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SUMMARY

Patients with Smoldering Multiple Myeloma (SMM) are observed until progression, but early 

treatment may improve outcomes. We conducted a Phase II trial of Elotuzumab, Lenalidomide, 

and Dexamethasone (EloLenDex) in patients with high-risk SMM and performed single-cell RNA 

and T cell Receptor (TCR) sequencing on 149 bone marrow (BM) and peripheral blood (PB) 

samples from patients and healthy donors (HD). We find that early treatment with EloLenDex 

is safe and effective and provide a comprehensive characterization of alterations in immune cell 

composition and TCR repertoire diversity in patients. Importantly, we show that the similarity of a 

patient’s immune cell composition to that of HD may have prognostic relevance at diagnosis and 

post-treatment, and the abundance of GZMK+ CD8+ effector memory T cells may be associated 

with treatment response. Lastly, we uncover similarities between immune alterations observed in 

the BM and PB, suggesting that PB-based immune profiling may have diagnostic and prognostic 

utility.

eTOC blurb

Sklavenitis-Pistofidis et al. report results of a Phase II trial of EloLenDex in patients with high-risk 

smoldering multiple myeloma and use single-cell RNA sequencing to identify biomarkers of 

outcome. They show that immune cell composition impacts progression-free survival and that 

blood-based immune profiling can detect immune alterations observed in the marrow.

Graphical Abstract
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INTRODUCTION

Multiple Myeloma (MM) is an incurable plasma cell malignancy that resides in the bone 

marrow (BM) and is preceded by an asymptomatic condition called Smoldering MM (SMM) 

(Weiss et al., 2009). Approximately half of patients with SMM will progress within 5 years 

from diagnosis, but not all patients with SMM progress (Kyle et al., 2007; Mateos et al., 

2020). Therefore, patients with SMM are observed until end-organ damage occurs, which 

signifies progression to overt MM, warranting treatment (Visram et al., 2021). Two Phase 

III clinical trials, testing either Lenalidomide/Dexamethasone (LenDex) or Lenalidomide 

alone (Len) versus observation, demonstrate that early treatment can significantly prolong 

progression-free survival (PFS) in patients with high-risk SMM (HRSMM) and, in one 

instance, sustainably prolong overall survival (OS) (Mateos et al., 2013; Mateos et al., 2022; 

Lonial et al., 2020). Nevertheless, identifying the patients who will benefit the most from 

early intervention remains an unmet clinical need (Kim et al., 2020; Mateos et al., 2015). 

Currently, patients at high risk of progression are identified using prediction models based 

on clinical variables (Kyle et al., 2007; Pérez-Persona et al., 2007), such as the “20–2-20” 
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model developed by the International Myeloma Working Group (IMWG), which stratifies 

patients based on the BM plasma cell infiltration (>20%), the amount of M-protein in 

the serum (>2 g/dL), and the free light-chain ratio (>20) (Mateos et al., 2020). In recent 

years, it has become evident that genomic biomarkers detected through cytogenetics and 

sequencing, including translocations t(4;14) and t(14;16), gain or amplification of chr1q, 

del13q, del17p, translocations and copy number abnormalities (CNAs) involving MYC, and 

KRAS mutations, may be associated with faster progression in untreated patients with SMM 

(Mateos et al., 2020; Bustoros et al., 2020; Misund et al., 2019; Boyle et al., 2021; Bolli 

et al., 2018; Oben et al., 2021). Moreover, tumor-extrinsic microenvironmental factors are 

important for disease control at early stages, and the BM immune microenvironment is 

altered in both composition and functionality in patients with SMM (Zavidij et al., 2020; 

Bailur et al., 2019; Dhodapkar et al., 2003; Das et al., 2016). However, little is known 

about the role of BM-based immune profiling in patient prognostication and the utility of 

peripheral blood (PB) for the detection of immune alterations related to disease.

Here, we conducted a Phase II trial of the immunotherapeutic anti-SLAMF7 antibody, 

Elotuzumab, in combination with LenDex (EloLenDex, E-PRISM study; ClinicalTrials.gov 

Identifier: NCT02279394), to determine the utility and safety of early immunotherapy in 

patients with HRSMM. Moreover, we performed correlative DNA sequencing studies on 34 

BM samples at baseline (BL), and single-cell RNA and T cell receptor (TCR) sequencing 

studies on 149 serial BM and PB samples from patients and healthy donors (HD) to identify 

genomic and immune biomarkers for optimal patient selection and monitoring of response to 

treatment.

RESULTS

Early treatment with Elotuzumab, Lenalidomide & Dexamethasone is safe and effective in 
patients with HRSMM

We conducted a Phase II trial of EloLenDex in patients with HRSMM (n=51). Enrollment 

in E-PRISM was based on the HRSMM criteria by Rajkumar et al. (Rajkumar et al., 2015). 

The primary objective was to determine the proportion of patients with HRSMM who were 

progression-free at 2 years post-treatment. Patients were initially randomized 1:1 to Arm 

A (EloLenDex, n=40) or Arm B (EloLen, n=11), but accrual to Arm B was halted early, 

as the difference in exposure to steroids was negligible between the two arms due to the 

premedication requirement for Elotuzumab infusion. Treatment was planned for 24 cycles 

followed by observation until progression to overt MM. Stem cell collection was allowed for 

eligible patients. The baseline characteristics of all patients are listed in Table 1, and the trial 

schema and CONSORT diagram are shown in Figures S1A and S1B.

Treatment-related Grade 3–5 adverse events with at least 10% frequency were 

hypophosphatemia (n=19/51; 37%), neutropenia (n=13/51; 26%), and lymphocytopenia 

(n=11/51; 22%). Thromboembolic events occurred in 6 patients (12%), and no secondary 

leukemias were observed. Treatment-related Grade 2 adverse events with at least 10% 

frequency and all Grade 3–5 events are summarized in Table 2 and Figure S1C. Overall, two 

deaths occurred: one due to uncontrolled diabetic ketoacidosis, bowel perforation, and septic 
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shock at cycle 19, and another due to hypertensive crisis and myocardial infarction at cycle 

24 (Figure S1B).

Median follow-up for all 51 patients was 50 months (range 2–67). Six patients had PFS 

events defined as progression to myeloma-defining events (n=4) or death (n=2). Median PFS 

and OS were not reached for the 46 patients who were eligible for the study and received at 

least two full treatment cycles; PFS was 88.7% at 48 months (90% CI, 81.2–96.9%) and OS 

was 95.6% at 48 months (90% CI, 90.6–100%) (Figure S1D). The Kaplan-Meier curve of 

PFS for eligible patients who received at least two cycles is depicted in Figure 1A.

The overall response rate (Partial Response or better) for these patients was 87% (n=40). 

Three patients (7%) experienced a best overall response of Stringent Complete Response, 1 

patient (2%) achieved Complete Response, 14 patients (30%) achieved Very Good Partial 

Response, 22 patients (48%) achieved Partial Response, and 6 patients (13%) achieved 

Minor Response (Table S1).

Overall, approximately 13% (n=6) of all patients and 20% (n=3) of patients defined as 

having HRSMM by the 20–2-20 criteria experienced progression or death within 4 years of 

follow-up (Figure S1E). Without treatment, approximately 80% of patients with HRSMM as 

defined by the 20–2-20 criteria are expected to progress within 5 years of follow-up (Mateos 

et al., 2020). Taken together, our data suggest that early treatment with EloLenDex was safe 

and effective in patients with HRSMM.

Genomic predictors of PFS in patients with HRSMM treated with EloLenDex

We observed three main categories of progression in our cohort: those who developed 

overt myeloma (n=4), those who were treated based on evolving biomarkers and the 

physician’s decision (n=4), and those who presented biochemical progression (n=19). In 

two of the four individuals who developed overt MM and had samples available for testing, 

we performed whole-exome sequencing (WES) on CD138+ BM cells taken at BL and 

end of treatment (EOT), to assess whether early treatment had selected for aggressive 

subclones with high-risk genetic abnormalities. Both individuals had high-risk genomic 

features at BL: progressor patient #1 had del17p and a TP53 single nucleotide variant 

(SNV), while progressor patient #2 had t(4;14), del1p, and TP53 and KRAS SNVs. We did 

not observe selection of subclones carrying abnormalities associated with increased risk of 

progression (Figure 1B, 1C). In progressor patient #1, several large-scale CNAs increased 

in frequency with treatment, although none are known to be associated with an increased 

risk of progression. In both patients, we observed a post-treatment contraction of potentially 

aggressive subclones that harbor amp1q (progressor patient #1), and del1p and a TP53 SNV 

(progressor patient #2), suggesting that in some instances, early treatment can alter the 

tumor’s clonal dynamics.

A total of 15 patients showed no evidence of clinical or biochemical progression, suggesting 

that our patient selection can improve further to identify patients with HRSMM who are 

more likely to benefit from early treatment. Although we were underpowered, we did not 

observe a significant association between 20–2-20 risk staging and PFS in our cohort or 

the treatment arm in Lonial et al. (Figure S2A and S2B) (Lonial et al., 2020). To search 
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for genomic biomarkers of PFS, we performed WES (n=31) and deep targeted sequencing 

(DTS) (n=3) on BM samples collected at BL to detect coding genetic alterations and explore 

their association with patient outcomes (Figure 1D). Testing events present in at least 3 

individuals, del17p, t(4;14), and del16q were significant predictors of PFS at the univariate 

level, while del17p was an independent predictor of progression at the multivariate level 

(Figure 1E, 1F). These results are consistent with our prior study showing that del17p is 

a risk factor for progression in untreated patients with SMM (Bustoros et al., 2020), and 

suggest that patients with SMM and del17p may need a different or longer regimen to 

prolong PFS, a hypothesis that requires validation in larger cohorts.

Comprehensive characterization of changes in the BM immune cell composition and TCR 
repertoire of patients with HRSMM

Next, we set out to explore whether immune profiling can help to identify patients with 

HRSMM who are more likely to benefit from EloLenDex. We performed single-cell RNA 

sequencing on 211,374 immune cells from 149 samples of 34 patients enrolled in E-PRISM 

[60 CD138- BM mononuclear cell samples at BL (n=28), cycle 9 day 1 (C9D1, n=16) and 

EOT (n=16), and 68 PB mononuclear cell (PBMC) samples at BL (n=33), cycle 4 day 

1 (C4D1, n=1), C9D1 (n=13), and EOT (n=21)], and 21 age-matched HD [BM samples 

(n=11) and PBMCs (n=10)]. We also integrated E-PRISM data with our cohort of non-

trial patients with MGUS (n=6), low-risk SMM (LRSMM, n=3), HRSMM (n=12), newly 

diagnosed MM (NDMM, n=9), and HD (n=11) (Zavidij et al., 2020), reaching a total of 

190 samples and 231,608 cells (Figure 2A–L). For 9 samples, we thawed two cell vials and 

found that the inter-replicate divergence of immune cell composition was significantly lower 

compared to cross-replicate estimates, suggesting that the quantification of immune cell 

composition is reproducible (Figure S3A). To assess whether RNA-based quantification is 

consistent with protein-based estimates, we performed cytometry by time-of-flight (CyTOF) 

on 17 BM samples (10 drawn at BL, and 7 drawn at EOT) with matched single-cell 

RNA sequencing data and observed significant positive correlation between protein-based 

and RNA-based abundance estimates (Figure S3B). By comparing the BM immune cell 

composition of patients with HRSMM at BL (n=32) and HD (n=19) with at least 100 

cells, we observed a significant increase in the abundance of naïve and memory CD4+ T 

cells (including Tregs, Th1, Th2, and Th17 cells), granzyme B (GZMB)-expressing CD8+ 

T cells, and CD56dim NK cells in patients, and a significant decrease in the abundance of 

CD14+ Monocytes, plasmacytoid DCs (pDCs), AXL+ SIGLEC6+ dendritic cells (AS-DCs), 

progenitor cells, and immature B cells (Figure 3A). Furthermore, we observed a relative 

decrease in the abundance of mucosa-associated invariant T cells (MAITs) in patients, a 

shift from CD14+ to CD16+ monocyte subpopulations, and a bias towards memory B cells 

(Figure S4A–C).

Next, we set out to characterize changes in the TCR repertoire of patients compared to HD 

and performed single-cell TCR sequencing on 91 samples with available single-cell RNA 

sequencing data. Specifically, we profiled 70 BM and PB patient samples drawn before and 

after therapy [BM: 14 at BL, 3 at C9D1, 2 at EOT; PB: 26 at BL, 8 at C9D1, 17 at EOT], 

and 21 samples from HD [BM:11; PB:10]. To control for variability in T cell numbers which 

can impact diversity estimates, we randomly sampled a range of T cell numbers (n=75–300) 
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from each sample over 100 iterations, and averaged repertoire diversity estimates across 

iterations. We observed that patient BM TCR repertoires were significantly less diverse 

compared to those of HD, as assessed by the Chao index, independent of the number of 

T cells sampled (Figure 3B). The observed decrease in repertoire diversity appeared to be 

driven by broad low-level clonal expansion, rather than a targeted expansion of a few large 

clones dominating the repertoire (Figure 3C). Regulatory T cells and GZMB+ CD8+ TEM 

cells from patient BM were more likely to be part of an expanded clone compared to those 

from HD BM, where clonal expansion was contained within cytotoxic populations (Figure 

3D, 3E). This finding is consistent with the increase in Treg and GZMB+ CD8+ TEM 

cell abundance observed in patient BM and suggests that these cells may be expanding in 

an antigen-specific manner. To gain more insight into the phenotype of clonally expanded 

GZMB+ CD8+ TEM cells in patients, we compared their gene expression to that of clonally 

expanded GZMB+ CD8+ TEM cells from HD (Figure 3F). Compared to HD, clonally 

expanded cytotoxic T cells from patients expressed higher levels of ZNF683 (which encodes 

the tissue residence transcription factor Hobit), senescence markers KLRG1 and B3GAT1 
(which encodes CD57), genes associated with effector function (ITGB1, ITGA4, ITGB2, 

ITGB7, S100A4, S100A10, S100A6, TNF, PRF1, CCL5, GZMH), and genes induced by 

interferon signaling (STAT1, XAF1, IFITM1, IFITM2), and lower levels of genes related to 

the induction of potent cytotoxic responses (GZMB, FGFBP2, TBX21, PRDM1, EOMES, 

IFNGR1) or granule formation and degranulation (VAMP2, OCD1, SRGN). These results 

suggest that, despite their increased abundance in patient BM, cytotoxic T cells may be 

dysfunctional. Further mechanistic studies are required to determine the impact of these 

changes on T cell functionality and tumor clearance.

Immune reactivity at BL and post-therapy immune normalization are associated with 
longer PFS in patients with HRSMM treated with EloLenDex

We hypothesized that the similarity of a patient’s BM immune cell composition to that 

of HD could be harnessed for prognostication. We trained a Naïve Bayes classifier with 

10-fold cross-validation and 100 iterations on a training set of 41 BM samples from patients 

and HD, to predict the presence of malignancy based on the composition of the BM 

immune microenvironment; the classifier achieved 94% accuracy in the testing set (n=16, 

Figure S5A). We then computed a weighted sum score of the product of each cell type’s 

proportion and its corresponding signed importance to the classification (“normalization 

score”), and classified patients based on the median score at BL as reactive (least normal-

like) or non-reactive (most normal-like) (Figure 4A). Patients who were classified as reactive 

at BL had significantly longer PFS (Figure 4B). Immune reactivity was independent of 

the patients’ risk stage but was significantly associated with the presence of del17p, 

although patients with del17p were only a fraction of the non-reactive group (Figure 4C, 

4D). Plasmacytoid DCs and the pro-inflammatory Cytokine+ CD14+ Monocytes, which 

expressed genes related to neutrophil chemotaxis and acute inflammation, were among the 

top 3 cell types with the highest importance for a sample to be classified as normal-like. 

Aside from monocytes, this pro-inflammatory signaling was also active in DCs and pDCs 

(gene expression signature GEX-6), and together with pDC signaling (GEX-13), they were 

significantly associated with shorter PFS (Figure 4E, S5B–E). As expected, reactive patients 

had significantly lower abundance of pDCs and Cytokine+ CD14+ Monocytes (Figure 
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S5F). By comparing gene expression levels between reactive and non-reactive patients, we 

observed a significant downregulation of exhaustion markers (TOX, TNFRSF9, TNFSF9, 

PDCD1, NR4A2, NR4A3) in GZMK+ CD8+ TEM cells of reactive patients, along with 

an upregulation of markers associated with long-lived memory effectors (IL7R and CD27), 

markers associated with terminal effectors (GZMB, GZMH, FCGR3A, FGFBP2, NKG7), 

and markers associated with functionality (IFNG, TNF), a profile consistent with long-lived 

memory effector cells of increased potency (Figure 4F). Moreover, in GZMB+ CD8+ TEM 

cells from reactive patients, we observed an upregulation of exhaustion markers (TIGIT, 

LAG3) and the senescence marker KLRG1, along with higher levels of IFNG and TNF, and 

downregulation of cytotoxicity markers (GZMB, FCGR3A, PRF1), a profile consistent with 

exhausted, senescent terminal effector cells (Figure 4G). Consistent with the hypothesis that 

these cells may be exhausted due to chronic antigenic stimulation, GZMB+ CD8+ TEM cells 

from reactive patients were more likely to be clonally expanded, compared to those from 

non-reactive patients (Figure 4H). Collectively, these results suggest that immune reactivity 

captures a patient subpopulation with decreased pro-inflammatory myeloid signaling, long-

lived GZMK+ effector memory cells of increased potency, and clonally expanded, exhausted 

GZMB+ terminal effectors.

On average, patients showed significantly higher normalization scores at EOT, compared to 

BL (Figure 4I). Using a threshold of 0.1 based on the distribution of change in normalization 

scores at EOT, we defined a state of post-therapy immune normalization (PIN) and classified 

four patients who showed no or minimal increase in their normalization score at EOT as 

PIN- (Figure 4J, 4K). Patients who achieved PIN at EOT (PIN+) had significantly longer 

PFS (Figure 4L), suggesting that PIN may be important for prognostication. Of note, both 

patients who had del17p out of the 12 patients with matched BL and EOT BM samples were 

classified as PIN−, so the effect of PIN on PFS needs to be deconvolved from that of del17p 

in larger cohorts.

Higher abundance of Granzyme K-expressing CD8+ T cells is associated with longer PFS 
in patients with HRSMM treated with EloLenDex

We previously showed that patients with HRSMM have decreased abundance of memory-

like GZMK+ CD8+ TEM cells in favor of more mature GZMB+ effectors and that lower 

levels of memory T cells in vivo are associated with shorter OS (Zavidij et al., 2020). 

Therefore, we hypothesized that higher levels of GZMK+ CD8+ TEM cells in the BM 

may be associated with prolonged PFS in our patients. Consistent with our prior findings, 

patients with HRSMM showed a significant shift from GZMK+ to GZMB+ CD8+ TEM 

cells in the BM, with a significant decrease in the abundance of GZMK+ CD8+ TEM cells 

relative to all cytotoxic T cells at BL compared to HD (Figure 5A). However, the average 

levels of GZMK expression in patient T cells increased significantly at EOT, reflecting a 

significant increase in GZMK-expressing cells, which was validated by CyTOF (Figure 5B, 

S6A). In the PB, where we were powered to investigate changes in T cell clonality at EOT, 

we found that GZMK+ CD8+ TEM cells from EOT samples were more likely to belong 

to expanded clones (Figure 5C). Together, these results suggest that this subpopulation 

may play a role in response to immunotherapy. Compared to GZMB+ CD8+ TEM cells 

in our cohort, GZMK+ CD8+ TEM cells showed higher expression of CXCR4 and lower 
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expression of S1P receptors, suggesting preferential retainment of GZMK+ CD8+ TEM cells 

within the BM (Figure 5D). Indeed, by comparing the abundance of these cells between 

matched BM and PB patient samples, we observed enrichment of GZMK+ CD8+ TEM cells 

in the BM (Figure 5E). This enrichment was also observed in BM samples from HD (data 

not shown), suggesting that this may be a physiological bias. Furthermore, GZMK+ CD8+ 

TEM cells had higher expression of canonical exhaustion markers TOX, TIGIT, TNFRSF9 
(encoding 4–1BB), and TNFSF9 (encoding 4–1BBL), as well as markers of long-lived 

memory effector cells, including TCF7 (encoding Tcf-1), CD27 and CD28, a phenotype 

consistent with progenitor exhausted T cells (TPEX) (Figure 5D). Indeed, at the protein 

level, GZMK+ CD8+ TEM cells were shown to be a major source of PD-1 expression 

within cytotoxic T cells in patients (Figure 5F, S6B), in accordance with the suspected 

TPEX phenotype. Progenitor exhausted T cells maintain their proliferative capacity, can 

differentiate into terminal effector cells, and are thought to mediate the clinical benefits 

observed in patients treated with immune checkpoint inhibitors (Galletti et al., 2020). In 

our cohort, patients with a higher abundance of GZMK+ CD8+ TEM cells had significantly 

longer PFS in response to EloLenDex (Figure 5G). Similarly, patients with higher average 

GZMK expression across their T cells had significantly longer PFS (Figure S6C). Of note, 

no association was observed between the abundance of GZMK+ CD8+ TEM cells and age 

(Wilcoxon, p=0.55), while age had no effect on PFS (Log-rank, p=0.7).

Collectively, these results suggest that GZMK+ CD8+ TEM cells may be important for 

disease control and response to therapy in patients with SMM.

PB-based immune profiling accurately detects alterations in immune cell composition and 
TCR repertoire diversity observed in the BM

Next, we set out to determine whether PB can be used reliably for immune profiling 

of patients with HRSMM, as BM biopsies are invasive and carry risk, which precludes 

regular patient testing. First, we compared the Jensen-Shannon divergence of immune 

cell composition between matched and unmatched PB and BM samples and observed 

significantly lower divergence in matched pairs, which was also low overall, suggesting 

that matched PB samples reflect BM composition well (Figure 6A). In PCA space, where 

PC1 captured the compositional changes observed in patient BM (Figure 6B), HD PB 

and BM samples clustered together on the right end of the axis, while patient PB and 

BM samples clustered together on the opposite side of PC1 (Figure 6C). This observation 

suggests that the compositional differences between patient and HD PB are similar to those 

observed in patient BM compared to HD BM. Indeed, when we compared PB samples 

between patients and HD, we recovered compositional changes originally discovered in 

our BM-based analysis (Figure 6D). However, patient PB showed a significantly lower 

abundance of CD16+ monocytes, which are enriched in patient BM.

Contrary to HD where CD16+ monocytes are significantly enriched in the PB compared 

to the BM, in patients there was no significant difference between the PB and the BM, 

suggesting that these cells may be homing to the patient BM (Figure S7). Lastly, consistent 

with what we observed in patient BM, patient PB TCR repertoire showed significantly lower 

diversity compared to HD, suggesting that the observed effect on diversity may not be 
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constrained to the tumor microenvironment (Figure 6E). These results suggest that certain 

immune biomarkers may be measurable in the PB. Consistent with what we saw in the 

BM, higher BL levels of signature GEX-13 in patient PB were associated with significantly 

shorter PFS (Figure 6F). Of note, neither signature GEX-6 nor immune reactivity were 

prognostic in PB, suggesting that PB-based immune profiling may not be able to replace 

BM-based profiling entirely.

Lastly, given the concordance of compositional changes between patient BM and PB, we 

tested whether immune profiling of PB samples alone could enable the diagnosis of an 

individual with HRSMM. Remarkably, a classifier that we trained on BM composition data 

(this time excluding progenitor cells, which are primarily encountered in the BM) to infer 

the presence of SMM was able to correctly classify nearly all our patient and HD PB 

samples with an accuracy of 97% (Figure 6G). Collectively, our findings demonstrate that 

PB-based immune profiling accurately detects compositional changes observed in the BM 

and may hold diagnostic and prognostic potential.

DISCUSSION

While early treatment has been shown to delay progression in patients with HRSMM, 

identifying those who will benefit the most remains an unmet clinical need (Mateos et al., 

2015; Kim et al., 2020). Despite the availability of clinical and genomic biomarkers of 

progression (Kyle et al., 2007; Mateos et al., 2020; Pérez-Persona et al., 2007; Bustoros et 

al., 2020; Misund et al., 2019; Boyle et al., 2021; Bolli et al., 2018; Oben et al., 2021), 

little is known about the role of BM immune dysregulation in disease progression and 

response to treatment or the diagnostic and prognostic utility of PB-based immune profiling. 

Here, we conducted a Phase II trial to determine the utility and safety of early treatment 

with EloLenDex in patients with HRSMM and performed correlative DNA sequencing and 

single-cell RNA and TCR sequencing studies to develop genomic and immune biomarkers 

for optimal patient selection and monitoring of response to treatment. The overall response 

rate was 87%, PFS was 88.7% at 48 months (90% CI, 81.2–96.9%), and OS was 95.6% at 

48 months (90% CI, 90.6–100%). Although this trial did not have an observation arm, this 

progression rate (~13% at 4 years) is substantially lower than that determined for patients 

with HRSMM in large observational studies which showed progression rates of 50% or 

more within 2 years from diagnosis and 70–80% within 5 years from diagnosis (Rajkumar 

et al., 2015; Kyle et al., 2007; Mateos et al., 2020). This was also true for patients in 

our trial who were high-risk by the 20–2-20 criteria and who showed a 20% progression 

rate within 4 years of follow-up. Treatment was well-tolerated with minimal toxicity of 

Grade 3 or higher, including hypophosphatemia and cytopenias, which were expected. As 

this was a single-arm study, we cannot comment on how the response rate and PFS of 

EloLenDex compares to those of LenDex alone, and future clinical trials randomizing these 

2 regimens would be required to answer this. Overall, EloLenDex was deemed safe and 

effective, with no evidence of aggressive subclone selection post-treatment in two patients 

who progressed. In fact, in those patients, we observed a regression of subclones harboring 

either amp1q or del1p and a TP53 SNV. Although preliminary, these results suggest that 

in some instances early treatment could alter the clonal dynamics in patients who progress, 

which could potentially result in improved OS in the long-term. These findings would need 
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to be validated in larger trials with more available samples pre- and post-therapy. Aggressive 

tumor biology, as determined by the presence of del17p, was a significant predictor of 

shorter PFS in patients treated with EloLenDex in our cohort. Therefore, patients with 

HRSMM and del17p may perhaps need different regimens or longer duration of therapy.

Patients with HRSMM showed increased abundance of naïve and memory CD4+ T cells, 

GZMB+ CD8+ TEM cells, and CD56dim NK cells, and decreased abundance of CD14+ 

monocytes, and pDCs compared to HD. Furthermore, their TCR repertoire diversity was 

significantly lower compared to HD, due to broad low-level clonal expansion, which was 

mostly observed in GZMB+ CD8+ TEM cells and Tregs. Further studies are required to 

determine the functionality and antigen specificity of these immune cell populations and 

their role in controlling or promoting disease progression.

Importantly, we found that the similarity of a patient’s BM immune microenvironment 

to that of HD may be useful for prognostication. At BL, patients with the least normal-

like immune cell composition, presumed to be reactive to the tumor, had significantly 

longer PFS under treatment with EloLenDex. Reactive patients had lower proportions of 

pro-inflammatory myeloid cells and pDCs, and had long-lived GZMK+ CD8+ TEM cells of 

increased potency, and clonally expanded, exhausted GZMB+ CD8+ TEM cells. Granzyme 

K-expressing cells, which are normally enriched in the BM, had a phenotype compatible 

with progenitor exhausted cells, and clonally expanded post-treatment, suggesting that they 

may play a role in response to therapy. Patients with a higher abundance of GZMK+ CD8+ 

TEM cells in their BM showed significantly longer PFS. Furthermore, patients whose BM 

normalization scores increased post-therapy (Post-therapy Immune Normalization, PIN), 

had significantly longer PFS. This finding suggests that immune profiling may be useful 

to monitor response to treatment, although validation in larger cohorts and with different 

regimens is required.

Lastly, immune profiling currently requires a BM biopsy, which precludes its regular use for 

prognostication. Remarkably, by comparing PB from patients and HD, we identified nearly 

the same alterations in immune cell composition and TCR repertoire diversity as those seen 

in our BM-based comparisons. Moreover, a classifier trained to detect the presence of SMM 

based on BM immune profiling was able to correctly classify nearly all PB samples from 

patients with SMM and HD. Our results suggest that PB-based immune profiling may have 

diagnostic and prognostic utility, although it may not be able to entirely replace BM-based 

profiling.

Collectively, our results demonstrate the utility and safety of EloLenDex in patients 

with HRSMM, provide a comprehensive characterization of alterations in immune cell 

composition and TCR repertoire diversity in patient BM and PB, nominate immune 

biomarkers for optimal patient selection and assessment of response to treatment, and 

demonstrate that PB-based immune profiling may have diagnostic and prognostic utility in 

patients with SMM.
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STAR METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents 

should be directed to and will be fulfilled by the lead contact, Irene Ghobrial 

(irene_ghobrial@dfci.harvard.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• Raw single-cell RNA and TCR sequencing data generated for this study have 

been deposited in dbGaP (phs002476.v1.p1). Raw single-cell RNA sequencing 

data generated in Zavidij et al. have been deposited in dbGaP (phs001323.v3.p1). 

Raw whole-exome sequencing data generated for this study have been deposited 

in dbGaP (phs001323.v3.p1).

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Clinical trial and patients

Study design: The primary objective of this trial was to determine the proportion of patients 

with high-risk SMM (HRSMM) who were progression-free at 2 years post-treatment. 

Secondary objectives included safety and toxicity, time to progression, overall response 

rate, duration of response, and overall survival.

From January 2015 to November 2016, patients were enrolled at Dana Faber 

Cancer Institute, Boston, Massachusetts; Beth Israel Deaconess Medical Center, Boston, 

Massachusetts; Carolina HC Levine Cancer Institute, Charlotte, North Carolina; Colorado 

Blood Cancer Institute, Denver, Colorado; Eastern Maine Medical Center, Bangor, Maine; 

Karmanos Cancer Institute, Detroit, Michigan; Marlene and Stewart Greenbaum Cancer 

Center, Baltimore, Maryland; Massachusetts General Hospital, Boston, Massachusetts; 

Newton-Wellesley Hospital, Newton, Massachusetts; St. Francis Hospital, Hartford, 

Connecticut; and University of Chicago, Chicago, Illinois.

Patients were eligible for this trial if they were 18 years of age or older, had an Eastern 

Cooperative Oncology Group performance status of 0 to 2, and were classified as HRSMM. 

HRSMM was defined according to Rajkumar et al. as the presence of BM clonal plasma 

cells ≥10% (but less than 60%) and at least one of the following: serum M protein ≥ 

3.0 mg/dL; IgA SMM; immunoparesis with reduction of two uninvolved immunoglobulin 

isotypes; serum involved/uninvolved free light chain ration ≥ 8 (but less than 100); evolving 

type of SMM, i.e., progressive increase in M protein level; BM clonal plasma cells 50–60%; 

abnormal cell immunophenotype (≥ 95% of BM plasma cells are clonal) and reduction of 

one or more uninvolved immunoglobulin isotypes; t(4;14) or del17p or amp1q; increased 
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circulating plasma cells; MRI with diffuse abnormalities or 1 focal lesion (≥ 5mm); PET-CT 

with one focal lesion (≥ 5mm) with increased uptake without underlying osteolytic bone 

destruction (Rajkumar et al., 2015). Furthermore, patients had to show no evidence of 

myeloma-defining events as described by the IMWG (Rajkumar et al., 2021), and the 

following laboratory values had to be shown within 28 days prior to registration: Absolute 

Neutrophil Count ≥ 1000/mm3, Platelets (PLT) ≥ 50,000/mm3, Total Bilirubin ≤ 2.0mg/dL, 

Aspartate and Alanine Aminotransferase (AST/ALT) ≤ 3 × ULN, and an estimated 

creatinine clearance > 50mL/min/1.73m2. Patients with other concurrent chemotherapy, 

immunotherapy, radiotherapy, or any ancillary therapy considered investigational, serious 

medical or psychiatric illness likely to interfere with participation, a diagnosis or treatment 

for another malignancy within 2 years of enrollment were excluded.

All patients provided informed consent. The review boards of all participating centers 

approved the study in accordance with the Declaration of Helsinki and the International 

Conference of Harmonization Guideline for Good Clinical Practice. This study was 

registered as a phase II study with ClinicalTrials.gov NCT02279394.

Study treatment: This phase II trial used a single-stage design to assess the efficacy of the 

combination of Elotuzumab and Lenalidomide with or without Dexamethasone in patients 

with HRSMM. Patients were randomized 1:1 to Arm A (EloLenDex) or Arm B (EloLen), 

based on the stratification factors described below.

In the treatment schema a cycle is defined as 28 consecutive days. In cycles 1 and 2, 

10mg/kg of intravenous push Elotuzumab was administered on days 1, 8, 15, and 22. In 

cycles 3–4, it was administered on days 1 and 15. A 25mg dose of oral Lenalidomide 

was administered on days 1–21 of each cycle. In Arm A, 40mg of oral Dexamethasone 

was administered on days 1, 8, 15, and 22 in cycles 1 and 2 and on days 1, 8, and 15 in 

cycles 3–8. Patients on maintenance treatment (cycles 9–24) were administered 20mg/kg 

of intravenous push Elotuzumab on day 1 and 15mg oral Lenalidomide on days 1–21. All 

patients received thromboprophylaxis.

In consideration of the Mateos et al. study, investigators were given the option to allow high-

dose Dexamethasone to be resumed during maintenance due to biochemical progression 

(progressive increase in serum M-spike by at least 25% with an absolute increase of at least 

0.5 g/dL or urine M-spike by at least 25% with an absolute increase of at least 200 mg/24 

hours, on two successive evaluations, as determined by the IMWG response criteria or 

documented progression by serum free light chain criteria in the absence of serum or urine 

involvement; Mateos et al., 2013). A total of 5 patients were given Dexamethasone during 

maintenance. The dosing schedule for this followed that of cycles 3–8, with 8mg intravenous 

push and 32mg oral Dexamethasone on days 1 and 15 and 40mg oral Dexamethasone on day 

8.

Stratification Factors: Originally, the study aimed to secondarily determine whether 

Dexamethasone is beneficial or detrimental in this immunotherapy regimen for SMM. 

Therefore, the study was designed with two arms, meant to serve as two independent phase 

II studies to determine the activity of EloLen with or without Dexamethasone in the patient 
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population. Patients were stratified by age (≥65 vs <65) and high-risk cytogenetics [t(4;14), 

t(14;16), del17p, TP53 mutation, amp1q] (high-risk, low-risk, FISH failure) before being 

randomly assigned to one of the two arms.

Arm B accrual: Arm B accrual was halted in April 2016 for two reasons: 1) treatment 

with Elotuzumab required premedication with high doses of steroids to avoid infusion 

reactions and the difference in Dexamethasone dosing between the two arms (approximately 

4mg Dexamethasone per dosing day) for the first 2 cycles was not significant, and 2) a 

publication by Paiva et al. (Paiva et al., 2016). demonstrated that once weekly high-dose 

Dexamethasone does not have a detrimental effect on the immune system in patients with 

SMM in a clinical trial of Lenalidomide and Dexamethasone. The patients who were 

originally enrolled in Arm B remained in Arm B until the completion of therapy.

Cohort details: In total, 51 patients enrolled and received at least one dose of 

treatment. Three patients were deemed ineligible soon after they received treatment, due 

to misdiagnosis (overt myeloma with lesions on PET-CT, amyloidosis, and light chain 

deposition disease), and were excluded from further analysis. Two patients received less 

than 2 full cycles of treatment and were excluded from our overall response assessment 

and correlative studies but were included for toxicity assessment. Out of the 46 patients 

remaining in the cohort, 29 were female and 17 were male, while the median age at 

registration was 62 (range: 29–77).

Imaging: To assess the extent of disease involvement, imaging studies were performed at 

both BL and EOT. All patients had either an MRI with a skeletal survey or a PET/CT scan.

Efficacy and Safety Assessments: Toxicities were monitored throughout the study and 

for up to 30 days after the last dose of the study drug. Adverse events (AEs) were 

graded according to the National Cancer Institute Common Terminology Criteria for 

Adverse Events (CTCAE; version 4.0; Bethesda, MD). In addition, neuropathy symptoms 

were assessed using the FACT/GOG-Neuropathy questionnaire (Version 4.0). Efficacy was 

measured using the IWMG criteria for response.

Treatment discontinuation and patient disposition: The median duration of treatment was 

24 cycles (range= 1–24). In total, 40 of 51 patients received all 24 cycles. Of those, 30 

(75%) were in arm A and 10 (25%) in arm B. Of the 10 patients in Arm A who did not 

complete all 24 cycles, 3 patients discontinued therapy during the induction cycles due to 

an incorrect initial diagnosis (one participant had myeloma lytic lesions on a PET scan that 

was originally misread at an outside institution and re-checked at DFCI afterward; another 

participant had amyloidosis that was missed at the time of enrollment but was discovered 

after 3 cycles of therapy—the patient achieved VGPR on therapy before being removed from 

the protocol and placed on active amyloidosis therapy with a proteasome inhibitor-based 

approach; one final patient had light chain deposition disease, which was identified on a 

kidney biopsy after one cycle of therapy—the patient was then removed from the protocol to 

start active therapy). Six other patients discontinued therapy due to toxicity and withdrawal 

of consent or physician decision. Patient disposition is visualized in Figure S1B.
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Overall, two deaths occurred. One patient had Type I Diabetes and was hospitalized for 

Diabetic ketoacidosis (cycle 19). This was at a time when the patient was not receiving 

Dexamethasone. The patient developed diverticulitis, bowel perforation, and sepsis and died 

due to sepsis. The second patient was on the last cycle of therapy when they experienced 

uncontrolled hypertension due to non-compliance with their hypertension medications. They 

then developed heart failure and died of hypertensive crisis.

METHOD DETAILS

Sample processing—Bone marrow (BM) aspirate and peripheral blood (PB) samples 

were collected in EDTA tubes, and mononuclear cells (BMMCs & PBMCs) were isolated 

using Red Blood Cell Lysis Buffer (ThermoFisher). Tumor and immune cells were 

then isolated by magnetic enrichment for CD138 (Miltenyi Biotec), according to the 

manufacturer’s instructions, and cryopreserved in FBS with 10% DMSO.

Whole-Exome and Deep Targeted Sequencing—We performed WES on baseline 

BM aspirate specimens from 37 study participants. Tumor DNA was extracted from CD138+ 

cells from the patients’ BM. For germline control, DNA was obtained from PBMCs. 

Genomic DNA was extracted using the QIAamp DNA mini kit (QIAGEN) according to 

the manufacturer’s protocols, and the DNA concentration was quantified using PicoGreen 

dsDNA Assay kit (Life Technologies). WES libraries were prepared by Agilent SureSelect 

XT2 Target Enrichment kit (V5+UTR probes). For three individuals, libraries for deep 

targeted sequencing (DTS) were prepared using SureSelect XT Reagent Kits (Agilent) and 

an in-house bait set targeting 117 genes, comprising pan-cancer driver genes and frequently 

mutated genes in MM (Bustoros et al., 2020). Lastly, for two out of four patients who 

progressed to overt myeloma, tumor samples were available at the time of progression and 

were also studied by WES (Roche MedExome+) to characterize the landscape of clonal 

evolution under treatment. All sequencing was performed on the Illumina HiSeq 4000 

platform at the Genomics Platform of the Broad Institute of MIT & Harvard. Six WES 

samples were excluded from analysis due to low tumor purity (<15%). Our final baseline 

cohort comprised 31 WES samples and 3 DTS samples.

Single-cell RNA sequencing—We performed single-cell RNA sequencing on 149 

CD138− BMMC and PBMC samples from 34 patients enrolled in the E-PRISM trial. 

Specifically, we sequenced 60 CD138− BMMC samples at BL (n=28), C9D1 (n=16), and 

EOT (n=16), 68 PBMC samples at BL (n=33), C9D1 (n=13), C4D1 (n=1), and EOT 

(n=21)], 11 CD138− BMMC samples from age-matched HD, and 10 PBMC samples from 

age-matched HD. For 23 patients, BL BM and PB samples were matched; for 8 patients, 

C9D1 BM and PB samples were matched; for 13 patients EOT BM and PB samples were 

matched (Figure S8A). Of note, in contrast to our patient samples, HD BM and PB samples 

were from different individuals.

For library preparation, we used Chromium Single Cell 3’ Gene Expression (n=40) and 

Chromium Single Cell 5’ Gene Expression kits (n=109) by 10X Genomics. Specifically, 

we performed 3’ single-cell RNA sequencing on 40 CD138− BMMC samples drawn at 

BL (n=11), C9D1 (n=13) or EOT (n=9), and PBMC samples drawn at BL(n=4) and C9D1 
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(n=3). We performed 5’ single-cell RNA sequencing on 98 CD138- BMMC samples drawn 

at BL (n=17), C9D1 (n=3) or EOT (n=7), and PBMC samples drawn at BL (n=29), C4D1 

(n=1), C9D1 (n=10) or EOT (n=21). We also performed 5’ single-cell RNA sequencing 

on 11 CD138- BMMC samples and 10 PBMC samples from HD. All 3’ libraries were 

sequenced on a HiSeq2500 instrument and all 5’ libraries were sequenced on a NovaSeq 

6000 instrument at the Genomics Platform of the Broad Institute of MIT & Harvard.

Reproducibility of cell type abundance quantification via single-cell RNA 
sequencing: To assess the reproducibility of our cell type quantification, we thawed two 

cell vials for each of 9 samples; for five of them, both replicate libraries were prepared using 

the same technology (3’- or 5’-end sequencing) (technical replicates); for four of them, each 

replicate library was prepared with a different technology (technology replicates).

Single-cell TCR sequencing—We performed single-cell TCR sequencing on 91 

samples with available single-cell RNA sequencing data (Figure S8A). Specifically, we 

profiled 70 BM and PB patient samples drawn before and after therapy [BM: 14 at BL, 

3 at C9D1, 2 at EOT; PB: 26 at BL, 8 at C9D1, 17 at EOT], and 21 samples from 

HD [BM:11; PB:10]. Complementary DNA generated from barcoded CD138− immune 

cells using Chromium Single Cell 5’ Gene Expression and V(D)J enrichment kits by 10X 

Genomics was subjected to V(D)J enrichment and library preparation and sequenced on 

a NovaSeq 6000 instrument at the Genomics Platform of the Broad Institute of MIT & 

Harvard.

Cytometry by Time-of-Flight (CyTOF)—Metal-tagged antibodies used for the mass 

cytometry panel are listed in the Key Resources table. In-house conjugation of Granzyme K 

antibody was performed with Maxpar labeling kit per manufacturer instructions (Fluidigm). 

All antibodies were used per the manufacturer’s recommendation (Fluidigm).

Cryopreserved patient CD138− BM Mononuclear Cell (BMMC) samples were thawed, 

counted using AO/PI, and pelleted by centrifugation at 400g for 10 minutes. Cells were 

then incubated in 103Rh viability stain for 15 minutes, washed in CyFACS, and incubated 

with undiluted Human TruStain FcX for 10 min for Fc receptor blocking. Antibody master 

mix was applied to the cell suspension for 30 minutes, washed, and fixed/permeabilized 

with FoxP3 Fixation/Permeabilization Concentrate and Diluent following manufacturer’s 

guidelines (eBioscience). A mix of intracellular antibodies prepared with 1X Perm Wash 

was added to each sample and incubated for 30 minutes. Next, cells were washed with 1X 

Perm Wash, and incubated overnight at 4°C in FoxP3 Fixation/Permeabilization Concentrate 

and Diluent, containing 191/193Ir DNA Intercalator. Prior to acquisition, samples were 

transferred to 5 mL round-bottom polystyrene tubes with cell strainer caps, washed and 

filtered with Cell Staining Buffer (CSB), Cell Acquisition Solution (CAS), and resuspended 

in CAS supplemented with EQ Four Element Calibration Beads (1:10).

All mass cytometry data was collected on a HeliosTM Mass Cytometer (Fluidigm). The 

instrument was tuned using CyTOF Tuning Solution according to the Helios User Guide 

(Fluidigm, p. 60–68). A brief overview of tuning steps includes Pre-XY Optimization, Mass 

Calibration, XY Optimization, DV Calibration, Dual Calibration, Gases/Current Calibration, 
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and QC report. EQ Four Element Calibration Beads (1:10 in CAS) were used according to 

the manufacturer protocol before and during acquisition.

QUANTIFICATION AND STATISTICAL ANALYSIS

Clinical trial statistical analysis & biomarker discovery—Patient baseline 

characteristics were summarized as the number of patients or median values. Responses to 

study treatment were reported as proportions with 90% exact binomial confidence intervals.

We assessed the proportion of patients alive and progression-free at 2 years, compared to 

the previously published rate for HRSMM—a median time to progression of only 1.9 years 

according to the Kyle et al. model (Kyle et al., 2007). Therefore, we decided that for this 

study, a 2-year progression-free survival rate of 50% would not be considered promising; 

instead, a progression-free survival rate of 70% or higher would be a promising result.

This phase II study used a single-stage binomial design. With a sample size of 39 patients, 

the probability of concluding that the treatment is effective if the true rate is 50% was 

0.10 and was >0.9 if the true rate is 70%. Assuming an ineligibility rate of 5%, we aimed 

to accrue 41 patients per Arm to the trial. Time to response (TTR) was measured from 

treatment initiation to the date the response was first observed. Duration of response was 

measured from response to progressive disease (PD) or death, censored at the date of 

last disease assessment for those who did not progress. Time-to-progression (TTP), and 

progression-free survival (PFS) were measured from the time of treatment initiation to event 

(PD for TTP; PD or death for PFS). Patients without event were censored at the date of last 

disease assessment for both TTP and PFS. If non-protocol therapy, excluding erythropoietin, 

was added prior to an event, patients were censored in the time-to-event analyses at the 

initiation of non-protocol therapy. Six total patients had progression-free survival events 

defined as progressive disease to myeloma-defining events (n=4) or death (n=2). Another 

four patients (n=4) were treated based on worsening biomarkers and the physician’s decision 

and were considered progressors for our correlative studies only. The Kaplan-Meier method 

was used to estimate time to event and the log-rank test was used to compare time to event. 

Cox proportional hazards regression was employed to assess the significance of variable 

associations with outcome. Continuous variables, such as cell type proportions, were tested 

as such and were dichotomized based on the median for Kaplan-Meier curves. Statistical 

analyses were performed using R version 4.1.3. All results with p-values < 0.05 were 

considered statistically significant. The Benjamini-Hochberg method was used to correct for 

multiple hypothesis testing, when appropriate. Our data cut-off was November 7, 2020.

ECOG Randomized Trial of Lenalidomide versus Observation in patients with 
HRSMM: Due to the unavailability of patient-level information, survival data were 

recapitulated from published Kaplan-Meier (KM) plots in Lonial et al (Lonial et al., 2020). 

The curves and at-risk tables were extracted as raster images, and their x and y coordinates 

were digitized using the commercial software DigitizeIt (https://www.digitizeit.xyz/). Using 

the algorithm proposed by Guyot et al., the coordinates and number of patients at-risk 

during each time interval were used to estimate censored, time-to-event data (Guyot et al., 

2012). With the patient-level data, we were able to re-generate the survival curves, at-risk 
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tables, log-rank tests, etc. In particular, we used the KM method to explore the effect of the 

20–2-20 risk stratification system on PFS in the Lenalidomide arm of the ECOG trial and 

the log-rank test to compute the p-value.

WES analysis—The output from Illumina software was processed by the Picard data 

processing pipeline to yield BAM files containing well-calibrated, aligned reads. We 

utilized the Getz Lab CGA WES Characterization pipeline developed at the Broad 

Institute to call, filter, and annotate somatic mutations and copy number variation. 

The pipeline employs the following tools: MuTect, ContEst, Strelka, Orientation Bias 

Filter, DeTiN, AllelicCapSeg, MAFPoNFilter, RealignmentFilter, ABSOLUTE, GATK, 

PicardTools, Variant Effect Predictor, Oncotator (Cibulskis et al., 2013; Cibulskis et al., 

2011; Saunders et al., 2012; Costello et al., 2013; Taylor-Weiner et al., 2018; Landau et 

al., 2013; Lawrence et al., 2014; Carter et al., 2012; McKenna et al., 2010; McLaren et al., 

2016; Ramos et al., 2015). SNVs and CNVs were further cleaned with a custom PoN made 

of matched normal samples (Lawrence et al., 2014), and a bait bias filter was developed to 

correct for observed artifacts in the SNV data, as described before (Bustoros et al., 2020). 

ABSOLUTE was applied to estimate sample purity, ploidy, and absolute somatic copy 

numbers, which were used to infer the CCFs of point mutations and CNVs from the WES 

data, following the framework previously described (Carter et al., 2012).

Single-cell RNA sequencing analysis

Analysis workflow: CellRanger v.5.0.1. was used for FASTQ file extraction and generation 

of count matrices (Zheng et al., 2017). We integrated E-PRISM data with our cohort of 

non-trial patients with MGUS (n=6), low-risk SMM (LRSMM, n=3), HRSMM (HRSMM, 

n=12), newly diagnosed MM (NDMM, n=9) and HD (n=11) (Zavidij et al., 2020). Non-trial 

patients with SMM were risk-stratified based on the original Mayo Clinic criteria (Kyle et 

al., 2007), and NDMM was diagnosed based on the CRAB criteria.

We performed ambient RNA correction with SoupX; doublet detection with Scrublet, 

scDblFinder, and SCDS; normalization with Scran; and integration with Harmony 

(correcting for sample ID and technology) (Young et al., 2020; Wolock et al., 2019; Germain 

et al., 2021; Bais et al., 2019; Lun et al., 2016; Korsunsky et al., 2019). Samples prepared 

with 3’-end or 5’-end technology mixed well in PCA, demonstrating successful integration 

across technologies (Figure S8B). Droplets were deemed to be doublets when at least 2 out 

of four methods classified them as such and they were only removed from consideration 

when they clustered together and co-expressed markers of multiple cell types. Droplets 

containing dying cells with more than 15% mitochondrial gene expression were removed 

before clustering. Clusters with higher mitochondrial and ribosomal gene expression that 

clearly separated from well-annotated clusters and lacked interpretable expression markers 

were removed downstream. In total, we profiled 211,374 immune cells (~1,419 cells/

sample), comprising T cells, NK cells, B cells, Monocytes, Dendritic cells, and progenitor 

populations. For each cell population (T cells, NK cells, B cells, Monocytes, Dendritic 

cells, progenitor cells), feature selection, dimensionality reduction, and clustering were also 

performed separately, to identify cell subpopulations (see below for annotation strategy).
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Cell type/subtype proportions were calculated as the fraction of cells belonging to said type/

subtype out of all immune cells unless otherwise specified. For comparisons of cell type 

proportions, samples with fewer than 100 cells were removed from consideration. Proportion 

changes were assessed with Wilcoxon’s rank-sum tests or paired t-tests when comparing 

serial timepoints within the same patients or matched BM and PB samples. When multiple 

hypotheses were tested, p-values were corrected using the Benjamini-Hochberg approach. 

For survival analysis, cell type abundance was discretized based on the median.

Differential expression was performed using Wilcoxon’s rank-sum tests at the single-cell 

level and DESeq2 at the pseudobulk level (Love et al., 2014). Genes with more than 3 

counts in at least 10 cells were considered for differential expression. For pseudobulk 

analyses, genes with more than 10 counts in at least 25% of samples were considered for 

differential expression. P-values were corrected for multiple hypotheses testing using the 

Benjamini-Hochberg approach.

Cell type and subtype annotation: Gene expression markers used for cell type and subtype 

annotation can be found in Figure 2. Scran-normalized expression values were Z-scored and 

the mean Z-score per cluster was used to plot the heatmaps.

Within the T cell compartment, we identified naïve CD8+ (CD8+ TN) and CD4+ T cells 

(CD4+ TN) (LEF1, TCF7, SELL, CCR7), central memory CD8+ (CD8+ TCM) and CD4+ 

T cells (CD4+ TCM) (FAS, IL7R, HNRNPLL), helper type 1 T cells (Th1) (CD4, CXCR3, 

GZMA, GZMK, LYAR, CCL5), helper type 2 T cells (Th2) (CD4, GATA3, KRT1, CCR4), 

helper type 17 T cells (Th17) (CD4, RORA, KLRB1, CCR6, TNFRSF4), regulatory T cells 

(Treg) (CD4, IL2RA, FOXP3, CTLA4, RTKN2, IKZF2), mucosa-associated invariant T 

cells (MAIT) expressing a mixture of Th17 and Th1 markers, as well as the specific marker 

SLC4A10 (MAIT annotation was confirmed by invariant TCR chain usage in overlapping 

TCR sequencing data), two effector memory CD8+ T cell subpopulations, GZMK+ CD8+ 

TEM cells (GZMK, CMC1, XCL1, XCL2) and terminal effector cells (GZMB+ CD8+ 

TEM) (GZMB, GZMH, FGFBP2, PRF1, FCGR3A, GNLY). Furthermore, we identified a 

subpopulation of CD4+ TN cells expressing genes related to response to interferon-gamma 

(IFN+ CD4+ TN) (MX1, ISG15, IFI6, IFI44L), two separate subpopulations expressing 

genes related to response to interferon type-I (IFN-I+ CD4+ TEM & IFN-I+ CD8+ TEM) 

(IFIT1, IFIT2, IFIT3, TNF), and two activated CD4+ subpopulations expressing genes 

of the AP-1 module and general activation markers (aCD4+ TN & aCD4+ TCM) (JUN, 

FOS, FOSB, CD69, DUSP1, TSC22D3). Lastly, we identified a second CD4+ regulatory 

subpopulation, clustering adjacent to Tregs and expressing high levels of CTLA4 and MHC-

II-encoding genes, a profile most consistent with effector Tregs, which we annotated as 

eTregs.

Within the NK cell compartment, we identified CD56bright NK cells (CD56br NK) 

(NCAM1), CD2, XCL2, KLRC1, IL7R, SELL, GZMK), CD160+ NK cells expressing 

markers of CD56bright NK cells as well as CD160, SPRY2, and TOX2, CD56dim NK 

cells (CD56dim NK) (GZMB, GZMH, FGFBP2, PRF1, NKG7, CX3CR1, GNLY, B3GAT1) 

and gamma-delta T cells (Tgd) (CD3D, TRGV9, TRDV2). Furthermore, we identified a 

subpopulation of NK cells expressing genes related to response to interferon-gamma (IFN+ 
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NK) (MX1, ISG15, IFI6, IFI44L), a separate subpopulation expressing genes related to 

response to interferon type-I (IFN-I+ NK) (IFIT1, IFIT2, IFIT3, TNF), and an activated 

subpopulation with characteristics of both CD56bright and CD56dim NK cells (aNK), 

expressing genes of the AP-1 module and general activation markers (FOS, JUN, JUNB, 

CD69, CXCR4, DUSP1, NFKB1, NFKB2).

Within the B cell compartment, we identified immature B cells (IBC) (MME, CD19, 

CD38, IGHM, SOX4, TCL1A, RAG1, RAG2, VPREB1, IGLL1), transitional B cells (TBC) 

(CD19, MS4A1, CD38, IGHM, IGHD, TCL1A, IL4R, SELL), naïve B cells (NBC) (CD19, 

MS4A1, IGHM, IGHD, IL4R, SELL, CCR7, FCER2, ABCB1), a population expressing 

higher levels of CXCR5, CD83, and TNFSF9 (encoding 4–1BBL), called germinal center 

B cells (GBC), marginal zone B cells (MZB) (CD1C, IGHM, PLD4, LINC01857), atypical 

B cells (ABC) (TBX21, ITGAX, FCRL5, ENC1, TNFRSF1B, SOX5, MPP6), and two 

populations of class-switched memory B cells: one expressed higher levels of TCF7 and 

was called resting memory B cells (BRM), while the other expressed higher levels of 

FAS, CD86, ITGB1, S100A10, and TOX, and was called effector memory B cells (BEM). 

Lastly, we identified a subpopulation of B cells expressing genes related to response to 

interferon-gamma (IFN+ BC) (MX1, ISG15, IFI6, IFI44L).

Within the monocyte compartment, we identified three main subpopulations of classical 

(CD14+) monocytes: a subpopulation expressing higher levels of SELL, VCAN, S100A8, 

S100A9, and S100A12 (SELL+ CD14+ Mono), a subpopulation expressing higher levels 

of genes encoding MHC-II peptides (HLA-DR++ CD14+ Mono), and a subpopulation 

expressing pro-inflammatory factors, such as IL1B, CXCL8, CXCL2, CCL3, CCL4, and 

CEBPD (Cytokine+ CD14+ Mono). A fourth subpopulation expressed CD14, SELL, VCAN, 

S100A8, S100A9, S100A12, as well as MPO, AZU1, ELANE, PRTN3, and RNASE2, 

and was called “Neutrophil-like Mono”. Furthermore, we identified non-classical CD16+ 

Monocytes (FCGR3A, MS4A7, CSF1R, CDKN1C, RHOC), intermediated CD14+ CD16+ 

Monocytes expressing CD14, FCGR3A (which encodes CD16), and high levels of MHC-

II-encoding genes, a CD16+ subpopulation of macrophages expressing high levels of 

complement factor C1q (C1QA, C1QB, C1QC, SELENOP, SDC3), and a population of 

monocytes expressing genes related to response to interferon-gamma (IFN+ Mono) (MX1, 

ISG15, IFI6, IFI44L).

Within the dendritic cell compartment, we identified canonical dendritic cells type 2 (cDC2) 

(FCER1A, CLEC10A, CD1C and MHC-II encoding genes), canonical dendritic cells 

type 1 (cDC1) (CLEC9A, C1orf54, IDO1, CADM1, CLMK, BATF3), monocyte-derived 

dendritic cells (MoDC) (FCER1A, CLEC10A, CD1C, CD14), plasmacytoid dendritic cells 

(pDCs) (LILRA4, IL3RA, GZMB, IRF4, SERPINF1), and AXL+ SIGLEC6+ dendritic 

cells (AS-DCs) (AXL, SIGLEC6, ADAM33, LTK). Furthermore, we identified cycling 

subpopulations of pDCs and cDC2s (cpDC, ccDC2), activated subpopulations expressing 

the pro-inflammatory markers IL1B, CXCL8, and CCL3 (acDC2, apDC), and a MoDC 

subpopulation expressing genes related to response to interferon-gamma (IFN+ MoDC) 

(MX1, ISG15, IFI6, IFI44L).
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Lastly, within the progenitor cell compartment, we identified hematopoietic stem cells 

(HSC) (CD34, CD164, BEX1, BEX2, AVP, CRHBP, HLF), multi-potent progenitor 

cells (MPP) (CD34, CD33, MPO, FLT3, MZB1), granulocyte-monocyte progenitor cells 

(GMP) (MPO, AZU1, PRTN3, ELANE, LYZ), monocyte-dendritic cell progenitors (MDP) 

(MPO, LYZ, IRF8, LY86, RUNX2, LILRB4), megakaryocyte-erythroid progenitors (MEP) 

(GATA2, FCER1A, ITAG2B, CSF2RB), erythroid progenitors (EP) (GATA1, EPOR, CA1, 

CA2, EPCAM, KLF1, BLVRB, APOC1, APOE), megakaryocyte progenitors (MKP) 

(GATA2, FCER1A, ITGA2B, PLEK, GP1BB, PPBP, PF4, GP9), basophil-mast cell 

progenitors (BMP) (MS4A2, MS4A3, TPSAB1, TPSB2, HDC, CLC, PRG2), common 

lymphoid progenitors (CLP) (FLT3, TRBC2, MZB1, LTB, JCHAIN, ADA, BCL2), pro-B 

cells (Pro-B) (DNTT, MME, PAX5, RAG1, RAG2), and pre-B cells (Pre-B) (VPREB1, 

IGLL1, JCHAIN, TCL1A). Within this compartment, we also identified a small population 

of stroma cells (CXCL12, LEPR, KITLG, VCAM1, COL1A1, COL1A2, CCL2).

Gene expression signature discovery & annotation: A Bayesian version of Non-negative 

Matrix Factorization (NMF) was performed using SignatureAnalyzer on the count matrix 

of the top 5,000 highly variable genes for gene expression signature discovery (Kasar et 

al., 2015; Kim et al., 2016). Half-normal priors were imposed for both the W (gene by 

signature) and the H matrix (cell by signature), as we reasoned that a single gene could 

contribute towards multiple expression programs and a single cell could be described by 

multiple expression programs. The tool was run 30 times and the run that resulted in a 

K (i.e., number of signatures) equal to the mode of the K distribution and had the lowest 

objective was selected for downstream analysis (Figure S5B). Gene expression signature 

markers were nominated by (i) multiplying the W matrix by the sum of signature activity 

across all cells in the H matrix, (ii) calculating the fraction of each signature’s activity 

for each gene (matrix F) and (iii) ranking genes based on the product of W (i.e., how 

strongly each gene contributes to the signature) and F (i.e., how strongly each signature 

contributes to the gene). A total of 26 gene expression (GEX) signatures were extracted 

(Figure S5C): GEX-1 corresponded to cytokine signaling associated with GZMK-expressing 

subpopulations (XCL1, XCL2, CCL3, CCL4); GEX-2 captured naïve T cells (TCF7, LEF1, 

TXNIP, IL7R, LTB, NOSIP); GEX-3 captured dendritic cells (CLEC10A, FCER1A, CD74, 

HLA-DRA, HLA-DRB1); GEX-4 captured B cells (CD19, MS4A1, IGHM, IGHD, CD79A, 

CD79B); GEX-5 was associated with ferritin heavy and light chain expression (FTH1, 

FTL) and was primarily active in myeloid cells; GEX-6 corresponded to pro-inflammatory 

signaling (IL1B, CXCL8, CXCL2, CEBPD) and was primarily active in myeloid cells; 

GEX-7 corresponded to genes induced by interferon-gamma (MX1, STAT1, XAF1, IFI6, 

IFI44L, ISG15) and was active in T cells, B cells, NK cells, and monocytes; GEX-8 was 

associated with thymosin expression and the alpha and beta chains of the TCR (TMSB4X, 

TMSB10, TRAC, TRBC1), and was primarily active in T cells; GEX-9 was associated with 

histone 1 gene expression (HIST1H1C, HIST1H1D, HIST1H1E) and was primarily active 

in dendritic cells; GEX-10 was associated with metabolic programming (GLUL, SLC43A2, 

SLC25A37) and hypoxia-related signaling (HIF1A, TIMP1, NEAT1), and was primarily 

active in myeloid cells; GEX-11 corresponded to CD14+ monocytes (CD14, MS4A6A, 

FCN1, LYZ); GEX-12 corresponded to immature B cells (ACSM3, IGLL1, VPREB1, 

TCL1A, MME, SOX4); GEX-13 corresponded to pDCs (LILRA4, JCHAIN, SERPINF1, 
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PTGDS, ITM2C, IRF4, IRF8); GEX-14 corresponded to a different program within classical 

monocytes (S100A8, S100A9, S100A12, VCAN); GEX-15 corresponded to Th17 cells and 

MAITs (RORA, KLRB1, CCR6); GEX-16 was associated with interferon type-I signaling 

(IFIT1, IFIT2, IFIT3, PMAIP1, OASL, TNF, HERC5, ZC3HAV1); GEX-17 was associated 

with T cell surface antigens (CD5, CD6, CD7); GEX-18 and GEX-19 were associated with 

genes of the AP-1 module (JUN, FOS, FOSB) and general activation markers (DUSP1, 

TSC22D3, NFKBIA); GEX-20 corresponded to CD16+ monocytes (FCGR3A, CDKN1C, 

SERPINA1, MS4A7); GEX-21 corresponded to cytotoxic T cells (GZMK, GZMH, NKG7, 

CD8A, CD8B); GEX-22 corresponded to GZMB+ cytotoxic T cells and NK cells (GZMB, 

GNLY, SPON2, CLIC3, FGFBP2); GEX-23 was associated with genes frequently expressed 

by myeloid cells (AHNAK, TLR2, CYBB) and was primarily active in monocytes; GEX-24 

was associated with memory CD4+ T cell expression markers (GATA3, CD28, PRDM1, 

ITGB1, ANXA1) and was primarily active in those populations; GEX-25 and GEX-26 

were associated with cytoskeleton-related genes (ACTB, ACTG1, PFN1, CFL) and were 

primarily active in myeloid cells.

For survival analysis, each sample was assigned its mean signature activity across cells, and 

mean activity was discretized based on the median.

Naïve Bayes Classifier and Normalization Scores: We trained a Naïve Bayes classifier 

using the R package caret on a training set (n=41) comprising BM samples from patients 

with HRSMM and HD, using 10-fold cross-validation and 100 iterations, following a 

parameter sweep (Kuhn et al., 2008). The input to the classifier was the composition 

matrix of cell type proportions and included data on 63 subpopulations. The accuracy in 

the testing set (n=16) was 94% (95% CI: 69.8%−99.8%, p=0.0057) (Figure S5A). For each 

cell type, we compute its importance to the classification using the varImp() function, which 

employs an ROC approach, and signed it based on whether the cell type had a higher mean 

abundance in disease (minus) or HD (plus). We then computed the weighted sum of the 

product of each cell type’s proportion and its signed importance (normalization score), and 

classified patients as reactive (least normal-like) or non-reactive (most normal-like), based 

on the median normalization score of patients at BL.

Single-cell TCR sequencing analysis—CellRanger v5.0.1 was used to extract FASTQ 

files and produce clonotype matrices (Zheng et al., 2017). When multiple alignments were 

called for a single chain, the alignment with the most UMIs was selected, and when multiple 

chains were called for a single cell barcode, the top two chains in terms of UMI counts were 

selected.

To control for variability in T cell numbers across samples, we downsampled a range of T 

cell numbers (n=75–500) from each sample with 100 iterations and averaged repertoire 

diversity estimates across iterations. Repertoire diversity was assessed using the Chao 

index, as implemented in the vegan R package. To estimate the proportion of clonotypes 

belonging to a given clone size (Rare: ≤1%; Small: >1% and <5%; Medium: ≥5% and 

<10%; Large: ≥10%) in a given sample, we downsampled 100 T cells from each sample 

with 100 iterations, converted clonotype counts into frequencies, computed the frequency of 

each clone size, and subsequently averaged the frequency of each clone size across iterations 
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and renormalized those frequencies for plotting. To estimate the probability of a given T cell 

subtype to be clonally expanded in patients or HD, we first computed stable clone sizes for 

each clonotype in each sample, by downsampling 100 T cells with 100 iterations, converting 

clonotype counts into frequencies, computing each clonotype’s clone size, and subsequently 

assigning each clonotype the mode of its clone size distribution across all iterations. Next, 

for each T cell subtype, we randomly sampled 100 cells across all patients (or HD), and for 

each iteration, we computed the frequency of rare (proportion of singletons) and expanded 

(1-rare) clonotypes. For visualization purposes, the average frequencies were renormalized 

and plotted. P-values were computed by bootstrapping with 10,000 iterations.

CyTOF analysis—The data was normalized using the FCS Processing tab of the Fluidigm 

CyTOF Software 7.0.8493. Data analysis was manually performed using FlowJo 10.7.1. For 

initial data clean-up, cell events were gated to remove dead cells and debris through biaxial 

plots of Time vs. Event Length, Beads (for removal of the EQ Calibration Beads), and 

Gaussian-derived parameters (Residual, Width, Offset). The viability stain 103Rh was used 

to gate out dead cells on PBMC populations. All viable cells were backgated on both DNA 

parameters (191Ir and 193Ir) to ensure no doublets were included. Please refer to Hallisey et 

al. for the detailed protocol (Hallisey et al., 2022).

ADDITIONAL RESOURCES

The clinical trial study design and record can be found at: https://clinicaltrials.gov/ct2/show/

NCT02279394

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• EloLenDex is associated with 4-year PFS of 89% in patients with high-risk 

SMM.

• Immune reactivity and post-therapy immune normalization (PIN) are 

associated with longer PFS.

• Higher abundance of GZMK+ cytotoxic T cells is associated with longer PFS.

• Blood-based immune profiling detects immune dysregulation associated with 

disease.
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Figure 1. 
Genomic dissection of response to early treatment with EloLenDex. A) Kaplan-Meier (KM) 

curve of Progression-Free Survival (PFS) in the E-PRISM cohort (n=46). B, C) Scatter 

plot of cancer cell fractions (CCF) at BL and EOT for progressor patients #1 and #2 

(in red: mutational drivers and CNVs associated with risk of progression). All CNVs and 

mutational drivers are visualized. D) Comutation plot visualizing the genomic landscape of 

the E-PRISM cohort at BL (n=34). E) Univariate Cox regression forest plot of genomic 

variables present in at least 3 individuals. Hazard ratio, 95% confidence interval, and 
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p-values were computed using Cox proportional hazards regression. F) KM curve of PFS in 

the E-PRISM cohort, stratified based on the presence of del17p (n=33). See also Figures S1, 

S2, and Table S1.
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Figure 2. 
BM and PB immune cell populations in the E-PRISM cohort. UMAP embeddings and 

heatmaps of gene expression markers (Mean Z-score of normalized expression) in T cells 

(A, B), NK cells (C, D), B cells (E, F), Monocytes (G, H), Dendritic cells (I, J), and 

Progenitor cells (K, L).
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Figure 3. 
Comprehensive profiling of changes in BM immune cell composition and TCR repertoire in 

patients with HRSMM. A) Volcano plot of proportion changes in the BM of patients with 

HRSMM (n=32) compared to HD (NBM, n=19) with at least 100 cells overall. P-values 

were computed with Wilcoxon’s rank-sum test and corrected using the Benjamini-Hochberg 

approach. Cell types with a q-value of <0.2 were marked with stars. B) Boxplots, violin 

plots, and scatter plots comparing BM TCR repertoire diversity, as assessed by the Chao 

index, between patients with HRSMM (n=14) and healthy individuals (NBM, n=11) given 
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different numbers of downsampled cells. Each data point represents the average diversity 

estimate across 100 random samples of the given size for a single sample; the range of 

diversity estimates across all iterations for each sample is visualized in error bars (dotted 

line). Violin outline width represents density. P-values were computed with Wilcoxon’s 

rank-sum tests. (Box: 1st quartile, median, 3rd quartile; whiskers: +/− 1.5*IQR). C) Barplots 

showing the proportion of T cells in a given BL patient sample (P, n=14) or sample from a 

HD (n=11) that were determined to belong to one of four clone size categories (Rare: ≤1%; 

Small: >1% and <5%; Medium: ≥5% and <10%; Large: ≥10%) through iterative (n=100) 

downsampling of 100 cells. The average proportion per clone size category was visualized 

and the standard deviation across iterations was depicted in solid-line error bars. D) UMAP 

embedding of HD BM (NBM) and patient BM T cells at BL with matched TCR data. T 

cells belonging to rare clonotypes (with a frequency of ≤1%) were colored in blue, while T 

cells belonging to expanded clonotypes (with a frequency of >1%) were colored in red. E) 

Barplots showing the proportion of clonotypes in a given T cell subtype across all patients 

(n=14) or HD (n=11) that belonged to one of the four clone size categories. For each T 

cell subtype, 100 cells were randomly sampled 100 times from all patients or HD, and the 

proportion of expanded (1-Rare) clonotypes was compared between patients and HD using 

bootstrapping with 10,000 iterations. The average proportion per clone size category was 

visualized and the standard deviation across iterations was depicted in solid-line error bars. 

F) Volcano plot highlighting genes that are highly expressed in expanded GZMB+ CD8+ 

TEM cells from patients (n=743, in red) compared to expanded GZMB+ CD8+ TEM cells 

from HD (n=1,074, in blue). See also Figures S3 and S4.
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Figure 4. 
Immune reactivity at BL and post-therapy immune normalization are associated with 

significantly longer PFS in patients with HRSMM under treatment. A) Barplot visualizing 

the signed importance of each cell type towards the classification. B) Kaplan-Meier (KM) 

curve of PFS in the E-PRISM cohort, stratified based on the median normalization score 

(Reactivity+: > median) (n=24). C, D) Barplots visualizing the frequency of 20–2-20 risk 

stages (C) and del17p (D) by reactivity status (LR: low-risk, IR: intermediate-risk, HR: 

high-risk). The p-value was computed with a Fisher’s exact test. E) UMAP embedding of 
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lymphocytes and myeloid cells colored by the log-scaled activity of signature GEX-6. F, 

G) Volcano plots visualizing genes that are differentially expressed in GZMK+ CD8+ TEM 

(F) and GZMB+ CD8+ TEM (G) cells of reactive patients (n=12) compared to non-reactive 

(n=12). H) Barplot visualizing the proportion of clonotypes belonging to each of four 

clone size categories per cytotoxic T cell subtype in BM samples from reactive (n=7) or 

non-reactive patients (n=7). For each T cell subtype, 100 cells were randomly sampled 100 

times from patients with or without reactivity, and the proportion of expanded (1-Rare) 

clonotypes was compared between the two using bootstrapping with 10,000 iterations. 

The average proportion per clone size category was visualized and the standard deviation 

across iterations was depicted in solid-line error bars. I) Boxplots, violin plots, and scatter 

plots visualizing normalization scores in patient BM samples drawn at BL (n=28) or EOT 

(n=16), and in HD BM samples (NBM, n=22). Violin outline width represents density. 

P-values were computed using a paired t-test for paired patient samples or Wilcoxon’s 

rank-sum test for comparisons between patients and HD. (Box: 1st quartile, median, 3rd 

quartile; whiskers: +/− 1.5*IQR). J) Boxplots, violin plots, and scatter plots visualizing 

paired normalization scores at BL and EOT from patients with HRSMM (n=12). Violin 

outline width represents density. Solid lines connect samples from patients classified as 

PIN+; dashed lined connect samples from patients classified as PIN. (Box: 1st quartile, 

median, 3rd quartile; whiskers: +/− 1.5*IQR). K) Histogram of the distribution of change in 

normalization scores between paired BL and EOT BM patient samples (n=12). The dashed 

line corresponds to the threshold used to determine the presence of PIN. L) KM curve of 

PFS in the E-PRISM cohort, stratified based on PIN status (n=12). See also Figure S5.
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Figure 5. 
A higher abundance of Granzyme K-expressing CD8+ T cells is associated with longer 

PFS in patients with HRSMM treated with EloLenDex. A) Boxplots, violin plots, and 

scatter plots visualizing the relative abundance of GZMK+ CD8+ TEM and GZMB+ CD8+ 

TEM out of all cytotoxic T cells in patient BM (n=33) at BL compared to samples from 

HD (NBM, n=22). Violin outline width represents density. P-values were computed with 

Wilcoxon’s rank-sum test. (Box: 1st quartile, median, 3rd quartile; whiskers: +/− 1.5*IQR). 

B) Boxplots, violin plots, and scatter plots visualizing the abundance of GZMK+ CD8+ 
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TEM cells by CyTOF in patient BM samples drawn at BL (n=10) and EOT (n=7). Violin 

outline width represents density. The p-value was computed with Wilcoxon’s rank-sum test, 

as these samples were not paired. (Box: 1st quartile, median, 3rd quartile; whiskers: +/− 

1.5*IQR). C) Barplot visualizing the proportion of clonotypes belonging to each of four 

clone size categories per cytotoxic T cell subtype in patient PB samples drawn at BL (n=22) 

or EOT (n=17). For each T cell subtype, 100 cells were randomly sampled 100 times from 

patients at BL and EOT, and the proportion of expanded (1-Rare) clonotypes was compared 

between the two using bootstrapping with 10,000 iterations. The average proportion per 

clone size category was visualized and the standard deviation across iterations was depicted 

in solid-line error bars. D) Volcano plot visualizing genes that are differentially expressed 

between GZMK+ CD8+ TEM and GZMB+ CD8+ TEM cells from patient BM samples 

drawn at BL (n=28). E) Boxplots, violin plots, and scatter plots comparing the abundance of 

GZMK+ CD8+ TEM cells between paired BM and PB samples drawn at BL from patients 

with HRSMM (n=22). Violin outline width represents density. Solid red lines connect 

samples that are enriched in the BM, while dashed orange lines connect samples that are 

enriched in the PB. The p-value was computed using a paired t-test. (Box: 1st quartile, 

median, 3rd quartile; whiskers: +/− 1.5*IQR). F) Scatter plot visualizing the correlation 

between the BL proportion of CD8+ T cells expressing PD-1 and those expressing GZMK 

by CyTOF (n=10). A regression line was fitted (in red) and the correlation coefficient and 

p-value were computed using Pearson’s approach. G) Kaplan-Meier curve of PFS in the 

E-PRISM cohort, stratified based on the median abundance of GZMK+ CD8+ TEM cells in 

patient BM samples at BL (n=26). See also Figure S6.
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Figure 6. 
PB-based immune profiling accurately detects alterations in immune cell composition and 

TCR repertoire diversity observed in the BM. A) Boxplots, violin plots, and scatter plots 

showing the Jensen-Shannon divergence between matched BM and PB samples (n=22), 

compared to unmatched samples. Violin outline width represents density. The p-value 

was computed using Wilcoxon’s rank-sum test. (Box: 1st quartile, median, 3rd quartile; 

whiskers: +/− 1.5*IQR). B) Heatmap of Pearson’s correlation coefficient (r) between BM 

immune cell abundance and the first 10 principal components. The x-axis was sorted by 
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decreasing PC1 value. The top panel shows the log2 fold-change in abundance between 

BM samples from patients with HRSMM (n=32) and those from HD (n=19). P-values 

were corrected using the Benjamini-Hochberg approach and stars correspond to pairs with 

significant (q<0.05) correlation. C) Two-dimensional density plot of BM and PB samples 

from patients (BM: n=26, PB: n=29) or HD (BM: n=22, PB: 10) according to PC1 and 

PC2. D) Volcano plot of proportion changes in the PB of patients with HRSMM (n=19) 

compared to HD (NPB, n=10) with at least 100 cells overall. P-values were computed with 

Wilcoxon’s rank-sum test and corrected using the Benjamini-Hochberg approach. Cell types 

with a q-value of <0.2 were marked with stars. E) Boxplots, violin plots, and scatter plots 

comparing PB TCR repertoire diversity, as assessed by the Chao index, between patients 

with HRSMM (n=22) and healthy individuals (NPB, n=10) given different numbers of 

downsampled cells. Each data point represents the average diversity estimate across 100 

random samples of the given size for a single sample; the range of diversity estimates 

across all iterations for each sample is visualized in error bars (dotted line). Violin outline 

width represents density. P-values were computed with Wilcoxon’s rank-sum tests. (Box: 1st 

quartile, median, 3rd quartile; whiskers: +/− 1.5*IQR). F) Forest plot showing the effect of 

mean BL GEX-13 activity in the PB on PFS. Hazard ratio, 95% confidence interval, and 

p-value were computed using Cox proportional hazards regression. G) Confusion matrix 

visualizing the accuracy of a Naïve Bayes classifier trained on BM samples from patients 

and HD (training set, n=41) and tested in PB samples (n=29). See also Figure S7.
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Table 1:

Baseline characteristics of patients enrolled in the E-PRISM study.

Treatment arm

Total A: Elo/Len/Dex B: Elo/Len p-value

n = 51 (%) n = 40 (78) n = 11 (22)

Aae at registration

 Median (range) 62 (29 – 79) 62 (29 – 79) 62 (44 – 75) 0.65

Sex

 Female 32 (63) 26 (65) 6 (55) 0.73

 Male 19 (37) 14 (35) 5 (45)

Race

 Black or African American 7 (14) 7 (18) - 0.59

 White 42 (82) 31 (78) 11 (100)

Ethnicity

 Non-Hispanic 48 (94) 37 (92) 11 (100)

ECOG PS

 00 - Fully Active 34 (67) 27 (68) 7 (64) 0.94

 01 - Restricted 16 (31) 12 (30) 4 (36)

 02 - Ambulatory 1 (2) 1 (2) -

Heavy chain

 IgA 14 (27) 10 (25) 4 (36) > 0.99

 IgG 29 (57) 22 (55) 7 (64)

Liaht chain

 Kappa Light Chain 2 (4) 2 (5) - > 0.99

 Lambda Light Chain 3 (6) 3 (8) -

Mayo criteria 20-2-20

 Low 21 (41) 17 (42) 4 (36) 0.47

 Intermediate 15 (29) 10 (25) 5 (45)

 High 15 (29) 13 (32) 2 (18)

Cytogenetics, FISH

t(4;14)

 Yes 6 (12) 4 (10) 2 (18)

t(14;16)

 Yes 2 (4) 1 (2) 1 (9)

17p deletion

 Yes 4 (8) 3 (8) 1 (9)

+1q amplification

 Yes 11 (22) 9 (22) 2 (18)
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Treatment arm

Total A: Elo/Len/Dex B: Elo/Len p-value

n = 51 (%) n = 40 (78) n = 11 (22)

High-risk cytogenetics

 No 30 (59) 25 (62) 5 (45) 0.70

 Yes 17 (33) 13 (32) 4 (36)
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Table 2:

Highest grade toxicity experienced on treatment for n=51 patients. AEs grade 2+ in at least 10% of patients 

and all grade 4+.

Worst grade

Total N=51 2 - Moderate 3 - Severe 4 - Life Threatening 5 - Fatal

Upper respiratory infection 22 (43) 21 (41) 1 (2) - -

Fatigue 21 (41) 18 (35) 3 (6) - -

Hypophosphatemia 21 (41) 2 (4) 16 (31) 3 (6) -

Neutropenia 15 (29) 2 (4) 12 (24) 1 (2) -

Lymphocytopenia 14 (27) 3 (6) 11 (22) - -

Hyperglycemia 12 (24) 9 (18) 2 (4) 1 (2) -

Constipation 10 (20) 9 (18) 1 (2) - -

Cytopenia 10 (20) 8 (16) 2 (4) - -

Diarrhea 10 (20) 8 (16) 2 (4) - -

Anemia 8 (16) 7 (14) 1 (2) - -

Lung infection 8 (16) 3 (6) 5 (10) - -

Hypertension 7 (14) 4 (8) 3 (6) - -

Insomnia 7 (14) 6 (12) 1 (2) - -

Thrombocytopenia 7 (14) 4 (8) 2 (4) 1 (2) -

Rash maculopapular 6 (12) 4 (8) 2 (4) - -

Cataract 1 (2) - - 1 (2) -

Cholecystitis 1 (2) - - 1 (2) -

Diabetic ketoacidosis 1 (2) - - 1 (2) -

Lymphocytosis 1 (2) - - 1 (2) -

Myocardial infarction 1 (2) - - - 1 (2)

Sepsis 1 (2) - - - 1 (2)

Cancer Cell. Author manuscript; available in PMC 2023 November 14.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sklavenitis-Pistofidis et al. Page 43

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-Human CD45 (HI30)-89Y—100 Tests Fluidigm Cat#3089003B

Anti-Human CD196/CCR6 (G034E3)-141Pr—50 Tests Fluidigm Cat#3141003A

Anti-Human CD19 (HIB19)-142Nd—100 Tests Fluidigm Cat#3142001B

Anti-Human CD45RA (HI100)-143Nd—100 Tests Fluidigm Cat#3143006B

Anti-Human CD69 (FN50)-144Nd—100 Tests Fluidigm Cat#3144018B

Anti-Human CD4 (RPA-T4)-145Nd—100 Tests Fluidigm Cat#3145001B

Anti-Human IgD (IA6–2)-146Nd—100 Tests Fluidigm Cat#3146005B

Anti-Human CD20 (2H7)-147Sm—100 Tests Fluidigm Cat#3147001B

Anti-Human CD14 (RMO52)-148Nd—100 Tests Fluidigm Cat#3148010B

Anti-Human CD56/NCAM (NCAM16.2)-149Sm—100 Tests Fluidigm Cat#3149021B

Anti-Human CD138/Syndecan-1 (DL-101)-150Nd—25 tests Fluidigm Cat#3150012C

Anti-Human TNFa (mab11)-152Sm—100 Tests Fluidigm Cat#3152002B

Anti-Human TIGIT (MBSA43)-153Eu—100 Tests Fluidigm Cat#3153019B

Anti-Human CD3 (UCHT1)-154Sm—100 Tests Fluidigm Cat#3154003B

Anti-Human CD27 (L128)-155Gd—100 Tests Fluidigm Cat#3155001B

Anti-Human IFNg (B27)-158Gd—100 Tests Fluidigm Cat#3158017B

Anti-Human CD161 (HP-3G10)-159Tb—100 Tests Fluidigm Cat#3159004B

Anti-Human/Mouse MIP1beta (D21–1351)-160Gd—100 Tests Fluidigm Cat#3160013B

Anti-Human/Mouse Tbet (4B10)-161Dy—100 Tests Fluidigm Cat#3161014B

Anti-Human FoxP3 (259D/C7)-162Dy—50 Tests Fluidigm Cat#3162024A

Anti-Human CD183/CXCR3 (G025H7)-163Dy—100 Tests Fluidigm Cat#3163004B

Anti-Human IL-17A (N49–653)-164Dy—100 Tests Fluidigm Cat#3164002B

Anti-Human CD279/PD-1 (EH12.2H7)-165Ho—100 Tests Fluidigm Cat#3165042B

Anti-Human CD197/CCR7 (G043H7)-167Er—50 Tests Fluidigm Cat#3167009A

Anti-Human CD8 (SK1)-168Er—100 Tests Fluidigm Cat#3168002B

Anti-Human CD25 (2A3)-169Tm—100 Tests Fluidigm Cat#3169003B

Anti-Human Granzyme B (GB11)-171Yb—100 Tests Fluidigm Cat#3171002B

Anti-Human CD57 (HCD57)-172Yb—100 Tests Fluidigm Cat#3172009B

Anti-Human HLA-DR (L243)-173Yb—100 Tests Fluidigm Cat#3173005B

Anti-Human CD94 (HP-3D9)-174Yb—100 Tests Fluidigm Cat#3174015B

Anti-Human Perforin (B-D48)-175Lu—100 Tests Fluidigm Cat#3175004B

Anti-Human CD127/IL-7Ra (A019D5)-176Yb—100 Tests Fluidigm Cat#3176004B

Anti-Human CD16 (3G8)-209Bi—100 Tests Fluidigm Cat#3209002B

Anti-Granzyme K antibody [GM-24C3] (ab3771) Abcam Cat#ab3771

Chemicals, peptides, and recombinant proteins

1X Phosphate-Buffered Saline without Calcium & Magnesium Mediatech Cat #21040CV
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REAGENT or RESOURCE SOURCE IDENTIFIER

10X RBC Lysis Buffer BioLegend Cat #420301

0.4% Trypan Blue Solution Life Technologies Cat#15250061

autoMACS Running Buffer - MACS Separation Buffer Miltenyi Biotec Cat#130091221

CD138 MicroBeads, Human Miltenyi Biotec Cat#130051301

DMSO Sigma Aldrich Cat #D2650

PBS, pH 7.4 (1X) Gibco Cat#10010023

Bovine Serum Albumin (BSA), 30% ± 2% in 0.85% NaCl Sigma Aldrich Cat#A7284

Sodium Azide, 10% (w/v) solution in Ultra-Pure H2O Teknova Cat#S0209

RPMI 1640 (1X) Medium Gibco Cat#11875093

Fetal Bovine Serum, heat inactivated, qualified (FBS) Gibco Cat#10438026

Antibiotic-Antimycotic (100X) Gibco Cat#15240096

UltraPure™ DNAse/RNAse-Free Distilled Water Invitrogen Cat#10977023

ViaStain™ AOPI Staining Solution Nexcelom
Biosciences

Cat#CS2–0106-5mL

Cell-IDTM Intercalator-Rh—500 μM Fluidigm Cat#201103A

Cell-IDTM Intercalator-Ir—125 μM Fluidigm Cat#201192A

Maxpar® Cell Acquisition Solution Fluidigm Cat#201237

Maxpar® Cell Staining Buffer j? Fluidigm Cat#201068

EQTM Four Element Calibration Beads Fluidigm Cat#201078

eBioscienceTM Permeabilization Buffer (10X) Invitrogen Cat#00833356

eBioscience™ Fixation/Permeabilization Concentrate Invitrogen Cat#00512343

eBioscienceTM Fixation/Permeabilization Diluent Invitrogen Cat#00522356

Human TruStain FcXTM (FcR Blocking Solution) BioLegend Cat#422302

PierceTM 16% Formaldehyde Solution (w/v), Methanol-free Thermo Scientific Cat#28906

Critical commercial assays

Maxpar® X8 Antibody Labeling Kit, 166Er—4 Rxn Fluidigm Cat#201166A

Software and algorithms

FlowJo Becton Dickinson & Company https://www.flowjo.com/solutions/
flowjo/downloads/

CyTOF Software v7.0.8493 Fluidigm https://www.fluidigm.com/software

Biological Samples

Peripheral blood and bone marrow samples collected This paper; E-PRISM trial ClinicalTrials.gov: NCT02279394

Deposited Data

Single-cell RNA sequencing (n=149) and TCR sequencing (n=91) This paper; E-PRISM trial phs002476.v1.p1

Single-cell RNA sequencing Zavidij et al., 2020 phs001323.v3.p1

Whole-exome sequencing Bustoros et al., 2020 phs001323.v3.p1
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