compa-
rable to those found in Alzheimer’s disease [79, 80]. All 
of the conditions mentioned above can have a long-term 
impact on microglial function, resulting in chronic low-
grade inflammation or dysfunctional microglia, which 
reduces brain regeneration and remodeling.

Microglia are also affected by the elevated systemic 
inflammatory immunological state, which results in 
decreased physiological neuroregeneration and remode-
ling [81, 82]. Inflammation is undoubtedly enhanced and 
exacerbated by recurring or chronic HIV-1 infections 
[83]. An elevated and persistent inflammatory state in the 
brain may cause neurodegeneration owing to enhanced 
neuronal cell death and reduced neurogenesis, impaired 
remodeling, and permanent neural network injuries, thus 
worsening or hastening brain aging [61]. Moreover, since 

the information on the cellular and molecular pathways 
through which microglia accelerate brain aging is limited, 
further study is needed in the future.

Contribution to HAND
Microglia, one of the resident members of the mononu-
clear phagocytic family in the CNS, are evenly distributed 
in the CNS parenchyma and are crucial in maintaining 
the homeostasis and health of the CNS, anti-inflamma-
tory and resisting pathogen invasion. Hence, one of the 
pathways leading to HAND is the reduction of microglia 
caused by HIV-1 infection and injury [84]. In addition, 
viral proteins, cytokines, and chemokines produced after 
microglia infection are the main factors that indirectly 
cause neuronal apoptosis. However, the etiopathogen-
esis of HAND remains elusive, whereas it is attributed 
to multiple factors (i.e., ART neurotoxic effects, HIV-1 
duplication within the CNS from infected cellular reser-
voirs, CNS inflammatory events, Ca aberrant regulation, 
mitochondrion function disorder, drug abuse, as well as 
autophagy) [78].

HIV-1-related proteins include the structural protein 
gp120, as well as regulatory proteins such as Tat, viral 
protein R (Vpr), and negative regulatory factor (Nef). 
gp120 mainly comes from the secretion of infected 
microglia and virion shedding and can induce the pro-
duction of TNF-α, IL-1β, IL-6, macrophage colony-
stimulating factor (GM-CSF), ROS, etc., thus directly or 
indirectly causing neuronal apoptosis [61]. As a regula-
tory protein of HIV-1, Tat can promote the replication 
initiation and elongation of HIV-1 DNA. Meanwhile, 
Tat, as a transactivator, can control gene expression 
in infected and non-infected cells. In HAND, Tat has 
cytotoxic and pro-inflammatory effects, and HIV-1 Tat 
protein can enhance microglial K+ efflux, Ca2+ influx, 
upregulate cytokine and chemokine levels, etc.[60] Vpr 
has been demonstrated to induce neuronal apoptosis, cell 
cycle arrest, transcriptional activation of viral promoters, 
nuclear translocation of pre-integrated complexes, and 
apoptosis in infected cells during the G2 phase [85].

Besides, microglia can express HIV-1 co-receptors 
such as CXCR4 and CCR5, both of which are members 
of the G protein-coupled receptor family, and complete 
signal transduction via the G protein signaling system. 
After the receptors are activated by HIV-1 or related 
proteins, a large amount of intracellular Ca2+ influx 
induces the formation of intracellular free radicals, 
damages cells, and causes apoptosis. Activated micro-
glia can also secrete pro-inflammatory factors, includ-
ing TNF-α, IL-1β, monocyte chemoattractant protein-1 
(MCP-1), chemokines, and NO [86]. These inflammatory 
substances can up-regulate p38 MAP kinase, phospho-
rylate apoptosis-related transcription factors, and induce 
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microglial apoptosis [87]. Additionally, positive feedback 
can activate more microglia and release a series of neuro-
toxic substances and more cytokines, resulting in a wider 
range of neuronal damage.

Furthermore, microglia can release excitatory neuro-
toxins such as quinolinic acid, glutamate, L-cysteine, and 
arachidonic acid. Excessive glutamate causes over-acti-
vation of glutamate receptors on nerve cell membranes, 
mainly N-methyl D-aspartate (NMDA), Ca2+ influx, the 
release of oxidative stress substances and toxic lipids 
such as 4-hydroxynonenal and ceramides, and activation 
of intracellular apoptotic pathways, thereby causing neu-
ronal apoptosis [88]. The release of neurotoxins can stim-
ulate astrocytes and microglia to release excitatory amino 
acids, resulting in positive feedback.

Although most HIV-1 infected individuals are primar-
ily asymptomatic, the virus can co-exist with immunity 
activation of the CNS/cerebrospinal fluid [89–91]. Latent 
or active HIV-1 can cause neurocognitive impairment. 
HAND is classified into three categories according to the 
degree of the dysfunction: 1) asymptomatic neurocogni-
tive impairment (ANI), 2) mild neurocognitive impair-
ment (MND), and 3) HIV-associated dementia (HAD). 
HAD is the most severe variant of HAND, characterized 
by severe dementia shown by a lack of concentration, 
apparent motor faults, and unstable behavior changes 
[88]. HAND remains an unresolved multifactor aggravat-
ing HIV-1 disease. According to recent research, except 
for inhibiting HIV-1 duplication within the CNS, no 
clinical trials of HAND treatment might be effective [92, 
93]. Nevertheless, certain studies reported a decrease in 
cognition damage as impacted by ART, i.e., sufferers with 
a regulated virus load who discontinued antiretroviral 
therapies have reported improved cognitive functions 
and mitigated neuronal damage [93, 94].

In summary, excessive activation and/or persistent 
stimulation of microglial cells, as well as overproduction 
of inflammatory mediators, may result in neurotoxicity 
[17]. Microglia are capable of generating neurocognitive 
degeneration (e.g., different forms of HAND), thereby 
increasing pro-inflammation chemotactic factors and cell 
factors along with neurotoxins, which adversely influence 
stellate cells and nerve cells and induce neural injury [18].

Potential therapeutic strategies
To eradicate the virus and provide a functional cure, it 
is critical to target the HIV-1 microglia reservoir in the 
CNS. As underlying measures for HIV-1, some strategies 
have been developed (Fig. 1).

ART​
Antiretroviral medications remain the most effec-
tive strategy to treat early-stage HIV-1 infection. The 

patients in the ANRS VISCONTI Study with regulated 
HIV-1 were able to manage HIV-1 duplication on their 
own once ART was stopped [95]. This condition was also 
discovered in "the Mississippi baby," an infant who got 
ART 30  h after being born. Previous research on early 
ART treatment in specific cohorts also provided data 
to support such a therapeutic protocol [96]. However, 
the virus did rebound in the Mississippi infant, indicat-
ing that early ART may be inadequate. Ongoing research 
by Sacha et  al. is assessing the bone marrow reservoirs 
immediately posterior to infection, as well as the potency 
of early mega ART therapies in patients with AIDS in the 
early acute phases[97].

When treatment was started early, there were 
decreased levels of microglia stimulation and neuron 
injury biomarkers in the CSF [98]. An antiretroviral med-
icine with optimal entry into the cerebrum and minimal 
neurotoxic effects ought to be an evident option for virus 
inhibition. Unfortunately, since the majority of antiviral 
drugs are taken orally, their bioavailability in the CNS 
is limited, and absorption is slow due to the presence of 
the BBB. As a result, numerous drug delivery systems are 
now being evaluated in order to ensure that medications 
can penetrate the BBB, including invasive approaches 
such as intracerebral injections and implants, as well as 
BBB regulation employing supersound and penetration 
effects. Endogenetic transporters, pro-drugs, liposomes, 
nanoparticles, nano gels, dendrimers, and monoclonal 
anti-substances are examples of non-invasive techniques 
to deliver medications into the CNS [99]. Antiretroviral 
nanoparticle formulation is proposed as the best tech-
nique for improving BBB penetrance and site targeting. 
The U.S. FDA has approved several antiretrovirals that 
target the cerebrum across the BBB via an unexplained 
causal relationship. Some employ transportation pro-
teins [e.g., P-gp, multidrug resistance-associated protein 
(MRP), and breast cancer resistance protein (BCRP)] 
[100]. ART does not adequately inhibit circulating virus-
infected monocytes or macrophages, and in-depth stud-
ies should still be conducted.

Shock and kill
Several compounds were studied for their ability to 
reactivate latent HIV-1, and some molecules were suc-
cessfully created as latency-reversing agents (LRAs). 
The primary method of latent reversal is “Shock and 
Kill”, in which the LRA “shocks” the cellular reservoirs 
into expressing virus antigens and then “kills” them by 
exposing the stimulated cells to HIV-1-specificity CTLs 
(Fig.  1A) [101]. LRAs were applied to the reactivation 
target to determine and describe the cytokines of latent 
HIV-1. Considerable LRAs are being applied ex vivo and 
in clinical studies. Nevertheless, the primary focus is on 
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Fig. 1  (A) Latency reversal agents were applied for the activation of HIV replication inlatent cells. In this way, the immune system can target 
them targets for clearance. With virus expression reactivated, the strategy can remove reservoirs while targeting latently-infected cells. For the 
reactivation of transcription, latency reversing agents (LRAs) were explored. (B) Block and lock applied latency-promoting agents (LPAs) to block the 
transcription of HIV-1, thus inhibiting the processes of viral expression, such as replication, the transcription by Tat inhibition and RNA export. (C) 
Gene Editing (CRISPR/Cas9 system) draws upon a guided RNA and a Cas9 nuclease to remove targeted DNA sequences of cytokines while blocking 
the self-replication of virus
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circulating CD4+ T cells rather than microglia [102, 103]. 
160 compounds have been used as LRAs, belonging to 
two major families or a third family that includes uncom-
mon drugs with unusual or uncertain causative relation-
ships (e.g., disulfiram and ixazomib) [104]. The screening 
of novel LRAs remains a field of intensive research [105]. 
The main disadvantage of adopting such approaches is 
that they enhance the cytotoxic response, which dam-
ages uninfected cells. The “Shock and Kill” technique 
does not remove reservoirs (for example, microglia) since 
their reactivation may promote brain inflammation and 
worsen HAND. Thus far, lncRNAs and miRNAs have 
been the most extensively studied epigenesis modulators 
[106, 107]. However, since HIV-1 transcription is unpre-
dictable, the Shock and Kill methods did not contribute 
to the reactivation of all microglia with latent infection 
[7].

Block and lock
The “Block and Lock” is known as another method to 
disable the capability of HIV-1 reservoirs to re-activate 
(Fig.  1B). LPAs are capable of suppressing HIV-1 tran-
scription by triggering a deep latent state. They inhibit 
HIV-1 genetic expressions by triggering a profound latent 
status (the block), thereby avoiding HIV-1 genetic tran-
scription (the lock) [108]. The first LPA found in a marine 
sponge was didehydro-cortistatin A (dCA), a chemi-
cal derivative of corticostatin. When combined with 
antiretroviral medication and LRAs, such inhibition can 
effectively prevent virus reactivation [98]. In microglia-
like and astrocyte lineage cells, dCA has been shown to 
penetrate the BBB [109]. Even though dCA has an excel-
lent inhibitory effect on CD4+ T cells, its activities in the 
CNS are unclear [110]. However, if a similar activity is 
discovered within CNS cells, dCA will be a widely recog-
nized CNS medicine capable of significantly decreasing 
Tat-mediated neurotoxic effects while suppressing latent 
reversal. According to recent research, levosimendan 
suppresses acute HIV-1 duplication and the reactiva-
tion of hidden HIV-1 pro-virus in primary CD4+ T cells 
[111]. The aforementioned is a potential latency-facili-
tating measure that has been approved by FDA. On the 
other hand, its efficacy and/or toxic effects on brain cells 
should be evaluated to determine the underlying impact 
of eliminating CNS sanctuaries. Another substance, 
ABX4641, i.e., a suppressor of Rev that participated in 
the RNA exportation, prevents HIV-1 duplication in vitro 
tests and in animal models, whereas its efficacy remains 
unclear in the CNS [112].

Contrary to the previously mentioned, “Block and 
Lock” treatment is a procedure with great convenience 
since it is correlated with a decreased incidence of brain 
inflammation than “Shock and Kill.” This approach is 

similar to the "Shock and Kill" method in that the aim is 
to induce transcription and/or RNA exportation to coun-
teract the activities of pro-inflammation cell factors while 
preventing viral protein synthesis [113]. As a result, com-
bining the two approaches can facilitate the reduction of 
microglia reservoirs, although it may cause deep latent 
status in sanctuaries that aren’t re-activated by LRAs.

Gene therapy
Genetic therapies are widely regarded as a viable method 
of treating HIV-1 (Fig.  1C). The clustered regularly 
interspaced short palindromic repeats (CRISPR) and 
CRISPR-associated (Cas) systems refer to RNA-guided 
sequence-specific antiviral immune systems found in 
prokaryotic cells. In prokaryotes, small RNA molecules 
direct Cas effector endonucleases to invade foreign 
genetic material in a sequence-dependent manner, cul-
minating in endonuclease-mediated DNA cleavage upon 
target binding. Additionally, a rewired CRISPR/Cas9 sys-
tem in eukaryotic cells might be used for selective and 
precise genome editing. Therefore, CRISPR/Cas has been 
applied to target human pathogenic viruses as a poten-
tially innovative antiviral strategy.

Zhang et al. [114] displayed the use of an inactive Cas9 
(dCas9)-synergistic activation mediator (dCas9-SAM) 
system to re-activate HIV-1 in CD4+ T cells and micro-
glia lines. This technology may have the benefit of influ-
encing localized cells without HIV-1 in a minimal way. 
Hu et al. used a Cas9/guide RNA technique to eradicate 
the HIV-1 genome and immunize specific cells to resist 
HIV-1 re-activation in microglia, pre-monocytes, and T 
lineage cells with latent infection, producing the most 
promising results [115].

Drug penetrability in the CNS, where microglia reside, 
is a challenge that genetic therapies, like pharmacologi-
cal treatments, fail to resolve. Meanwhile, another major 
limitation of genetic editing has been discovered: HIV-1 
can evade CRISPR/Cas9-mediated suppression. There-
fore, further research is required before it can be used in 
clinical applications.

Conclusions
Early ART treatment has led to a significant decrease in 
HIV-1-related mortality in recent years. However, com-
plete eradication is improbable unless concealed viral 
sanctuaries are targeted [116]. Involving and/or eradicat-
ing the aforementioned virus sanctuaries in clinical prac-
tice remains a difficult challenge. Microglia are useful 
for hidden reservoirs because they are resistant to viral 
cytopathy and have a long lifespan [117]. Hence, they are 
capable of persistently disseminating HIV-1. In addition, 
microglia act as virus reservoirs with inferior ART pen-
etrability. Furthermore, microglia inflammation might 
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trigger or speed up cerebrum aging via the interface 
with the physiology restoration process. In particular, 
HIV-1 infection inducing low-level neural inflamma-
tion might facilitate cerebrum aging and HAND. Some 
studies underlined the necessity of reactivating hidden 
sanctuaries with the optimum ART, improving cytotoxic-
ity responses, and promoting programmed cell death in 
infected cells. Therefore, it is critical to target microglia, 
which is a difficult task. Moreover, combining the afore-
mentioned innovative approaches with well-designed 
ART medications may be able to develop viable regimens 
for HAND by targeting infected microglia.
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