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ABSTRACT CRISPR systems are often encoded by many prokaryotes as adaptive
defense against mobile genetic elements (MGEs), but several MGEs also recruit CRISPR
components to perform additional biological functions. Type IV-A systems are identified
in Klebsiella plasmids, yet the distribution, characterization, and role of these plasmids car-
rying CRISPR systems in the whole Klebsiella genus remain unclear. Here, we performed
large-scale comparative analysis of these plasmids using publicly available plasmid
genomes. CRISPR-harboring plasmids were mainly distributed in Klebsiella pneumo-
niae (9.09%), covering 19.23% of sequence types, but sparse in Klebsiella species out-
side Klebsiella pneumoniae (3.92%). Plasmid genome comparison reiterated that these
plasmids often carried the cointegrates of IncFIB and IncHI1B replicons, occasionally
linked to other replicons, such as IncFIA, IncFII, IncR, IncQ, and IncU. Comparative ge-
nome analysis showed that CRISPR-carrying Klebsiella plasmids shared a conserved
pNDM-MAR-like conjugation module as their backbones and served as an important
vector for the accretion of antibiotic resistance genes (ARGs) and even virulence genes
(VGs). Moreover, compared with CRISPR-negative IncFIB/IncHIB plasmids, CRISPR-posi-
tive IncFIB/IncHIB plasmids displayed high divergences in terms of ARGs, VGs, GC con-
tent, plasmid length, and backbone structures, suggesting their divergent evolutionary
paths. The network analysis revealed that CRISPR-positive plasmids yielded fierce com-
petitions with other plasmid types, especially conjugative plasmids, thereby affecting
the dynamics of plasmid transmission. Overall, our study provides valuable insights into
the role of CRISPR-positive plasmids in the spread of ARGs and VGs in Klebsiella genus.
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K lebsiella spp., a member of the Enterobacteriaceae family, are commonly found in the
nose, throat, skin, and intestinal tract of humans and animals (1). The Klebsiella genus is

composed of a wide diversity of species, including Klebsiella pneumonia, Klebsiella oxytoca,
Klebsiella aerogenes, and other genetically related species (2). The last few years have wit-
nessed the rapid evolution of members of the genus Klebsiella, leading to the emergence
of notorious organisms that simultaneously harbor both multidrug resistance and hypervir-
ulence (MDR-hv) phenotypes (3). Such organisms are responsible for a series of hospital-
and community-associated infections, ranging from mild pneumoniae to life-threatening
diseases, such as pyogenic liver abscesses and septicemia (2). Recent data indicated that
MDR-hv Klebsiella spp. have been reported in over 10 countries spanning five continents,
which poses serious challenges to public health (1). Horizontal gene transfer (HGT) is
deemed as the most important mechanism driving the rapid rise of MDR-hv Klebsiella spe-
cies (4). Klebsiella spp. can acquire resistance and virulence-related genes via HGT mediated
by mobile genetic elements (MGEs) and evolve into MDR-hv strains, enabling themselves
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to survive in some specific and extreme conditions (e.g., antibiotic pressure) (4). Among
these MGEs, conjugative and mobilizable plasmids are the most significant contributors (5).

Clustered regularly interspaced short palindromic repeats (CRISPR) coupled with their
associated genes (cas) constitute an adaptive immunity system in prokaryotes, providing
protection against plasmids, viruses, and other MGEs (6, 7). Generally, CRISPR systems
consists of two main parts: (i) CRISPR array that is characterized by alternating repeat
sequences separated by a spacer sequence of regular length; and (ii) cas genes that
encode proteins essential for adaptive immunity, including adaptation, expression, and
interference (6). These systems have been identified in almost half of bacteria and most
archaea since they were first discovered in Escherichia coli (8). Despite the canonical
defense role, CRISPR systems exhibit remarkable diversity in CRISPR locus architecture
and Cas protein organization (9). Updated classification for CRISPR variants showed that
there are two major classes (class 1 and 2), six types (type I, II, III, IV, V, and VI) and over
45 subtypes (9). Previous work has focused primarily on the diversity and evolution of
chromosome-derived CRISPR systems, although CRISPR systems are frequently found in
different types of MGEs, including virus, plasmids, transposons, and integrative and con-
jugative elements (ICEs) (10, 11). CRISPR systems encoded by MGEs have been known to
be involved in multiple additional biological functions, such as RNA-mediated DNA trans-
position, the conflicts between or within MGEs, and the escape of host immunity (10).

In Klebsiella spp., two types of CRISPR systems have been identified, including type I
(type I-E, I-E*, and I-F) and IV (mainly type IV-A) systems (12). The type I CRISPR system is
mainly present in chromosomes, whereas the type IV system is only found in plasmids (13,
14). Because the CRISPR system is resistant to invading MGEs, it is assumed that chromo-
some-encoded CRISPR systems function in limiting the HGT of antibiotic resistance and viru-
lence mediated by plasmid. Increasing evidence has suggested that there was a negative
association between the presence of the chromosome-borne type I system and antibiotic
resistance in Klebsiella pneumonia (15). Moreover, it has been experimentally documented
that the type I-E system interfered the dissemination of blaKPC-IncF plasmids, which may
result in the uneven distribution of antibiotic resistance in different phylogenetic lineages of
Klebsiella pneumonia (16). Given the positioning preference of the type IV-A CRISPR system
for MGEs, Klebsiella plasmids might repurpose the type IV-A system to benefit their own
HGT, thus aiding in the prevalence of MDR-hv Klebsiella. Multiple studies have shown that
CRISPR-positive Klebsiella plasmids (here referred to plasmids carrying type IV-A system) con-
tained a series of antibiotic resistance genes (ARGs) that conferred resistance to clinically
available antibiotics (13, 17). Besides, the coexistence of ARGs and virulence genes (VGs) has
been identified in a CRISPR-positive Klebsiella pneumoniae plasmid isolated from a patient
with bacteremia (18). However, our current understanding of the contribution of these
CRISPR-positive plasmids to the expansion of MDR-hv Klebsiella strains is still limited due to
an insufficient plasmid number. With development of high-throughput DNA sequencing
technology, many genome and plasmid sequencing data have been delivered to public
databases (19). This provides an opportunity to perform a large-scale plasmid analysis to fur-
ther clarify the relationship between these plasmids and the propagation of ARGs or VGs.

Here, we performed a comparative genomic analysis of CRISPR-positive plasmids in
Klebsiella species, using publicly available genome and plasmid sequences. We elabo-
rated the incidence and characterization of CRISPR-positive plasmids in Klebsiella spp.,
compared their genetic configurations and the profiles of antibiotic resistance and viru-
lence determinants, and delineated the network of plasmid-plasmid competition based
on protospacer-spacer matches.

RESULTS
Global distribution of CRISPR-harboring plasmids in the Klebsiella genus. A col-

lection of 1,606 Klebsiella strains spanning 12 species were screened for the presence of
type IV-A CRISPR systems. Based on search results, 146 type IV-A systems were identified
in plasmids from 146 (9.09%, 146/1,606) Klebsiella strains, including 135 complete and 11
degenerated systems (partial or truncated cas gene clusters) (Fig. S1A and Table S3).
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Specifically, out of 1,300 Klebsiella pneumoniae genomes covering 208 defined sequence
types (STs), 134 plasmids in 134 Klebsiella pneumoniae genomes spanning 40 known STs
(19.23%, 40/208) carried the type IV-A system (Fig. S1B). The ration of CRISPR-positive
plasmids in Klebsiella pneumoniae (10.31%, 134/1,300) was significantly higher than non-
Klebsiella pneumoniae species (3.92%, 12/306, P , 0.05). Additionally, among 1,941 com-
pletely sequenced Klebsiella plasmids that were not included in NCBI genome database,
57 plasmids harbored type IV-A systems, covering 53 complete and 4 degenerated plas-
mids. Accordingly, there were a total of 203 type IV-A systems found in this study. Most
of type IV-A systems were located next to the umuD gene (Fig. S1A and Table S3). The
group II intron reverse transcriptase/maturase gene and insertion sequence (IS) were fre-
quently inserted near type IV-A systems (Table S3).

Further analysis showed that the 203 CRISPR-harboring plasmids spanned multiple
Klebsiella species, including 183 Klebsiella pneumoniae, 7 Klebsiella quasipneumoniae, 5
Klebsiella oxytoca, 4 Klebsiella variicola, 2 Klebsiella michiganensis, and 2 Klebsiella aerogenes
(Fig. 1A). Where metadata were available, geographical analysis showed that these CRISPR-
carrying plasmids were identified in 28 countries across six continents (Fig. 1C and Table
S3). The top three countries with the highest number of CRISPR-positive plasmids were
China (n = 66), USA (n = 22), and Germany (n = 13) (Fig. 1C). Besides, CRISPR-positive plas-
mid exhibited diverse isolation sources, including human clinical samples (n = 139), animals
(n = 25), hospital environments (n = 4), nonhospital environments (n = 12), and insects
(n = 2). The distribution, coupled with the wide range of isolation year (Fig. 1B), suggested
that CRISPR-positive plasmids might have globally spread for at least 1 decade.

Most CRISPR-harboring plasmids carried a pNDM-MAR-like conjugation mod-
ule. To gain further insights into genetic diversity of CRISPR-harboring plasmids, we ana-
lyzed the characterization in detail. These plasmids had various lengths (86 to 479 kb;
mean, 284 kb) and GC contents (44.49% to 51.22%; mean, 46.61%) (Fig. 2A and B).
Plasmid replicon typing showed 200 out of 203 CRISPR-positive plasmids could be desig-
nated a defined incompatibility group, with IncFIB/HI1B (n = 137) being the most preva-
lent group, followed by IncFIB (n = 23), IncHIB (n = 11), and other replicon types (Fig. 2C).
Based on average nucleotide identity (ANI), 203 CRISPR-positive plasmids were grouped
into two major clusters, cluster I and II, with each cluster exhibiting high sequence similar-
ities (Fig. 2D and Table S4). As shown in Fig. 2D, cluster I contained 195 plasmids, with
ANI ranging from 90.98% to 100%. Most plasmids (96.91%, 188/194) in cluster I harbored
IncFIB, IncHI1B replicon, or their combination with other replicons. Nine plasmids with
IncQ1 or IncU replicon were assigned to cluster II, with ANI varying from 86.26% to 100%.
These findings suggested that the CRISPR-positive plasmids in the Klebsiella genus were
almost limited to a highly homologous plasmid group, especially IncFIB/IncHI1B replicon.

Plasmid pNDM-MAR (GenBank accession no. JN420336.1) was a well-characterized
CRISPR-harboring IncFIB/HI1B plasmid, which was conjugative and harbored a series of
antibiotic resistance genes (20). To explore the genetic configuration of CRISPR-positive
plasmids in this study, we aligned the reference plasmid pNDM-MAR against each of the
CRISPR-harboring plasmids. As shown in Fig. 3, more than 123 kb of the coding
sequence (CDS) region (46.07%, 123/267) on plasmid pNDM-MAR (length: 267 kb) were
shared by 84.72% (172/203) of CRISPR-harboring plasmids, thereby supporting that
CRISPR-carrying plasmids harbored a backbone structure similar to pNDM-MAR.
Additionally, the conjugation transfer module (tra and trh locus) on the pNDM-MAR
backbone were shared by at least 97.54% (198/203) of CRISPR-carrying plasmids, regard-
less of plasmids belonging to cluster I and II (Fig. S2 and Table S5). Moreover, most pro-
teins involved in conjugation exhibited.90% amino acid identities to their counterparts
on pNDM-MAR, except for trhG in trh locus (Fig. S2 and Table S5). Gene truncation or
inactivation due to point mutation, insertion sequence, and disruption were found.
Some single proteins were occasionally absent, such as TraJ, TraH, and TraG in the tra
locus, TraU, TrhF, TraB, and TraK in the trh locus. The entire tra and trh loci were missing
in 3 and 2 plasmids, respectively. Apart from 3 plasmids lacking the tra locus, the other
200 plasmids were predicted to be conjugative by mob_typer software. The 200 conju-
gative plasmids carried genes encoding relaxases of MOBH family (Table S3).
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CRISPR-positive plasmids encode both antibiotic resistance and virulence
genes. Plasmids were known as the important vectors of antibiotic resistance genes
(ARGs). We observed that 73.40% (149/203) of the CRISPR-positive plasmids contained
at least one ARG or remnant (Fig. S3). Moreover, almost all the CRISPR-positive plas-
mids carrying ARGs (95.30%, 142/149) were deemed as putative multidrug-resistant
(MDR) plasmids, as they encoded resistance to at least three different antibiotic classes.
Besides, over three-fifths of CRISPR-positive plasmids (67.49%, 137/203) harbored at
least one b-lactam resistance gene or remnant. The carriage of carbapenem resistance
genes was particularly concerning. The blaNDM-1 genes were identified in 21.18% (43/
203) of CRISPR-positive plasmids. Notably, two plasmids carried mcr-1, mcr-2 or mcr-3
genes that conferred resistance to the last-resort antibiotic colistin.

Interestingly, we found that 40 CRISPR-positive plasmids (19.70%, 40/203) not only
carried ARGs, but also harbored a series of VGs (Fig. 4). Among these plasmids encoding

FIG 1 Global distribution of CRISPR-harboring plasmids in the Klebsiella genus. (A) Species distribution of CRISPR-harboring plasmids in the Klebsiella
genus. Each species is represented by a different color. (B) Line chart of isolation years of the strains. The x axis indicates the isolated year, and the y
axis represents the number of CRISPR-positive plasmids per year. (C) Global distribution of CRISPR-harboring plasmids in a world map. The red color
gradient represents the sample size of CRISPR-positive plasmids in each country. The host information is denoted by different colors (animal: royal blue;
hospital environment: green; human clinical: dark orchid; non-hospital environment: yellow; insect: rosy brown; unknown: deep sky blue). The host
number of CRISPR-positive plasmids per host in each country is shown.
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FIG 2 Basic characteristics of CRISPR-positive plasmids in Klebsiella genus. (A) Box plot of the length distribution. (B) Box plot of the GC
content distribution. (C) Distribution of different multireplicon plasmids. The matrix on the left indicates different replicon profiles. The

(Continued on next page)
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ARGs and VGs, nearly one-third (30%, 12/40) harbored carbapenem resistance genes,
including blaNDM-1, blaNDM-5, and blaOXA-48 (Fig. 4). Moreover, 36 plasmids carried rmpA/
rmpA2, iucABCD, and iutA, which were deemed as potential virulence genes associated
with hypervirulence phenotypes (21). A total of 10 plasmids carried both the carbape-
nem resistance genes and hypervirulence-related VGs.

Comparative analysis of IncFIB/HIB plasmids with and without CRISPR. According
to the above findings, most CRISPR-positive plasmids carried IncFIB/HI1B replicons. To
determine whether there was a genetic relationship between plasmids with and with-
out CRISPR, we collected 359 IncFIB/HI1B plasmids (covering 137 CRISPR-positive and 222
CRISPR-negative) to further compare their gene compositions. As shown in Fig. 5A and B,
the repA marker gene of IncFIB exhibited high differences between CRISPR-positive and

FIG 2 Legend (Continued)
histograms on the right represent the numbers of plasmids with the corresponding replicon profiles. (D) Heatmap diagram of paired ANI
between the 203 CRISPR-positive plasmids plotted using the seaborn module in python. The blue/red gradient indicates the estimated
paired ANI value, and the corresponding legend is shown on the top left. The plasmid replicon types and isolated species are annotated
with different colors, and corresponding legends are shown at the bottom.

FIG 3 Alignment plot of CRISPR-positive plasmids against plasmid pNDM-MAR. pNDM-MAR (GenBank accession no. JN420336.1) is used as reference for
alignment. The conjugation module (transfer region), ARGs, MGEs, and CRISPR region are denoted by green, blue, red, and orange, respectively. The orange
line in the chart represents the corresponding region of pNDM-MAR that occurred and in how many plasmids (occurrence), while the blue line represents
how many hits of the corresponding region of pNDM-MAR are identified among CRISPR-harboring plasmids (hits). The horizontal axis represents the
coordinates of pNDM-MAR opened in the repA gene of the IncFIB replicon. A zoom-in view of the conjugation module is shown at the bottom.
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-negative plasmids, with most nucleotide identities being 0% (Table S6), whereas the repA
gene of IncHI1B was highly similar, with nucleotide identities ranging from 99.83% to 100%
(Table S7). Moreover, CRISPR-positive plasmids carried more ARGs than CRISPR-negative,
but the distribution of VGs showed a completely opposite trend (Fig. 5C and D) (P, 0.001).
There were also significant differences in GC content and plasmid length among them (Fig.
5E and F) (P , 0.001). Conjugative transfer ability prediction showed CRISPR-negative plas-
mids were rarely conjugative (Fig. 5G).

To further clarify the evolutionary differences between plasmids with and without
CRISPR, the genetic configuration of all CRISPR-negative IncFIB/HI1B plasmids were also
compared with pNDM-MAR. As shown in Fig. S4, there were only a few genes shared
between CRISPR-positive and -negative plasmids.

The type IV-A CRISPR system reflects the plasmid-plasmid competition. A total
of 2,859 spacers were identified in 203 CRISPR-positive plasmids, which was composed of
179 nonredundant and distinct spacers (Table S9). The homology search revealed that
over one-third of the spacers (35.75%, 64/179) were significantly homologous to plasmids
or phages (Table S10). The spacer sequences exhibited strong targeting preference for
plasmid rather than phage (32.40%, 58/179 versus 3.35, 6/179). The network analysis of
plasmid-plasmid interaction found that there was an intense competition among plas-
mids in Klebsiella pneumoniae (Fig. 6A). Also, we observed that the spacers from Klebsiella
plasmids matched the plasmids from other non-Klebsiella species, such as Escherichia coli,

FIG 4 ARG and VG profiles of 25 CRISPR-harboring plasmids. The antibiotic classes of ARGs are denoted by different colors. GenBank accession, MLST, and
replicon types for each plasmid are shown on the right. The blue and red blocks indicate the presence of ARGs and VGs, respectively, whereas the white
blocks represent the absence of ARGs and VGs.
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Raoultella ornithinolytica, Enterobacter hormaechei, and so on. Surprisingly, most plasmids
targeted by spacers (67.99%, 1,804/2,653) were conjugative. A total of 8 spacers were
found to be directly homologous to genes involved in conjugation transfer (Table S4).
These spacers were distributed in 181 CRISPR-harboring plasmids, accounting for 89.16%
(181/203) of CRISPR-carrying plasmids.

DISCUSSION

We have performed a large-scale analysis of CRISPR-positive plasmids to gain further
insights into their distribution and characterization. CRISPR-positive plasmids displayed a
biased species distribution. They were mainly distributed in Klebsiella pneumoniae but
sparse in other Klebsiella species. Other investigation also reported the rarity of CRISPR-
positive plasmids in Enterobacteriacea outside Klebsiella species (17, 22, 23). The above-
mentioned findings highlight that these plasmids are strictly narrow-host range. Previous

FIG 5 Comparative analysis of CRISPR-positive with CRISPR-negative IncFIB/HI1B plasmids. (A) Nucleotide similarity matrix of the repA gene in the IncFIB
replicon. CRISPR-positive and -negative plasmids are marked in blue and orange, respectively. (B) Nucleotide similarity matrix of the repA gene in the
IncHI1B replicon. (C) Comparison of number of ARGs. (D) Comparison of number of VGs. (E) Comparison of GC content. (F) Comparison of plasmid length.
(G) Comparison of conjugative transfer ability.
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investigation has suggested a strong association between IncFIB/IncHI1B cointegrates
and CRISPR-positive plasmids (23). The multireplicon status contributes to broadening
the host range of plasmids by merging broad-host-range replicons (24). Unfortunately,
the incompatible groups IncF and IncH both have a narrow host range (24), which further
explains why CRISPR-carrying plasmids are largely restricted to the Klebsiella genus. Based
on ANI values, these plasmids were further divided into two subclusters. Cluster I was
mainly composed of plasmids with IncFIB/IncHI1B, whereas cluster II harbored IncQ1/IncU
and IncU plasmids. In general, the IncQ and IncU plasmids are characterized by their rela-
tively small size and broad host range (25, 26). However, in the current study, all CRISPR-
positive IncQ1 and IncU plasmids were relatively large (29 kb to 37 kb), which were mosaic
plasmids that shared similar conjugation transfer region with pNDM-MAR. The presence of
broad-host-range replicons in CRISPR-positive plasmids suggest their potential ability to
transfer into other species. Furthermore, we observed that CRISPR-harboring plasmids were
widespread in different Klebsiella pneumoniae STs, although there was an inevitable sample
bias by prevalent clinical clones and clones from outbreak in the current database (ST11,
ST258, and ST147 were overrepresented). The random distribution of CRISPR-positive plas-
mids in Klebsiella pneumoniae further underscored their HGT within this species.

The misuse and abuse of carbapenems have resulted in the selection, evolution and
spread of MDR Klebsiella strains that harbor carbapenemase-encoding plasmids (27). The
first identified plasmid-borne carbapenemase in Klebsiella strains was blaIMP-1, which was
isolated as early as 1991 in Japan (28). Subsequently, other plasmid-mediated carbape-
nem genes were continuously reported in the Klebsiella genus, such as blaKPC-1 (29),
blaVIM-1 (30), blaOXA-48 (31), and blaNDM-1 (32). In the current study, almost a quarter of
CRISPR-positive plasmids (24.63%, 50/203) carried at least one carbapenem resistance
gene, including blaNDM-1, blaNDM-5, blaNDM-7, and blaOXA-48. The enrichment of carbapenem
resistance genes in CRISPR-positive plasmids reaffirmed the prominent carrier role of
these plasmids in the prevalence of MDR Klebsiella strains. The phenotypes of MDR and
hypervirulence in Klebsiella strains had been nonoverlapping for a long time as MDR
genes are often carried by classical but not hypervirulent Klebsiella strains (33). However,
the convergence of carbapenem and hypervirulence genes was identified in 10 CRISPR-

FIG 6 Network of plasmid-plasmid competition based on protospacer-spacer matches. (A) Network of plasmid-plasmid competition colored at the host
species level. (B) Network of plasmid-plasmid competition colored according to conjugation transmissibility. Nodes indicate individual plasmids and edges
represent CRISPR spacer targeting based on spacer-protospacer matches. The presence and absence of type IV-A CRISPR systems are represented by large
and small nodes, respectively.
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positive plasmids, suggesting that these plasmids can confer Klebsiella strains both MDR
and hypervirulence phenotypes at one step. The evolution process of hybrid plasmids
carrying both ARGs and VGs follows two distinct paths. The first is the acquisition of
ARGs by a virulent plasmid, and the second is the insertion of VGs into a resistant plas-
mid. Obviously, the second mechanism is more convincing for the evolution from
CRISPR-positive plasmids to hybrid plasmids, because these plasmids were more open to
ARGs than VGs (Fig. 5C and D). Moreover, these hybrid plasmids exhibited similar back-
bone structure to antibiotic-resistant plasmid pNDM-MAR, which further corroborated
the above hypothesis. Multiple investigations reported that the hybrid plasmids coding
for resistance and virulence were typically cointegrates with two plasmid backbones,
which creates a scenario where ARGs and VGs were located on a single plasmid (34, 35).
Similarly, we observed that 30 hybrid plasmids were cointegrate plasmids carrying IncFIB
and IncHI1B replicons. Thus, it is plausible that the segments of virulence plasmids are
integrated into these CRISPR-positive plasmids for persistence under strong stress.

Comparative genome analysis showed that CRISPR-positive plasmids were highly vari-
able but commonly share a pNDM-MAR-like conjugation module as their backbones. The
pNDM-MAR-like conjugation module consisted of a tra gene cluster and a trh gene cluster.
Plasmid pNDM-MAR and other plasmids bearing this transfer region have been reported to
be conjugative (17, 20). Combined with prediction results by mob_typer software, most
CRISPR-positive plasmids were capable of conjugation transfer. This further supports the
view that conjugative plasmids facilitate HGT of type IV-A CRISPR systems in Klebsiella spe-
cies. Nevertheless, the conserved pNDM-MAR-like conjugation module was not common in
CRISPR-negative plasmids with IncFIB/IncHI1B replicons. The result hints that CRISPR-posi-
tive and -negative plasmids may have gone through different evolution trajectories or
recombination events, which is also evidenced by the difference of ARGs, VGs, and the
IncFIB repA gene. In addition to ARGs and VGs, the gene rearrangement of diverse MGEs
(e.g., ISs, integrons, and transposons) constitutes highly variable regions in plasmids (36). It
has been well known that MGEs usually have a relatively low GC content (37). We observed
that CRISPR-positive plasmids exhibited lower GC content and higher plasmid length than
CRISPR-negative plasmids, thereby suggesting the higher genome plasticity of CRISPR-car-
rying plasmids. Accordingly, it can be deduced that the type IV-A CRISPR system, pNDM-
MAR-like conjugation module, and replication initiation proteins related to pNDM-MAR to-
gether formed a unique backbone structure, which served as the important platform for
MGEs accretion, especially ARGs and VGs. Considering the global dissemination of CRISPR-
positive plasmids and their frequent occurrence in clinical environments (Fig. 1C), tracking
this plasmid lineage will be very crucial for surveillance of MDR-hv Klebsiella.

Spacers are the product of invading genetic elements, which reflects the exposure
of the host to invading genetic elements. Exploring the origin of the spacers in the
type IV-A system will provide insights into the interaction of CRISPR-carrying plasmids
with other mobile genetic elements. Our analysis showed that only a small fraction of
spacers displayed significant matches to protospacer sequences, consistent to previous
investigations (13). This relatively low match is attributed to multiple reasons, including
the paucity of MGE sequences in current public databases and the frequent escape
mutation of MGE protospacers (38, 39). The recruitment of type IV-A CRISPR systems
by plasmids has been reported to be involved in plasmid-plasmid warfare dynamics
(22). We found that type IV-A CRISPR in Klebsiella species tend to carry a larger fraction
of spacers that targeted other plasmids. The plasmid-plasmid competitions from
closely related species were more frequent than that from distantly related species.
This is consistent to the community ecology view that similar entities inhabiting in
overlapping niches will compete more strongly for overlapping cellular resources (40,
41). Another interesting finding was that CRISPR-positive plasmids biasedly targeted
conjugative plasmids. There were two possible underlying mechanisms: (i) the self-
transmissible properties of conjugative plasmids bring conceivably higher rates of
encounters with CRISPR-positive plasmids in cells; and (ii) conjugative plasmids pose
more threats to plasmid-host balance already established in a single cell than other
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plasmid types, such as more metabolic burden. Expectedly, genes involved in conjuga-
tion transfer were frequently targeted, which provided direct evidence for limiting the
HGT of conjugative plasmids. Conjugation by plasmids is a common mechanism of HGT
in bacteria that is instrumental in the spread of antibiotic resistance (42). The direct tar-
geting to conjugation transfer proteins implies a very important role of CRISPR-positive
plasmids in shaping the ARGs profiles of Klebsiella strains.

Conclusion. Our study demonstrates that plasmids that carry the type IV-A CRISPR
system in the Klebsiella genus harbor a pNDM-MAR-like backbone structure, which plays
an important role in the spread of ARGs and VGs. Further surveillance of this plasmid line-
age is very necessary to prevent and control the prevalence of MDR-hv Klebsiella strains.

MATERIALS ANDMETHODS
Data collection. All the Klebsiella genomes that are annotated as “chromosome” or “complete” at as-

sembly level were retrieved from National Center for Biotechnology Information (NCBI) genome data-
base (https://ftp.ncbi.nih.gov/genomes/) as of 31 December 2021. These genome sequences were down-
loaded after reconfirming the species by kleborate v2.1.0 (43). For genomes of repeatedly recorded
strains, the one with a higher sequencing quality was taken as applicable or otherwise taken randomly.
A total of 1,606 unique strains spanning 12 Klebsiella species from the NCBI genome database were
included in this study. Among these completely sequenced genomes, 1,294 contained 4,760 plasmid
sequences, while others contained none. Detailed information for 1,606 K. pneumoniae genomes is
shown in Table S1. Besides, 1,941 fully sequenced Klebsiella plasmids that were not present in the NCBI
genome database were collected from the plasmid database of the NCBI RefSeq database (https://ftp
.ncbi.nih.gov/refseq/release/plasmid/) (Table S2).

CRISPR/Cas system identification. The identification of CRISPR arrays was performed by
CRISPRCasFinder v4.2.20 using default parameters (44). The high confidence arrays predicted by
CRISPRCasFinder (evidence level 4) were automatically kept. Subsequently, the low confidence arrays
predicted by CRISPRCasFinder (evidence level ,4) were deemed as putative arrays. These putative
arrays were reused for subsequent analysis if they were located within 1 kb to a predicted cas gene or
matched with any repeat sequence (95% coverage and 95% identity) from already defined high-confi-
dence CRISPR arrays. The classification and subtyping of CRISPR/Cas systems were implemented by
CRISPRCasType v1.6.0 using default parameters (45).

MLST typing and phylogenetic analysis. In silico MLST typing was performed with mlst v2.1 (iden-
tity = 100% and coverage = 100%) using the seven housekeeping genes (gapA, infB,mdh, pgi, phoE, rpoB, and
tonB) as queries (https://github.com/tseemann/mlst). Subsequently, the sequences of seven housekeeping
genes were concatenated to create a maximum likelihood (ML) tree to estimate the phylogenetic relationship
of all Klebsiella pneumoniae strains using iqtree v2.1.4 with 1,000 bootstraps (model GTR1F1R3) (46).

Comparative genomics of CRISPR-positive and -negative plasmids. Paired average nucleotide
identity (ANI) between CRISPR-positive plasmids was calculated by Python script pyani (https://github
.com/widdowquinn/pyani). All CRISPR-positive or -negative plasmids were aligned against pNDM-MAR
by using Mega BLAST (E value # 0.0001) (47). The number of hits of different regions of pNDM-MAR
were counted to identify conserved regions. The conjugation module of each CRISPR-positive plasmid
was compared with that of pNDM-MAR, gene by gene.

Plasmid conjugative transfer function and incompatibility group prediction. The conjugative
transfer function and relaxase type for each plasmid were predicated by MOB-suite v3.0.3 using the
mob_typer function and default parameters (48). The incompatibility group for each plasmid was deter-
mined by PlasmidFinder v2.0.1 using default parameters (49).

Identification of ARGs and VGs. The identification of ARGs was performed using ResFinder software
by default parameters (coverage $ 60%, identity $ 90%) (50). A series of virulence genes involved in
yersiniabactin, aerobactin, and other siderophore production were confirmed by kleborate v2.1.0 (43).

Spacer-protospacer match analysis. The putative origin of CRISPR spacers was analyzed by the
CRISPRTarget web tool (51). A strong protospacer was considered when two compared sequences
showed $85% identity. The matches to CRISPR sequence were ruled out for subsequent analysis. The
network of plasmid-plasmid competitions was visualized in Gephi with the layout generated by a combi-
nation of Fruchterman Reingold and Noverlap algorithms (https://github.com/gephi/gephi). Each pair of
plasmids was connected by at least one spacer-protospacer match.

Statistical analysis. Statistical analysis was performed with SPSS 21.0. Differences of the numbers of
ARGs, VGs, plasmid length, and GC content between CRISPR-positive and -negative plasmids were
assessed using unpaired Student's t test (normal distribution) or Mann-Whitney test (nonnormal distri-
bution). Chi square was used for the comparison of conjugation transmissibility between CRISPR-positive
and -negative plasmids. In all cases, a P value lower than 0.05 was deemed as be statistically significant.
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