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tegrating machine learning for
identification of flavonoids in red wines†
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Jun Liu,d Callum Stewart, c Linxian Li,c Fei Li, b Jinsong Han *b

and Wenwen Wu*a

Bioactive flavonoids, the major ingredients of red wines, have been proven to prevent atherosclerosis and

cardiovascular disease due to their anti-inflammatory and anti-oxidant activity. However, flavonoids have

proven challenging to identify, even when multiple approaches are combined. Hereby, a simple array

was constructed to detect flavonoids by employing phenylboronic acid modified perylene diimide

derivatives (PDIs). Through multiple non-specific interactions (hydrophilic, hydrophobic, charged,

aromatic, hydrogen-bonded and reversible covalent interactions) with flavonoids, the fluorescence of

PDIs can be modulated, and variations in intensity can be used to create fingerprints of flavonoids. This

array successfully discriminated 14 flavonoids of diverse structures and concentrations with 100%

accuracy, based on patterns in fluorescence intensity modulation, via optimized machine learning

algorithms. As a result, this array demonstrated the parallel detection of 8 different types and origins of

red wines with a high accuracy, revealing the excellent potential of the sensor array in food mixtures

detection.
1 Introduction

Wine is an alcoholic drink typically made from fermented
grapes. Differences in grape varieties and fermentation strains
are the primary factors that lead to wines with different styles
and avors. Flavonoids are important natural polyphenols that
exist as plant metabolites and are the major ingredients of red
wines.1–5 Due to their potential antioxidant, anti-inammatory,
anti-viral and anti-carcinogenic activities, avonoids have been
investigated for use in the foods, pharmaceuticals, and
cosmetics industry and other elds.6,7 Flavonoids with different
modied structures diversify in their bioactivities, leading to
realistic demand for their qualitative and quantitative
discrimination, especially in the food industry and medical
research.8–10
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Conventional qualitative and quantitative analytic
methods for avonoids mainly rely on nuclear magnetic
resonance (NMR), high-performance liquid chromatography
(HPLC), liquid chromatography mass spectrometry (LC-MS),
UV-vis spectroscopy, electrogenerated chemiluminescence,
etc.11–15 However, most of these methods require costly
instruments, complicated and time-consuming operations,
and fairly involved sample preparation, resulting in low
detection efficiency. It is hard for a single method to
discriminate avonoids with the same molecular weight or
similar structures, while a combination of methods will
undoubtedly increase the testing time and cost. Moreover,
avonoids are mostly found in mixed samples with multiple
components, such as in red wines, and conventional tech-
niques are in fact extremely challenging to detect such
mixtures. Therefore, it is of interest to develop a new method
for rapidly identifying avonoids in complex environments,
particularly those with similar structures or uniform molec-
ular weights.

Array-based sensing employs mimics of the mammalian
olfactory and gustatory systems in which articial arrays of
cross-reactive receptors are employed. The signal difference
generated by the interaction between the analytes and the
sensing elements can be analyzed and processed by suitable
algorithms (pattern recognition), and nally expressed as
a visual ngerprint. As pattern recognition is the most
crucial data analysis for array-based sensing, machine
learning (ML) algorithms can prove to be extremely useful in
© 2023 The Author(s). Published by the Royal Society of Chemistry
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analyzing such data. ML involves a collection of algorithms
and models that learns a mathematical model based on
a part of the data, to make predictions on the other sections
of the data.

Sensor arrays based on optical signals are successfully
applied to the rapid detection of analytes due to their powerful
recognition capabilities.16 Our team has developed a series of
sensor arrays that can detect wines, whiskies, tea, fruit juices,
bacteria and antibiotics, etc.17–23 Recently, we successfully
constructed a poly(para-aryleneethynylene)s-based sensor
array that accurately identied white wines, and discovered
that avonoids are the primary causes of uorescence
quenching.17 Therefore, achieving highly sensitive and parallel
detection of various types of avonoids will greatly facilitate
the detection of wines.

Herein we created a simple three-element (phenylboronic
acid modied perylene diimide derivatives) uorescence
sensor array capable of discriminating 14 avonoids with
various structures and concentrations. Multiple benzene rings
are contained within the skeleton of these avonoids
(Fig. S1†). The array achieves uorescent signal changes
through non-specic interactions (hydrophilic, hydrophobic,
electrostatic, aromatic, hydrogen bonding, etc.) between per-
ylene diimide derivatives (PDIs) and the avonoids, in
combination with data processing by different machine
learning algorithms to create visual ngerprints of avonoids
(Fig. 1). The ultimate objective is to enable the identication of
red wines of different categories, origins and brands, and to
exhibit the great potential of this approach for the analysis of
food mixtures.
2 Experimental
2.1 Reagents and chemicals

All chemicals were obtained from commercial sources and used
directly without further purication. 3,4,9,10-Perylenete-
tracarboxylic acid anhydride (PTCDA) was purchased from
https://leyan.com/. 4-(Bromomethyl)phenylboronic acid, 3-
(bromomethyl)phenylboronic acid, 2-(bromomethyl)
Fig. 1 Plausible mechanism diagram of the sensor array based on boron
learning algorithms.

© 2023 The Author(s). Published by the Royal Society of Chemistry
phenylboronic acid, 4-(aminomethyl)pyridine, apigenin,
baicalein, genistein, puerarin, daidzein, hesperidin,
naringenin, naringin hydrate were purchased from Energy
Chemical. Flavone was purchased from Macklin. Methyl
hesperidin, neohesperidin, were purchased from Psaitong.
Sinensetin, tangeretin, nobiletin, were purchased from
Chengdu Biopurify Phytochemicals Ltd. All other reagents,
unless mentioned otherwise, were of analytical reagent grade.
2.2 Instrumentation

The uorescence values were recorded on a SpectraMaxR ID3
Multi-Mode Microplate Reader (Molecular Devices, California,
USA) at room temperature. The 96-well plates were produced
from Costar (3590, USA). 1H NMR and 13C NMR spectra were
recorded at room temperature on Bruker Avance III HD 300 and
Bruker Avance III NEO 400. MS spectra were recorded on
a Waters 2690 Separations Module and MassLynx analysis
soware.
2.3 Chemical synthesis of uorescent sensor array

Synthesized procedures and characterization data were
described in ESI (Fig. S2–S14†).

2.3.1 Synthesis of PDI-1. A mixture of compound 1 (0.51 g,
1.30 mmol), compound 2 (0.52 g, 4.81 mmol) and imidazole
(25.10 g, 0.37 mol) was added in a 100 mL round bottom ask,
then stirred for 48 h in 130 °C under nitrogen. Aer cooling
down to room temperature, added distilled water under stir-
ring, separated the precipitate, lter with suction, and wash
the precipitate with a large amount of distilled water to obtain
dark red solid 3 (0.64 g), yield: 88%. 1H NMR (300 MHz,
CF3COOD) d = 9.19–8.86 (m, 12H), 8.44 (d, J = 5.5 Hz, 4H),
6.05 (s, 4H).

Compound 3 (102 mg, 0.178 mmol) and compound 4
(122 mg, 0.568 mmol) were added to a 50 mL eggplant-shaped
ask, protected by nitrogen. Then 7.0 mL of N-methyl-
pyrrolidone (NMP) was added, the reaction was stirred 48 h in
100 °C. Aer the reaction was over, cool to room temperature,
remove most of the organic solvents by rotary evaporation, add
ic acid modified PDIs for the discrimination of flavonoids via machine
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the reaction solution dropwise to chloroform, precipitate the
precipitate, lter with suction, wash the lter cake with chlo-
roform, and dry the lter cake in vacuo to obtain a red-black
solid PDI-1 132 mg, yield: 88%. 1H NMR (300 MHz, DMSO-d6)
d = 9.19 (d, J = 6.4 Hz, 4H), 8.60 (d, J = 8.5 Hz, 4H), 8.33 (d, J =
7.8 Hz, 4H), 8.25 (d, J= 6.5 Hz, 4H), 7.83 (d, J= 7.8 Hz, 4H), 7.49
(d, J = 7.8 Hz, 4H), 5.85 (s, 4H), 5.55 (s, 4H). 13C NMR (75 MHz,
DMSO-d6) d 163.09, 157.68, 145.04, 136.47, 135.31, 133.84,
131.08, 128.45, 128.15, 126.76, 125.01, 124.54, 122.34, 63.18,
43.21. MS: [M–2Br]2+ calculated 842.27, [(M–2Br)/2]+ found
420.9, C50H36B2N4O8

2+.
2.3.2 Synthesis of PDI-2. The synthesis method is similar to

the synthesis of PDI-1. 130 mg of dark red solid was obtained,
yield: 88%. 1H NMR (300 MHz, DMSO-d6) d = 9.15 (d, J = 6.4 Hz,
4H), 8.78–8.59 (m, 4H), 8.40 (d, J= 7.9 Hz, 4H), 8.25 (d, J= 6.5 Hz,
5H), 7.89–7.80 (m, 4H), 7.56 (dt, J = 7.8, 1.5 Hz, 2H), 7.41 (t, J =
7.5 Hz, 2H), 5.83 (s, 4H), 5.55 (s, 4H). 13C NMR (75MHz, DMSO-d6)
d 163.04, 157.57, 145.00, 135.41, 134.90, 133.91, 133.75, 130.94,
128.77, 126.78, 124.89, 124.54, 122.21, 63.42, 42.87. MS: [M–2Br]2+

calculated 842.27, [(M–2Br)/2]+ found 421.0, C50H36B2N4O8
2+.

2.3.3 Synthesis of PDI-3. The synthesis method is similar to
the synthesis of PDI-1. Obtained 124 mg of red solid, yield: 84%.
1H NMR (300 MHz, DMSO-d6) d= 8.92 (dd, J= 25.6, 7.5 Hz, 8H),
8.52 (d, J= 7.5 Hz, 8H), 8.21 (d, J = 6.6 Hz, 4H), 7.80 (dd, J= 7.0,
2.0 Hz, 2H), 7.45 (td, J = 7.2, 1.7 Hz, 4H), 7.26 (dd, J = 7.2,
1.7 Hz, 2H), 5.99 (s, 4H), 5.55 (s, 4H). 13C NMR (100 MHz,
DMSO-d6) d 163.37, 157.59, 144.95, 138.26, 135.94, 134.41,
131.45, 130.95, 129.94, 128.90, 126.21, 124.74, 122.99, 63.42,
43.45. MS: [M–2Br]2+ calculated 842.27, [(M–2Br)/2]+ found
421.1, C50H36B2N4O8

2+.
2.3.4 Preparation of uorescent sensor array. Three PDI

derivatives in dimethyl sulfoxide (DMSO) were prepared as
a stock solution (1.0 × 10−3 mol L−1), and diluted with DI water
to a nal concentration of 1.0 × 10−5 mol L−1, for the
construction of the uorescent sensor array.
2.4 The discrimination of avonoids

For avonoids discrimination, 190 mL PDIs solution was mixed
with 10 mL avonoids with a certain concentration. The
response of uorescence signal was obtained by a SpectraMaxR
ID3 Multi-Mode Microplate Reader. The obtained data were
Fig. 2 (A) Structures of the PDIs employed for constructing sensor array, (
baicalein and flavone.

8884 | RSC Adv., 2023, 13, 8882–8889
processed using linear discriminant analysis (LDA) and
machine learning.

2.5 Anti-interference experiments

D-Glucose and D-fructose were dissolved in DMSO to obtain
a sugar stock solution (D-glucose 1.5 g L−1 and D-fructose 3.5 g
L−1, respectively). Similarly, tartaric acid and malic acid were
dissolved to prepare an acid solution (tartaric acid 3.0 g L−1 and
malic acid 2.0 g L−1, respectively). 10 mM avonoid stock
solution was diluted with sugar or acid solution to make 1 mM
avonoid test solution. For the anti-interference experiment,
190 mL PDIs solution was mixed with 10 mL avonoids (1 mM).
The uorescent intensity was recorded at emission maximum
(550 nm) and the raw data matrix was subjected to linear
discriminant analysis (LDA).

2.6 The detection of red wines

Eight commercially available red wines (Fig. 6B) were selected
for detecting experiments. Due to the strong quenching ability
of red wine, the red wine sample was diluted 5000 times with DI
water, then wines (50 mL) were added to the suspension of PDIs
aqueous solution (50 mL, 10 mM), and the analysis process was
the same as the above-described sensing procedure.

2.7 Data processing and analysis

All data were processed using python 3.2.2, and the machine
learning models used were derived from scikit-learn. https://
scikit-learn.org/stable/index.html.

Eight machine learning algorithms, including support vector
machine (SVM), decision tree (DT), K-nearest neighbor (KNN),
random forest (RF), Gaussian process classier (GPC), näıve
bayes (NB), logistic regression (LR) and linear discriminant
analysis (LDA) were used in the data processing and the exact
code has been put into the ESI.†

3 Results and discussion
3.1 Design of uorescent sensor array

The cationic water-soluble uorescent sensor elements
modied with phenylboronic acid were prepared through re-
ported literature with minor modications.24–26 To improve
B) fluorescence change of PDI-1 (10 mM, aqueous solution) after adding

© 2023 The Author(s). Published by the Royal Society of Chemistry
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the water-solubility and recognition capability of the sensor
elements, pyridinium ammonium salt group and phenyl-
boronic acid group with different substitution positions were
introduced (Fig. 2A). First, avonoids contain multiple
benzene rings that can easily form p–p interactions with PDI
uorophores of highly conjugated systems and change their
self-assembly patterns.27–31 Second, avonoids contain
multiple hydroxyl and methoxy substituents, which are
capable of forming hydrogen bonds and reversible covalent
bonds with boronic acid moieties.32–35 Further, cationic
character of quaternary ammonium groups, which may form
an electrostatic effect with avonoids, is introduced simulta-
neously at both ends of the symmetrical PDI to strengthen
recognition ability. Finally, the substitution position of the
recognition group (boronic acid) is adjusted to affect the
binding ability between the sensor elements to the analytes,
resulting in differential responses.

3.2 Optical properties

As is evident from the UV-vis and uorescence spectrum of
sensor elements in Fig. S15A,† three sensor elements exhibited
similar absorption (470 nm, 500 nm and 543 nm) and emission
(550 nm and 593 nm) properties due to the same conjugated
skeletal structure.

3.3 Verify the feasibility of the designed array

Baicalein and avone with evident structural variations were
chosen to preliminarily verify the feasibility of the designed
array by testing the uorescence intensity changes of PDI-1
aer adding avonoids. In Fig. 2B, baicalein containing
three hydroxyl groups quenched the uorescence of PDI,
whereas avone without hydroxyl groups increased the uo-
rescence of PDI. The apparently differentiated uorescence
Fig. 3 Structures, classification of the investigated 14 flavonoids.

© 2023 The Author(s). Published by the Royal Society of Chemistry
responses stimulated us to explore more structural types of
avonoids.
3.4 Discrimination of 14 avonoids

14 different commercially available avonoids from three
subgroups which were based on their structural differences
and similarities were selected as tested analytes, aiming at
exploring the structure–function relationship and the regu-
larity in discriminating avonoids, and forecasting the species
of the tested avonoids (Fig. 3). Although many types of
avonoids have been discovered, the accurate differentiation
of avonoids with the same molecular weight or similar
structures has remained challenging through a single method.
Fluorescence intensity changes (550 nm) were recorded and
represented as (I − I0)/I0. I and I0 were dened as the uores-
cence intensity of sensor element with and without avonoids,
respectively.

Fig. 4A shows that the addition of avonoids resulted in
a signicant uorescence intensity change of the sensor
elements. Most avonoids showed uorescence quenching,
with avones demonstrating the most remarkable uorescence
decrease. We speculate this might be attributed to the non-
specic interactions (electrostatic interactions, hydrogen
bonding, covalent bonding and p–p interactions) between PDIs
and avonoids, leading to further aggregation of the self-
assembly of PDI. Thus, greater aggregation leads to uores-
cence quenching (Fig. S15B†). Moreover, hydrophobic avone
with weak non-specic interactions might insert into the
hydrophobic region of self-assembled PDIs, destroying the
rigidity of self-assembly, and leading to enhanced uorescence
intensity (Fig. S15B,† le). Meanwhile, the various sites of the
boronic acid substitutions can lead to differences in the binding
and assembly of avonoids.
RSC Adv., 2023, 13, 8882–8889 | 8885



Fig. 4 (A) Fluorescence response pattern ((I− I0)/I0) obtained by PDIs (10 mM, aqueous solution) treated with flavonoids (50 mM). Each value is the
average of six independent measurements; each error bar shows the standard error (SE) of these measurements, (B) comparison of prediction
accuracies for 14 types of flavonoids by employing differentmodels including NB, LR, GPC, DT, RF, SVM, KNN and LDA on the training set and test
set, (C) LDA 2D plot for the first two factors obtained with an array of the PDIs (10 mM, aqueous solution) with 95% confidence ellipses. Each point
represents the response pattern for a single analyte in the array.
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The uorescence intensity changes of three sensor elements
towards 14 avonoids were obtained and subjected to different
machine learning techniques to obtain a suitable analysis
method,36–42 and the results are summarized in Fig. 4B. Among
these eight algorithms, RF, KNN and LDA showed high accuracy
in training and prediction models.43–47 We divided our data sets
at a ratio of 6 : 4 (∼60% training and ∼40% testing). Their
accuracies were RF (98.8% training, 98.2% prediction), KNN
(97.6% training, 98.2% prediction) and LDA (100% training,
96.4% prediction), respectively.

Apart from its excellent accuracy, LDA is also a fantastic
visualization tool, allowing us to clearly observe the ngerprint
features of each analyte.16,48 As shown in Fig. 4C, LDA converts
the training matrix (3 sensor elements × 14 avonoids × 6
replications) into canonical scores according to their Maha-
lanobis distance. The rst two canonical factors represented
94.03% of the total variation. The canonical scores were clus-
tered into 14 groups. All avonoids were differentiated to
generate their unique ngerprints. Meanwhile, we observed
8886 | RSC Adv., 2023, 13, 8882–8889
that the ngerprints of 14 avonoids were independently
clustered according to their structural similarity. Flavones
were located on the le-hand side of the plot, avanones were
in the middle, while isoavones were located on the right-
hand side of the plot (Tables S1–S4†). Generally, the more
complex the mechanism of action, the better the discrimina-
tion effect on the same type of analytes. Therefore, compared
with the highly specic probe, it can usually act with a wide
range of substances. Thus, our sensor array is theoretically
capable of identifying multiple avonoids as well as
analogues.

3.5 Detection of different concentrations of single
avonoids

With these results in hand, we further applied such arrays to the
semi-quantitative detection of avonoids. Tangeretin and
hesperidin of different concentrations and different propor-
tions were selected for testing. The uorescence intensity (550
nm) changes of sensor elements were recorded in Fig. S16.† The
© 2023 The Author(s). Published by the Royal Society of Chemistry



Fig. 5 (A) LDA diagrams of different concentrations of hesperidin, (B) LDA diagrams of different concentrations of tangeretin, (C) LDA diagrams of
tangeretin and hesperidin in different proportions, (D) LDA diagrams for the discrimination of 14 flavonoids (50 mM) in the presence of carbo-
hydrates (5 g L−1), (E) LDA diagrams for the discrimination of 14 flavonoids (50 mM) in the presence of carboxylic acids (5 g L−1).
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training matrix (3 sensor elements × tangeretin/hesperidin, 5
concentrations × 6 replicates) was converted into ve canonical
scores with LDA. As shown in Fig. 5A and B, the concentrations
were linearly mapped in the LDA plot, clear discrimination
dependence on the concentration of tangeretin and hesperidin
were observed. The blind test achieved 100% accuracy (Tables
S5–S10†). The results suggested that the array should allow for
rigorous semi-quantitative detection. Additionally, different
proportions of tangeretin and hesperidin mixtures can be easily
distinguished with 100% accuracy (Fig. 5C and Tables S1–S13†).
These experiments demonstrated the great potential of our
sensor array in discriminating avonoids with different
compositions, contents and mixing states in real-life
applications.
3.6 Anti-interference tests for the detection of avonoids

We further investigated the anti-interference capability of our
array. Flavonoids are the main components of red wines, which
also contain other components, such as carbohydrates and
organic acids. We performed anti-interference experiments by
mimicking the other major components of red wines. First,
carbohydrates (D-glucose and D-fructose, 5 g L−1) were selected
as interferents to investigate the effect on the detection system.
LDA converted the training matrix (3 sensor elements × 14
avonoids × 6 replicates, Fig. 5D and S17A†) into canonical
scores according to their Mahalanobis distance, and the sensor
array can still accurately distinguish between 14 avonoids with
an accuracy of 93%. Meanwhile, blind tests showed 95%
© 2023 The Author(s). Published by the Royal Society of Chemistry
accuracy. Furthermore, the array was still able to distinguish
between 14 avonoids in the presence of carboxylic acids (tar-
taric acid and malic acid, 5 g L−1), with model and prediction
accuracies of 92% and 91%, respectively (Fig. 5E and S17B†).
Therefore, our sensor array possesses excellent anti-interference
capability, indicating the potential of sensor array for applica-
tions in complicated environments (Tables S14–S19†).
3.7 Application in real samples

To evaluate the applicability of this PDI-based sensor array in
real samples, eight red wines of various types and brands were
selected for the study (Fig. 6B). Cabernet Sauvignon blended
wine (wine 1, wine 2), Tempranillo wine (wine 3, wine 4), Syrah
wine (wine 5), Merlot wine (wine 6, wine 7) and Pinot Noir wine
(wine 8) were selected for uorescence detection analysis to
evaluate the practicality of the sensor array (Fig. 6B). The
uorescence intensity changes of three sensor elements
towards 8 wines were obtained (Fig. 6A and Tables S20–S22†).
The data was analyzed by 8 machine learning algorithms
(Fig. 6C), GPC (98% training, 91% prediction) and LDA (98%
training, 91% prediction) showed high accuracy in training
and prediction models. 8 red wines were grouped by grape
varieties on LDA diagrams (Fig. 6D and S18†). It is worth
noting that the ngerprints of red wines can be clustered
according to the similarity of the grape types that were fer-
mented. The above experimental results showed that the
designed sensor array has tremendous potential in wine
analysis and quality control.
RSC Adv., 2023, 13, 8882–8889 | 8887



Fig. 6 (A) Fluorescence response pattern ((I− I0)/I0) obtained by PDIs (10 mM, aqueous solution) treated with 8 red grape wines. Each value is the
average of six independent measurements; each error bar shows the standard error (SE) of these measurements, (B) detailed information of the
eight commercial red wines used in this study, (C) comparison of prediction accuracies for 8 red grape wines by employing different models
including NB, LR, GPC, DT, RF, SVM, KNN and LDA on the training set and test set, (D) LDA 2D plot for the first two factors obtained with an array
of the PDIs (10 mM, aqueous solution) with 95% confidence ellipses. Each point represents the response pattern for a single wine to the array.
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4 Conclusions

In summary, we have successfully constructed a PDI-based uo-
rescence sensor array that enabled the rapid and highly sensitive
identication of 14 avonoids through a rational structural design
strategy. With the addition of avonoids, the supramolecular
assembly abilities of PDI could be disturbed, leading to sensitive
changes in uorescence intensity. In combination with machine
learning algorithms, our designed sensor array can qualitatively
and quantitatively discriminate 14 kinds of avonoids with 100%
accuracy. Furthermore, our designed array possessed exquisite
ability in distinguishing eight red wines, demonstrating that the
combination of sensor arrays and machine learning algorithms
accelerate the development of foodmixtures detection, even when
the exact ingredients of the mixtures are not known.
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