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Summary 
Foxp3+CD4+ regulatory T cells (Tregs) are famous for their role in maintaining immunological tolerance. With their distinct transcriptomes, 
growth-factor dependencies and T-cell receptor (TCR) repertoires, Tregs in nonlymphoid tissues, termed “tissue-Tregs,” also perform a variety of 
functions to help assure tissue homeostasis. For example, they are important for tissue repair and regeneration after various types of injury, both 
acute and chronic. They exert this influence by controlling both the inflammatory tenor and the dynamics of the parenchymal progenitor-cell pool 
in injured tissues, thereby promoting efficient repair and limiting fibrosis. Thus, tissue-Tregs are seemingly attractive targets for immunotherapy 
in the context of tissue regeneration, offering several advantages over existing therapies. Using skeletal muscle as a model system, we discuss 
the existing literature on Tregs’ role in tissue regeneration in acute and chronic injuries, and various approaches for their therapeutic modulation 
in such contexts, including exercise as a natural Treg modulator.
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Introduction
The lineage-defining transcription factor of Foxp3+CD4+ 
regulatory T cells (or Tregs) was identified almost two dec-
ades ago [1–3]. This landmark co-discovery propelled Tregs 
from the shadowy realm of “suppressor cells” to the lime-
light of immunological research. It eventually became clear 
that Tregs control most types of immune reaction—including 
autoimmunity, allergy, inflammation, anti-tumor responses 
and anti-microbe responses—by regulating the activities of 
most innate and adaptive immunocyte types [4]. This super-
power made Tregs and their products attractive candidates as 
immunotherapeutic agents [5, 6].

The therapeutic potential of Tregs was even further en-
hanced by the discovery of so-called “tissue-Tregs” [7]. 
During the initial decade after their discovery, essentially all 
studies on Foxp3+CD4+ T cells examined those circulating 
through the blood and lymphoid organs. The functional focus 
evolved from Treg impacts on other T cells, to effects on all 
adaptive immunocytes to influences on all immunocytes, 
whether adaptive or innate. In 2009, a unique population of 
Foxp3+CD4+ T cells was found in the visceral adipose tissue 

(VAT) of lean, “middle-aged” mice [8]. VAT Tregs have a 
transcriptome, T-cell-receptor (TCR) repertoire, and growth/
survival factor dependencies that are distinct from those of 
their lymphoid-organ counterparts. Importantly, they con-
trol local and systemic inflammation and metabolism, at least 
in part by regulating the activities of local parenchymal [8] 
and stromal [9] cells. Subsequently, analogous populations 
of tissue-distinct Tregs were found at a multiplicity of sites, 
including skeletal muscle [10], skin [11], the colonic lamina 
propria [12], cardiac muscle [13], lungs [14], the liver [15], 
and the central nervous system [16]. These studies have re-
vealed that the functional purview of tissue-Tregs extends 
well beyond protection from microbe and tumor challenges 
to tissue homeostasis at several junctures, e.g. regulation of 
metabolism, orchestration of tissue repair/regeneration, and 
regulation of stem/progenitor cell activities. Thus, the height-
ened promise of tissue-Tregs as immunotherapeutic agents 
rests on three points: (i) that recognition of local antigen(s) 
by their TCRs will encourage their accumulation at the site(s) 
where they are most needed; (ii) that specific accumulation 
at these sites will avoid the generalized immunosuppression 
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or immunostimulation that systemic impoverishment or en-
richment of Tregs can induce; and (iii) that their homeostatic 
activities will lend an additional therapeutic boost.

The options for performing Treg-based immunotherapy are 
manifold. This topic has been expertly reviewed quite recently 
[5, 6]; so we will just outline the major approaches here. As il-
lustrated in Fig. 1, they can be grouped into four major classes. 
First, there are methods to preferentially elicit Foxp3+CD4+ 
cells in vivo: via injecting specific Treg growth factors [e.g. 
low-dose interleukin (IL)-2 or IL-2 variants], by administering 
inhibitors of molecules toxic to Tregs [e.g. dampening inter-
feron (IFN)α or tumor necrosis factor (TNF)α], or through 
agonism or antagonism of receptors or co-receptors (e.g. 
agonism of TNFR2). The advantage of such strategies is that 
they avoid cell isolations and transfers, but their optimum ap-
plication awaits the development of specific targeting methods 
in order to avoid systemic complications. Second are methods 
to expand isolated Tregs ex vivo and transfer them. The sim-
plest strategy for expansion is CD3/28-bead-based expansion 
of polyclonal Tregs, but the low frequency of any particular 
Treg specificity in the blood renders this option relatively in-
effective in most contexts. Antigen-specific Treg expansion 
ameliorates this problem although it introduces additional 
complexities–for example, which antigen? Third, methods for 
engineering more performant Tregs are becoming increasingly 
popular, sophisticated, and ingenious. These options may en-
tail targeting a designated tissue by introducing a TCR that 
recognizes an antigen specifically expressed at that site or, al-
ternatively, a chimeric antigen receptor (CAR) composed of 
an external antibody domain that binds to some molecule 
preferentially located there and an internal signaling domain 
that integrates into the Treg signaling network. And/or these 
options may involve synthetic augmentation of Treg perform-
ance, such as bestowing new chemokine or cytokine receptors 
or adding soluble mediator “payloads.” Fourth are methods 
to ex vivo convert Foxp3-CD4+ conventional T cells (Tconvs) 
to Tregs. Transduction of FOXP3 is the most common variant 

of this strategy, often coupled with some sort of synthetic 
augmentation, as mentioned above. These so-called induced 
Tregs or iTregs have been the subject of some skepticism be-
cause they are thought to be less stable and less authentic than 
thymus-generated Tregs [17].

A few general concerns related to Treg-based therapies 
should be mentioned. One is the notion that Tregs might con-
vert to pathogenic effector cells in the inflammatory lesion 
they are meant to control [18]. However, it is worth noting 
that evidence for this phenomenon, mostly derived from 
murine Treg-transfer models or from in vitro culture systems, 
has been down-played because the Treg preparations typic-
ally employed for such experiments are too-often contamin-
ated with low levels of effector T cells or with cells not fully 
committed to the Treg lineage, a caveat that was, in general, 
not fully ruled out [19, 20]. Thus, employing highly purified, 
fully committed, thymus-generated Tregs or synthetic equiva-
lents is prescribed for clinical applications. In addition, of the 
many ongoing and completed Treg-therapy trials, this issue 
has not proven problematic to our knowledge. A second point 
is the notion that Tregs depend on IL-2, which may be low or 
declining in the target lesion as therapy proceeds, and thus 
might have to be co-administered. This issue is likely to be 
most relevant to polyclonal Treg therapies and to survival of 
circulating Tregs as tissue-Tregs are known to be maintained, 
even expanded, by other growth factors, e.g. IL-33, IL-18 [7]. 
In addition, a recent clinical trial pointed out the dangers of 
co-administering IL-2 and Tregs, i.e. expansion of host T and 
NK effector cells [21].

As its title foretells, the focus of this review is the potential 
application of Treg-enhancing therapies to tissue regeneration. 
We have chosen skeletal muscle as a model system and will 
speculate on how the armamentarium of Treg-based treatments 
might be harnessed to ameliorate acute or chronic muscle path-
ologies. Current clinical trials in this area are limited and, thus, 
there is vast potential for this treatment strategy. Lastly, we will 
propose exercise as a natural Treg modulator.

Figure 1: Treg-based therapeutic strategies. The increasing armamentarium of Treg-based treatments. See Introduction for details. Treg, Foxp3+CD4+ T 
cell; Tconv, Foxp3−CD4+ conventional T cell; IL, interleukin; IFN, interferon; TNF, tumor necrosis factor; R, receptor; TCR, T cell receptor; CAR, chimeric 
antigen receptor.
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Treg therapies in acute muscle injury
Tissue regeneration is an orchestrated, multi-cellular process 
that follows a strict temporal order. Its dynamics are well char-
acterized in the case of skeletal muscle. As the largest organ in 
the body, skeletal muscle is commonly injured due to a variety 
of reasons, including mechanical trauma, thermal stress, myo- 
or neuro-toxic agents, and ischemia [22]. Injury results in 
degradation and necrosis of myofibers. Replacement of dam-
aged myofibers is initiated by a pool of muscle-progenitor 
cells (MPCs) located in close apposition to muscle fibers 
[23]. In response to acute injury, quiescent MPCs become 
activated, proliferate, differentiate, migrate and fuse to form 
new myofibers (Fig. 2) [24, 25]. In addition, early after injury, 
muscle mesenchymal stromal cells (MmSCs) get activated, 
proliferate, and form temporary extracellular matrix (ECM) 
that acts as a scaffold for the regenerating myofibers [26–29]. 
Remodeling and degrading ECM at later stages of regener-
ation is essential for efficient repair since excessive deposition 
results in fibrosis, impairing the restoration of normal tissue 
function and increasing susceptibility to re-injury [27, 30].

The inflammatory processes accompanying tissue injury 
also strongly influence the outcome of repair [31]. Early 
after injury, there is a rapid, transient influx of neutrophils 
(NFs) followed by pro-inflammatory macrophages (MFs), 
which are required for clearance of dead cells and cellular 
debris. In addition, injury invokes the rapid accumulation of 
various types of innate and adaptive lymphocytes, such as 
natural killer (NK), effector αβT, and γδT cells (Fig. 2) [32, 
33]. The pro-inflammatory mediators produced by these ac-
cruing immunocytes—such as TNFα, IFNγ and IL-17A—are 

crucial for activating MPCs and trigging their proliferation 
[33–35]. Yet, the duration and magnitude of this initial in-
flammatory phase need to be tightly regulated since chronic 
exposure of MPCs to the same inflammatory mediators 
paradoxically blocks their differentiation into myocytes, re-
sulting in impaired tissue repair [32, 36–38]. Additionally, 
uncontrolled inflammation results in fibrosis and scar forma-
tion [30]. Thus, within a few days of the insult, the muscle 
micro-environment transitions to an anti-inflammatory, pro-
regenerative state. This shift is most pronounced for MFs, 
which switch to anti-inflammatory Ly6Clow phenotypes with 
various pro-regenerative functions, such as matrix remodeling 
and promotion of angiogenesis [39–42]. This dynamically 
and temporally regulated inflammatory response is a defining 
hallmark of efficient tissue repair that has been observed in a 
diversity of other tissues.

Over the last decade, Tregs became increasingly appreci-
ated as tissular “rheostats” of muscle repair [10, 32, 43–45]. 
At steady-state, skeletal muscle harbors a small Treg popula-
tion [10]. In response to acute injury, this population rapidly 
expands, reaching its numerical peak 3–4 days post-injury, a 
timepoint that marks a transition of the muscle milieu from a 
pro- to an anti-inflammatory state, before declining thereafter 
(Fig. 2) [10, 43, 44]. Treg accrual in skeletal muscle results 
from a combination of local proliferation, most pronounced 1 
day after injury, and sphingosine-1-phosphate receptor (S1pr)-
mediated emigration from lymphoid tissues [45]. Notably, 
decreased Treg recruitment to skeletal muscle after injury 
contributes to their diminished accumulation in aging ani-
mals [45]. The muscle microenvironment strongly influences 
muscle Tregs, as evidenced by their distinct transcriptional 
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Figure 2: Tregs in skeletal muscle injury. In response to skeletal muscle injury, muscle-progenitor cells (MPCs) get activated, proliferate, and 
differentiate to form new muscle fibers (upper panel). Various immunocytes dynamically accumulate at the site of injury (lower panel), starting with 
neutrophils (NFs), followed by pro-inflammatory macrophages (MFs), natural killer (NK), γδT cells, CD8+ T cells and T helper 1 (TH1) and TH17 cells. The 
subsequent reparative stage is dominated by anti-inflammatory MFs and Tregs that are essential for effective regeneration. Accrual of muscle Tregs in 
injured muscle is dependent on T-cell receptor (TCR) stimulation by local antigens, in addition to trophic cytokines, such as IL-33 produced by muscle 
mesenchymal stromal cells (MmSCs).
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profiles compared with those of lymphoid-tissue Tregs [10, 
46]. Muscle Tregs express a core set of nonlymphoid-tissue-
Treg genes, including elevated levels of chemokine receptors, 
such as CCR2, CCR4, and CCR8 [10, 46]. The corresponding 
ligands for these receptors are rapidly upregulated by muscle 
stromal cells and infiltrating immunocytes after injury [47, 
48], and therefore may aid Treg homing to the site of damage. 
Muscle Tregs also have an activated, effector-like phenotype, 
with preferential expression of key immunosuppressive mol-
ecules such as IL-10 and CTLA-4, which may arm them to 
control the strong inflammation induced upon injury [10, 43]. 
Compared with other tissue-Treg compartments, such as VAT 
or colon, muscle Tregs are distinguished by their continuous 
exchange with the circulating Treg pool [10, 46]. In addition, 
muscle Tregs have high proliferation rates at the early stages 
of injury, which is reflected in their upregulation of cell cycle 
and growth genes [10, 46].

The functional relevance of muscle Tregs in acutely injured 
muscle was demonstrated using genetic models allowing 
punctual Treg ablation, which exhibited compromised re-
generation and tissue fibrosis, a consequence of inefficient re-
pair [10]. Tregs employ at least two mechanisms to promote 
muscle regeneration. First, they control the inflammatory 
tenor of regenerating muscle by reining in immunocytes and 
promoting the pro- to anti-inflammatory shift in infiltrating 
myeloid cells [10]. In Treg-less mice, resolution of inflamma-
tion is impaired, with a persistent accumulation of NFs and 
inflammatory MFs. For example, Treg control of IFNγ pro-
duction by NK and effector T cells is essential for control-
ling MF phenotype and function in regenerating muscle [32, 
43]. Independently, Tregs exert their pro-regenerative power 
in a non-immunological fashion by directly interacting with 
MPCs and promoting their accrual. This effect is mediated 
at least in part by muscle Treg production of amphiregulin 
(Areg), a member of the epidermal growth factor family [10]. 
Thus, upon Treg ablation, MPCs exhibit reduced clonal effi-
ciency, a deficiency that can be reversed by Areg administra-
tion [10]. Whether the anti-inflammatory and pro-reparative 
functions of Tregs are exerted by the same cells is currently 
under study. Single-cell RNA sequencing (scRNA-seq) ana-
lysis identified a considerable degree of transcriptional het-
erogeneity in muscle Tregs [46]. Intriguingly, muscle Treg 
subsets after injury are dynamic and evolve across the course 
of regeneration, raising the possibility that different Treg 
functions, such as dampening of inflammation and promo-
tion of repair might be the roles of dynamically different Treg 
subtypes.

Treg accrual in muscle results from a combination of 
antigen- and cytokine-driven stimulation (Fig. 2). A charac-
teristic of Tregs in acutely injured muscle is their restricted, 
clonally expanded TCR repertoire [10]. Intriguingly, one par-
ticular TCR clone was identified repeatedly in muscle Tregs 
isolated from multiple, independent animals, a strikingly rare 
incidence in the highly diverse TCR repertoires of different in-
dividuals [10]. This observation strongly suggests that muscle 
Tregs are responding to local antigens. Indeed, a transgenic 
mouse (tg) line harboring the rearranged transgenes encoding 
the TCRα and TCRβ chains of this particular clone (mTreg24 
TCR-tg mice) shows enhanced Treg accumulation in injured 
muscle and improved muscle repair [49]. In addition to TCR-
driven proliferation, the increase in muscle Tregs after acute 
injury, unlike that of their lymphoid-tissue counterparts, is 
strongly dependent on the alarmin cytokine, IL-33. Muscle 

insult induces rapid production of IL-33, primarily from 
MmSCs [45]. Treg-specific ablation of the IL-33 receptor 
(ST2) impairs their accumulation and hampers the regener-
ation process [45]. The IL-33/Treg axis is of high relevance in 
the context of muscle aging since diminished IL-33-dependent 
accumulation of muscle Tregs contributes, at least in part, to 
the regeneration deficiency in aging animals [45]. Disrupted 
IL-33-mediated Treg accrual in aging muscle is primarily due 
to decreased IL-33 production by MmSCs, and IL-33 supple-
mentation boosts muscle Treg accumulation after injury and 
improves muscle repair [45].

Currently, treatment of acute muscle injury is limited to 
rest, ice, compression, and elevation (RICE), nonsteroidal 
anti-inflammatory drugs (NSAIDs), and physical therapy 
[22]. The objective of RICE is to minimize the size of the ini-
tial injury, inflammation, and subsequently the resulting scar. 
Yet, the impact of RICE has not been confirmed in random-
ized clinical trials [22]. While NSAIDs can offer analgesia and 
dampen inflammation, interfering with the early inflamma-
tory process can hamper regeneration since NSAIDs can in-
hibit MPC proliferation [50, 51]. Chronic use of NSAIDs is 
also not recommended as it can cause serious gastrointestinal 
and renal side-effects, hypertension, and other systemic com-
plications. The proposed ability of physical activity to pro-
mote efficient repair after acute injury is attributed, at least in 
part, to its immunomodulatory activity. We will elaborate on 
the role of exercise and immunocyte regulation via Tregs in 
an upcoming section.

Considering the limited therapeutic palette for acute muscle 
injuries, Treg-based therapies present a potentially more 
precise and effective alternative to traditional approaches. 
As highlighted in Fig. 1, enhancing Treg activity in regener-
ating muscle could potentially be achieved via the adminis-
tration of Treg-trophic factors. Considering its preferential 
activity on tissue- (in particular, muscle) Tregs, IL-33-based 
therapies are likely to exhibit superior therapeutic specificity 
than IL-2 equivalents, which can cause systemic expansion 
of Tregs. IL-33 potently enhances muscle Treg accumulation 
[45], and Tregs expressing ST2 exhibit enhanced suppressive 
activity compared with that of their ST2- counterparts [52]. 
Yet, the effects of systemic IL-33 administration need to be 
thoroughly evaluated because of the multiple cellular targets 
of IL-33, including MFs, eosinophils, and type-2 lympho-
cytes [53]. An alternative approach, with better specificity to-
wards tissue-Tregs, would be engineered fusion proteins of 
IL-2 and IL-33, which show therapeutic activity better than 
that of IL-2 and IL-33, alone or in combination, in models 
of nonlymphoid tissue inflammation [54, 55]. In light of the 
restricted TCR repertoire of muscle Tregs, administration of 
engineered antigen-specific Tregs targeting muscle antigens 
is a promising approach. Antigen-specific Tregs exert more 
potent suppressive activity in mouse models than polyclonal 
Tregs [56, 57]. Moreover, specific antigen-TCR interactions 
can promote Treg accumulation at the site of injury, as evi-
denced by the preferential accrual of Tregs from mTreg24 
TCR-tg mice in injured skeletal muscle in comparison with 
other lymphoid and nonlymphoid tissues [49]. In addition 
to suppressing Tconvs targeting the same antigens, antigen-
specific Tregs can exert bystander suppression of other T and 
non-T immunocytes at the site of injury [6]. The remarkable 
recent advances in gene-editing technologies offer the oppor-
tunity to arm muscle-specific Tregs with additional functional 
molecules with the potential to enhance tissue repairs, such as 
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IL-10 or Areg. In addition, modulating these Tregs to stably 
express particular transcription factors that foster their ac-
quisition of the tissue-Treg program, such as BATF [58–60], 
can potentially enhance their homing and function in injured 
tissues. One pre-requisite for the success of Tregs engineered 
in this manner is identifying peptide antigens that can select-
ively activate and expand the muscle Treg compartment. So 
far, only a limited number of antigens recognized by Tregs 
at any location have been identified. Various approaches for 
scanning T-cell antigens have been successfully employed for 
the design of immunotherapies [61]. However, most of them 
have so far been employed to uncover ligands for CD8+ T 
cells, in particular those recognizing limited viral proteomes. 
Recently, a peptide screen of VAT Treg antigens identified sur-
rogate agonists that can specifically expand this population 
[62]. Employing similar approaches is likely to inform Treg 
cell therapies for acute muscle injuries.

Treg therapies in muscular dystrophies
Muscular dystrophies are a group of genetic diseases char-
acterized by progressive skeletal-muscle weakness and 
degeneration. Within this group are Duchenne muscular dys-
trophy (DMD) and Becker muscular dystrophy (BMD), both 
X-linked diseases caused by mutations in the gene encoding 
dystrophin (also known as dystrophinopathies) [63–65]. 
DMD is associated with the most severe clinical symptoms 
while BMD has a later onset and milder clinical presentation. 
The nature of these conditions depends on the amount of re-
sidual dystrophin in the muscle [66]. Disease severity is also 
related to the type of dystrophin mutation, with frameshift 
mutations associated with more severe disease (DMD) and 
mutations that preserve the reading frame with the less severe 
disorder (BMD), although some exceptions do exist [66–68].

Dystrophin is part of the dystrophin-associated protein 
complex (DAPC), a group of interacting muscle-fiber proteins 
that span the cytoskeleton, cell membrane, and extracellular 
matrix [69]. Dystrophin is located in the cytoplasm and links 
the intracellular actin network to the transmembrane element 
of the DAPC. A deficiency in dystrophin leads to the break-
down of the DAPC, which dramatically affects the structural 
integrity and contractile activity of skeletal muscle [70]. Over 
time, the muscle progressively degenerates and is replaced 
by fibrosis and fat, resulting in a devastating clinical course. 
DMD patients usually require a wheelchair by ages 10–12, 
need assisted ventilation around age 20, and eventually suc-
cumb to cardiac and/or respiratory failure between ages 20 
and 40 [71].

In contrast to the acute toxin-induced injury discussed 
earlier, the pathogenesis of dystrophinopathies is multi-
factorial. Known contributors include the weakening of the 
sarcolemma, which is an important muscle-fiber structure 
that helps control mechanical stress during muscle contrac-
tion [70]. Another contributor is free-radical damage, as 
reactive oxygen, and nitrogen species are elevated in DMD 
[70]. Despite these numerous mechanisms, one major conse-
quence and, subsequently, the contributor is the inflamma-
tion provoked by muscle damage [70, 72]. In the setting of 
acute skeletal-muscle injury, as was described in detail earlier, 
a response by the immune system is a typical and necessary 
correlate of muscle regeneration [73]. There is a highly dy-
namic and orchestrated reaction by numerous immunocyte 
types, which facilitates the regeneration process immediately 

after injury through normal tissue restoration [73]. However, 
in the context of DMD, there is a repetitive muscle injury, 
which results in chronic inflammation that exacerbates 
muscle damage [72]. The importance of inflammation in the 
pathogenesis of DMD has been highlighted by both human 
and mouse data. For DMD patients, systemic corticoster-
oids, which are strong immunosuppressants, have been the 
mainstay therapy for many years. Long-term corticosteroid 
treatment improves muscle strength and function, prolonging 
ambulation, and delaying pulmonary and cardiac dysfunction 
[74–76]. It also results in a reduction in the risk of secondary 
deficits such as scoliosis [74–76]. Muscle biopsies taken pre- 
and post-treatment in DMD patients given corticosteroids for 
6 months showed a significant reduction in immunocyte num-
bers in the muscle tissue [77]. In mice, the mdx mutant strain, 
which harbors an alteration in the gene encoding dystrophin, 
is used as a genetic model of DMD. Depletion of specific mye-
loid and lymphoid populations substantially reduces muscle 
damage in this model [78–81]. Taken together, these mouse 
and human data underscore inflammation as an important 
driver in the pathogenesis of dystrophinopathies.

Tregs are a critical immunocyte subset due to their potent 
immunosuppressive activities. While typically a small popu-
lation in skeletal muscle at homeostasis, Treg numbers are 
significantly elevated in mdx mouse and human DMD/BMD 
muscle [10, 43, 82]. Administration of an anti-CD25 mAb to 
mdx mice, used to deplete Tregs in this context because both 
dystrophin and Foxp3 are located on the X-chromosome, led 
to an increased inflammatory infiltrate in skeletal muscle ac-
cording to both histology and an elevation in serum creatine 
kinase (CK) levels, an indicator of muscle damage [10, 43]. 
At the whole-tissue level, there was also an upregulation of 
transcripts encoding factors that promote fibrosis, a critical 
component of muscular dystrophy pathology [10]. A genetic 
mouse model permitting specific ablation of Tregs in mdx 
mice also revealed Tregs to be critical restraints on interferon 
IFNγ production by Tconvs [83]. IFNγ is pathogenic in mdx 
mice as it promotes a more inflammatory tenor in the muscle 
MF compartment and its genetic deletion resulted in reduced 
disease severity [83].

Given that inflammation has a major pathogenic role in 
muscular dystrophy and that Tregs exert numerous benefi-
cial immunosuppressive influences in mdx mice, Tregs have 
the potential for the treatment of dystrophinopathies in hu-
mans. In comparison with corticosteroid administration, 
which results in global dampening of the immune system and 
severe adverse side-effects, Treg-based therapies can provide 
immunosuppressive activity with a predilection for sites of 
inflammation. As outlined in the Introduction, systemic low-
dose IL-2 is an effective method for expanding Tregs in vivo 
[84]. In mdx mice, administration of IL-2/anti-IL-2 com-
plexes (which extend the half-life of IL-2) leads to an increase 
in Tregs in the muscle but not in the spleen, which results in a 
dramatic decrease in skeletal muscle inflammation and lowers 
serum CK [10, 43]. The expression of IL-10, a key anti-inflam-
matory molecule, is increased in the muscle of so-treated mdx 
mice, although the functional importance of this increase was 
not established [43]. The fact that systemic Treg augmenta-
tion leads to selective enrichment of Tregs in the muscle and 
an associated increase in the level of muscle IL-10 argues for 
greater specificity of this therapeutic approach.

Interestingly, as was observed in acute muscle injury, CD4+ 
T cells are clonally expanded in muscle tissue of both mdx 
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mice and DMD patients, indicating a response to one or more 
muscle antigens [10, 85, 86]. Indeed, when the mdx muta-
tion was crossed into the mTreg24 mouse line, wherein T 
cells highly preferentially express α and β TCR chains from 
a Treg clone expanded in acute muscle upon injury, there 
was enhanced accumulation of Tregs in the skeletal muscle 
and improved muscle regeneration [49]. These data suggest 
a potential overlap between Treg clones and antigens found 
in chronic and acute models of injury in mice. With the iden-
tification of Treg clones expanded in human DMD muscle 
or of the antigens they are responding to, engineered Tregs 
with specific TCRs or CARs might prove to be an attractive 
therapeutic approach. Instead of simply boosting systemic 
numbers of Tregs, this approach would allow for the highly 
specific accumulation of Tregs within injured muscle and pre-
sumably more effective local immunosuppression and less 
systemic suppression. Although not yet studied in muscular 
dystrophy, Tregs from acutely injured muscle can also dir-
ectly improve muscle regeneration through the production 
of Areg, which enhances myogenic differentiation, as noted 
earlier [10]. In the context of muscular dystrophy, one could 
postulate that transferred Tregs, in addition to suppressing 
the chronic inflammation, may have other undiscovered func-
tions that directly enhance muscle regeneration, depending on 
the extent to which they can take on the mantle of true muscle 
Tregs after transfer.

Another aspect of employing Treg-based therapies for mus-
cular dystrophy is their use in combination with approaches 
attempting to restore functional dystrophin in diseased muscle 
tissues. Currently, there are numerous dystrophin-restoring 
therapies in development: exon-skipping using antisense 
oligonucleotides to restore the reading frame in patients with 
out-of-frame dystrophin mutations; CRISPR/Cas9 editing to 
restore the reading frame of the dystrophin gene through dir-
ected DNA breaks; and adeno-associated viruses (AAVs) to 
deliver essential pieces of the dystrophin gene to the muscle 
[70]. While these are promising approaches, many delivery 
vectors can provoke immune responses [87]. Additionally, 
there have been numerous reports of dystrophin-specific 
autoreactive T cell responses in patients with DMD [88, 
89]. These individuals do not produce full-length dystrophin 
protein and, as a result, do not sufficiently purge cognate 
self-reactive T cells during their thymic maturation and sub-
sequent peripheral residence. Therefore, coupling dystrophin-
restoring approaches with Treg-based therapies could allow 
for improvements in muscle function while limiting major 
side-effects associated with vector immunogenicity and dys-
trophin autoimmunity.

While DMD and BMD are major types of muscular dys-
trophy, there are numerous other diseases that similarly result 
in repetitive muscle damage and chronic inflammation. Limb-
girdle muscular dystrophies are a diverse group of diseases 
caused by mutations in any one of more than 20 different 
genes, resulting in weakening and degeneration of the pelvic 
and shoulder girdle muscles [72]. While the exact nature of 
the inflammatory infiltrate has yet to be studied in-depth, 
patients have improved with corticosteroids [90]. Beyond 
muscular dystrophy, there are non-inherited inflammatory 
myopathies, a heterogenous group of diseases that share the 
common feature of immunocyte-mediated muscle injury. 
The most common diseases of this group are dermatomyo-
sitis (DM), polymyositis (PM), immune-mediated necrotizing 
myopathy (IMNM), and inclusion-body myositis (IBM). Our 

knowledge of the exact pathogeneses of these inflammatory 
myopathies is incomplete, but corticosteroids are often used 
and result in improved muscle strength.

Treg-based therapies aim to enrich Tregs at sites of in-
flammation, Tregs engineered with particular TCRs or CARs 
being the most specific, thereby resulting in localized effects. 
Although Tregs have numerous roles in skeletal muscle, given 
that an important function is immunosuppression, we specu-
late that Treg-based therapies could help control chronic in-
flammation with fewer side-effects and, thus, be applicable 
across a wide swath of muscle diseases.

Exercise as a natural Treg modulator
In the previous sections of this review, we highlighted Treg-
enhancing therapies for the treatment of acute muscle injury 
and muscular dystrophies. Here, we will summarize what is 
known about the relationship between exercise and Treg ac-
tivities and will propose mechanisms by which exercise may 
act as a natural Treg modulator. Finally, we will integrate 
these concepts with the prior sections to provide specific in-
sight into how exercise may favorably impact the pathology 
of acute and chronic muscle injuries.

Exercise has been prescribed as an intervention to enhance 
health and stave off disease for millennia [91]. The concept 
of exercise as medicine is supported by a preponderance of 
evidence for an inverse relationship between physical activity 
level and all-cause mortality risk [92, 93]. It has been sug-
gested that this relationship reflects the anti-inflammatory ef-
fects of exercise [94], which work to counteract the chronic 
inflammation associated with modern afflictions such as car-
diovascular disease and type 2 diabetes. Indeed, such diseases 
arise from metabolic derangements in response to low phys-
ical activity and excessive nutrient availability, which is now 
known to impact the configuration and function of the im-
mune system [95].

In addition to its direct effects on metabolic homeo-
stasis via enhancing sensing and oxidation of nutrients by 
muscle and adipose tissues [96, 97], exercise has profound 
immunomodulatory potential. Schulz first documented this 
potential at the turn of the 20th century in a paper describing 
exercise-induced leukocytosis [98]. This phenomenon has 
been attributed to increased blood flow and elevated con-
centrations of catecholamines and cortisol [99]. Indeed, 
β-adrenergic blockade achieved via propranolol adminis-
tration attenuates exercise-induced leukocytosis [100]. In 
contrast, lymphocytopenia occurs in the period of recovery 
after exercise cessation and persists for 24–48  h [99, 101]. 
Although early reports attributed this effect to increased 
apoptosis, it is more likely to reflect increased lymphocyte ex-
travasation into peripheral tissues. Recent studies measuring 
apoptosis and the expression of adhesion molecules such as 
CD18, CD53, and CD54 on circulating immunocytes after 
exercise support this interpretation [102–104]. Furthermore, 
high-intensity exercise, especially modalities involving 
loading during the lengthening (eccentric) phase of muscular 
contraction, results in myofibrillar disruptions [105, 106] 
and myocellular release of damage-associated molecular pat-
terns (DAMPs) such as mitochondrial DNA, ATP, Tenascin 
C, and HMGB-1 [107]. These factors may activate muscle-
resident stroma and immunocytes, leading to the formation 
of chemokine gradients that would attract cells mobilized to 
the blood during exercise [108]. Notably, the magnitude and 
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duration of lymphocytosis and lymphocytopenia in response 
to exercise are dependent on exercise intensity. The age, sex 
and training history of the organism as well as the mode, 
duration, and frequency of exercise are additional variables 
affecting the reported immunomodulatory effects. For a sum-
mary of innate and adaptive blood immunocyte responses to 
exercise, the reader is referred to two excellent reviews on 
exercise immunology [109, 110].

Changes in Treg frequency, number, and function in periph-
eral blood in response to various human and rodent exercise 
regimens have also been the subject of recent reviews [111, 
112]. Although these reviews highlighted many acute and 
chronic exercise interventions that augment the representa-
tion of Tregs in the circulation, there are also many studies 
documenting no change or diminished Treg counts. These dis-
crepancies are almost certainly consequences of heterogeneity 
in the cohorts tested, exercise regimens used, and the times at 
which blood samples were collected in relation to exercise. 
Given the immediate increase and subsequent reduction in 
Treg representation in peripheral blood after exercise [101], 
the time of analysis is of critical importance. Yet many studies 
have taken only one pre- and one post-exercise sample, and 
some chose a very early post-exercise timepoint (<24 h), while 
others looked only late into recovery (>3 d). Given the role 
of local Tregs in responses to acute and chronic muscle in-
jury discussed in the previous sections of this review, it is pos-
sible that studies documenting reduced Treg presence in the 
blood late during exercise recovery are merely looking where 
Tregs sojourned on their way to sites of need. Taking this per-
spective, one would expect lower Treg counts in the blood 
after prolonged, high-intensity exercise capable of inflicting 
significant tissue damage, such as a marathon race, and this 
result is what has been documented [101, 113]. Further sup-
port for this perspective comes from analyses demonstrating 
increased proportion and function of Tregs in non-muscle 
peripheral tissues of exercised vis-à-vis sedentary mice after 
experimental injury [114–116]. Aside from histological ob-
servations of inflammation in intensely exercised rat and 
human muscles [105, 117, 118], there is a dearth of informa-
tion on immunocyte activities in skeletal muscles after exer-
cise. Fluorocytometric analysis of paired blood and muscle 
samples after exercise of various durations and intensities will 
be critical for finding a definitive answer to whether exercise 
modulates muscle-Treg numbers and functions. Despite the 
paucity of studies looking at skeletal-muscle immunocytes 
after exercise, there are a few well-documented exercise-
induced adaptations that may potentially support Treg accu-
mulation and function in muscle. We propose that increased 
local lactate concentration, increased production of the tryp-
tophan metabolite kynurenic acid (Kyna), and changes in the 
gut microbiota are three mechanisms by which exercise might 
modulate muscle Treg numbers and/or functions.

During intense exercise, carbohydrate metabolism is the 
dominant metabolic pathway used to fuel ATP production to 
sustain muscular work [119]. As exercise intensity increases, 
the production of lactate exceeds the rate of pyruvate oxi-
dation in the tricarboxylic acid (TCA) cycle, which leads to 
an accumulation of lactate in myofibers and in the muscle 
extracellular space. This high-lactate environment, although 
painful for the athlete, may suit Tregs well: studies com-
paring the metabolic phenotypes of Tconvs and Tregs have 
shown that the latter is more dependent on oxidative phos-
phorylation [120, 121] and can use lactate in low-glucose 

environments as a source of pyruvate to fuel TCA cycle and 
electron transport chain activities to support suppressive 
function [122, 123].

Exercise also enhances the production of the trypto-
phan metabolite Kyna via PGC-1α-dependent upregulation 
of kynurenine aminotransferases (KATs) [124, 125]. Kyna 
is a ligand for the aryl hydrocarbon receptor (AhR) and 
G-protein-coupled receptor 35 (GPR35) [126]. Interestingly, 
muscle injury increases the expression of GPR35 and AhR 
on Tregs several fold [10], and AhR signaling promotes the 
generation of Tregs in other contexts [127, 128]. Kyna-
mediated modulation has been proposed for circulating Tregs 
[111, 112]; it will be interesting to explore this mechanism in 
muscle-localized Treg populations.

Finally, exercise training produces significant changes in 
the gut microbiota [129–132]. Remarkably, 6 weeks of en-
durance exercise increases Faecalibacterium and Lachnospira 
communities while decreasing Bacteroides in the guts of lean 
human participants [129], and chronic endurance exercise 
promotes an elevation in short-chain fatty acid production in 
the gut [129, 132]. Changes in the microbiota influence Treg 
generation and phenotype in the gut via microbe-dependent 
metabolites [133–135], and Tregs traffic between the gut and 
extra-gut tissues [136]. Therefore, changes in the gut micro-
biota could be a potential mechanism of Treg modulation by 
long-term exercise.

As alluded to above, muscle injuries are commonly treated 
according to the RICE principle, which was first introduced 
in 1978 [137]. However, the American College of Sports 
Medicine now suggests a gentle movement of an afflicted area 
within the first 24 h after injury, followed by progressively 
challenging physical activity after 48–72h. Furthermore, 
controlled muscular contractions elicited in a previously in-
jured area by transcutaneous electrical nerve stimulation is a 
common practice in physical therapy for treating acute and 
chronic muscular injuries. Thus, although there are no ran-
domized clinical trials comparing post-injury immobilization 
to exercise, the widespread implementation of movement-
based therapies after muscle injury by practitioners of sports 
medicine and physical therapy raises the question of whether 
exercise might be both the “poison” and the cure for sports-
related muscular injuries. We propose that, through the 
mechanisms described above, exercise might mobilize Tregs 
to then home to injured sites to support the transition from 
pro-inflammatory to pro-repair processes. Furthermore, exer-
cise might be prophylactic against excessive inflammatory re-
sponses subsequent to acute injury by increasing the number 
of Tregs in muscle.

Exercise as a therapy for muscular dystrophies was once 
avoided due to the “work overload” theory, which predicted 
deleterious effects on muscle function. However, mdx mice al-
lowed to exercise voluntarily for several weeks do not display 
worsened hindlimb muscle, diaphragm, or cardiac muscle 
pathology [138, 139]. Instead, exercise-trained mdx mice, 
have improved hindlimb muscle function compared with sed-
entary mdx mice, despite running significantly less per day 
than age-matched healthy mice [140, 141]. Cardiac function 
in dystrophic mice is also improved by voluntary exercise 
[139]. Impressively, a meta-analysis of studies investigating 
the effect of exercise on muscular dystrophy patients found 
a significant association between exercise and improve-
ment in endurance during walking [142]. It will be useful to 
know whether these benefits of exercise coincide with Treg 
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modulation. Indeed, if exercise augments Treg representation 
and function in healthy and mdx muscles, then the mechan-
isms mediating exercise-induced Treg modulation may be 
elucidated and used in active or sedentary individuals to fa-
cilitate muscle repair. Thus, exercise or exercise-based treat-
ments tailored to modulate Treg activities may be a novel 
therapeutic approach to treating acute and chronic muscle 
injuries.
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