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Abstract

Immune checkpoint receptors such as PD-1, CTLA-4, LAG3, and TIGIT have distinct and 

overlapping inhibitory functions that regulate T cell activation, differentiation, and function. 

These inhibitory receptors also mediate tolerance, and dysregulation of these receptors can result 

in a breach of tolerance and the development of autoimmune syndromes. Similarly, antibody 

blockade of immune checkpoint receptors or their ligands for cancer immunotherapy may trigger 

a spectrum of organ inflammation that resembles autoimmunity, termed immune-related adverse 

events (irAE). In this review, we discuss recent advances in the regulation of autoimmunity 

by immune checkpoint receptors. We highlight coordinated gene expression programs linking 

checkpoint receptors, heterogeneity within autoreactive T cell populations, parallels between irAE 

and autoimmunity, and bidirectional functional interactions between immune checkpoint receptors 

and their ligands.

Introduction

Signaling through the T cell receptor (TCR) drives multiple downstream processes, 

including T cell activation, differentiation, proliferation, and release of effector cytokines 

and chemokines. In turn, this process upregulates the expression of inhibitory immune 

checkpoint receptors such as PD-1, CTLA-4, or LAG3, which oppose signals through 

costimulatory receptors and serve as critical rheostats to abrogate or temper TCR 

signaling. These receptors play critical roles to shutdown effector T cell responses 

to limit immunopathology during infection or tissue inflammation, thereby maintaining 

homeostasis and preserving tissue integrity. Importantly, although these checkpoint receptors 

are expressed on both CD4+ and CD8+ T cells, among other immune cells, some of their 
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ligands may be expressed on both hematopoietic and non-hematopoietic cells, as well as 

tumor cells (Table 1). Notably, ligands such as PD-L1 may be upregulated within the 

tumor microenvironment on tumor cells and hematopoietic cells [1]. Thus, these immune 

checkpoint receptors regulate responses in lymphoid tissues (e.g., spleen and lymph nodes), 

peripheral tissues and the tumor microenvironment.

Over the past decade, blockade of these inhibitory immune checkpoint receptors has 

been used to augment anti-tumor T cell effector functions and has revolutionized cancer 

care. In contrast, in both human autoimmune diseases and experimental mouse models 

of autoimmunity, where pathologic effector cells functionally surpass suppression by 

regulatory cells, the functions of immune checkpoint receptors are impaired, underscoring 

their importance in tolerance. Genetic studies have revealed the important roles of 

checkpoint inhibitors in both the induction and maintenance of peripheral T cell tolerance. 

For example, genetic deletion of Pdcd1 (encoding PD-1) or Lag3 accelerated type 1 diabetes 

(T1D) in the non-obese diabetic (NOD) mouse model [2,3]. Likewise, loss-of-function 

mutations in either CTLA4 or LRBA, which alters trafficking of CTLA-4 to the cell 

membrane, leads to human autoimmune syndromes with parallels to the Ctla4 knockout 

mouse model [4]. Similarly, polymorphisms in CTLA4 or PDCD1 are associated with 

the development of multiple autoimmune diseases [5,6]. Moreover, immune checkpoint 

receptors can exert differing effects on pathogenic effector cells or regulatory T cells [7–9], 

revealing further ways these receptors control T cell tolerance and autoimmunity. To this 

end, a recent study of single-cell expression quantitative trait loci (sc-eQTL) demonstrated 

the effects of genetic variants of CTLA4 and PDCD1 on their transcriptional expression in 

different CD4+ T cell types [10].

In this review, we focus on recent advances in understanding immune checkpoint receptors 

on effector cells in the context of autoimmunity. We first discuss the discovery of gene 

programs that coordinate expression of checkpoint receptors. Next, we highlight recent work 

identifying autoreactive T cells with features of T cell exhaustion and anatomic locations 

of reservoirs of autoreactive T cells. We then discuss parallels between immune checkpoint 

blockade-induced immune-related adverse events and autoimmunity. Finally, we summarize 

recent studies on bidirectional functional interactions between immune checkpoint receptors 

and their ligands, and the implications of these interactions for tolerance and autoimmunity.

Coordinated expression of checkpoint receptors on T cells

Loss of a single checkpoint receptor has been associated with compensatory upregulation of 

other inhibitory molecules in models of chronic viral infection, tumor and autoimmunity 

[7,8,11,12], suggesting an underlying shared regulation of checkpoint receptors. Using 

a murine tumor model, Chihara et al. identified a shared gene regulatory program of 

costimulatory and coinhibitory checkpoint molecules (including Ctla4, Lag3, Havcr2 
(encoding TIM-3), Icos) across multiple states of T cell hyporesponsiveness, including 

autoimmunity, that was driven by IL-27 signaling [13]. Intriguingly, although Pdcd1 was 

identified as part of this gene program transcriptionally, its protein expression was not 

affected by loss of IL-27, highlighting potential regulatory differences among checkpoint 

receptors. As IL-27 is at least partially regulated by IFN-β, Sumida et al. assessed the effects 
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of both IL-27 and IFN-β on induction of coinhibitory receptor expression in human T cells 

[14]. In both in vitro experiments and within an in vivo dataset, IFN-β induced expression 

of PD-1, TIM-3, and LAG3 but inhibited expression of TIGIT, with these effects driven by 

different interferon-specific gene modules [14]. These types of systems biology approaches 

have the ability to highlight regulatory mechanisms shared across diseases and identify novel 

therapeutic targets.

Heterogeneity of autoreactive CD8+ T cells at sites of inflammation

In the periphery, autoreactive T cells may be presented with self-antigen and continuously 

stimulated. Persistent stimulation with self-antigen has similarities with chronic viral 

infection, where continuous T cell receptor signaling leads to a dysfunctional CD8+ 

T cell program, known as T cell exhaustion. T cell exhaustion is characterized by 

transcriptional and epigenetic changes leading to elevated expression of inhibitory receptors, 

and loss of proliferative capacity, cytokine production, and cytotoxicity [15–17]. Substantial 

heterogeneity exists among exhausted CD8+ T cells, including a self-renewing stem-like 

population that give rise to terminally differentiated subsets expressing high levels of the 

co-inhibitory molecules PD-1, TIM-3, and LAG3, among others [18–21].

Intriguingly, a subset of pathogenic T cells expressing hallmarks of terminally exhausted T 

cells (PD-1, LAG3, TOX) and a self-renewing stem-like population (TCF1) have recently 

been described in multiple autoimmune models, including a model of chronic CNS 

inflammation [22] and T1D in NOD mice [23,24]. In a model of chronic CNS inflammation, 

the transcription factor TOX was dispensable for the initial expansion of autoreactive 

CD8+ T cells but required for their persistence in the tissue. Notably, the presence of 

TOX was required for the expression of PD-1, TIGIT, and LAG3, suggesting a role for 

TOX in controlling autoreactive CD8+ T cell differentiation and survival [22]. Likewise, 

a subset of infiltrating CD8+ T cell population in pancreatic islets at the time of diabetes 

expressed PD-1, TOX, TIGIT, and LAG3 [24]. Within this exhausted-like subset, LAG3 

restricted progression of diabetes, in part by limiting proliferation and effector function 

[24]. Together, these studies suggest the presence of immune checkpoint molecules may 

promote the long-term survival and tissue adaptation of autoreactive T cells. Further studies 

are needed to define how autoreactive cells with features of T cell exhaustion arise relative 

to the more numerous autoreactive pathogenic cells. Importantly, these disease models show 

significant differences in patterns of checkpoint receptor expression and T cell functionality, 

including cytokine production, compared to exhausted T cells in chronic viral infection 

or malignancy. The differences between chronic infection and cancer versus autoimmunity 

suggest a nuanced context-specific role for each checkpoint receptor in regulating T cell 

activation, differentiation, and trafficking to target organs following chronic stimulation.

The reservoir of autoreactive T cells

Two recent studies identified a reservoir of stem-like autoreactive T cells that are 

maintained outside the site of organ inflammation. Transcriptional profiling of antigen-

specific autoreactive CD8+ T cells from pancreatic LN (pLN) and pancreas of mice with 

T1D identified a transition from stem-like TCF1hi “autoimmune progenitors” in pLN to 

TCF1lo “autoimmune mediators” in pLN and pancreas [25], pointing to a progenitor pool 
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within the pLN. Likewise, paired scRNA-/TCR-seq of Th17 cells from the CNS, peripheral 

lymphoid organs, and intestinal tissues from EAE mice found a TCF1hiSLAMF6+ stem-like 

subset in the spleen with clonotypes shared with homeostatic Th17 cells in the intestinal 

tissues [26]. The stem-like subset continuously gave rise to a CXCR6+ pathogenic Th17 

population also seen in the draining LN and CNS [26], pointing to a migratory role of 

Th17 cells originating from the gut. In both settings, upregulation of PD-1 and several 

other co-inhibitory receptors (TIGIT, TIM-3 or LAG3) occurred during the “progenitor” to 

“mediator” transition [25] or were highly expressed on pathogenic autoreactive T cells in the 

CNS [26]. Further work is needed to determine the roles of interactions between checkpoint 

receptors and their ligands in the generation and/or maintenance of autoreactive stem-like 

cells, as well as their differentiation into pathogenic effector cells.

Parallels to immune-related adverse events with immune checkpoint blockade

A subset of cancer patients treated with antibodies blocking PD-1/PD-L1 or CTLA-4 

pathways will develop irAEs. Clinically, irAEs may manifest as inflammation in any organ, 

most commonly dermatologic, gastrointestinal, pulmonary, and endocrine. The pattern of 

organ involvement may overlap but is generally distinct between anti-CTLA-4 and anti-

PD-1/PD-L1. Notably, combination therapy increases the incidence and severity of irAEs. 

These toxicities range from mild to life-threatening, requiring immunosuppression and/or 

treatment discontinuation, either of which may adversely impact therapeutic outcome [27–

29]. Multiple mechanisms have been proposed, including a pre-existing susceptibility to 

autoimmunity, generation of a new self-reactive repertoire, or aberrant presentation of self-

antigen in the tumor microenvironment.

Two recent publications profiling checkpoint-inhibitor induced colitis [30] and inflammatory 

arthritis [31] shed light on differing trafficking patterns of inflammatory irAE-associated 

T cells. Both studies showed significant tissue infiltration of highly proliferative Th1-like 

CD4+ T cells and cytotoxic CD8+ T cells expressing high levels of checkpoint receptor 

genes (Pdcd1, Lag3, Havcr2, and Ctla4). Intriguingly, TCR repertoire analysis showed 

shared clonal origin among CD8+ effector T cells at the site of the colitis with gut tissue 

resident memory (TRM cells, suggesting clonal expansion arising from a TRM population 

[30]. These findings were corroborated by flow cytometry, bulk RNA-sequencing, and 

single-cell RNA sequencing in a separate cohort of patients with anti-CTLA-4/anti-PD-1 

associated colitis and gastritis, which similarly demonstrated enrichment of an activated 

CD8+ TRM population expressing high levels of PD-1, LAG3 and CTLA-4 with high 

production of IFNγ, a signature distinct from ulcerative colitis [32].

Studies examining checkpoint-induced inflammatory arthritis showed shared clonality 

between a CD8+CX3CR1hi effector phenotype in the peripheral blood and 

CXCR3+CXCRL6+high/low effector memory or terminally differentiated effector memory 

CD8+ in the synovial fluid [31]. These findings imply active trafficking and differentiation 

from the peripheral blood to the synovial fluid. Recent work in preclinical mouse arthritis 

models demonstrated a role for both expansion of TRM in a previously inflamed joint 

and influx of cells from the periphery [33]. Similarly, single cell analyses from patients 

with rheumatoid arthritis demonstrated a shared presence of granzyme K-expressing CD8+ 
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T cells between the peripheral blood, inflamed synovial tissue, and synovial fluid [34]. 

Collectively, these studies suggest that in tissues that lack a TRM population, such as the 

synovium, trafficking of T cells from the peripheral blood to the inflamed tissue plays a 

significant role.

Corticosteroids are the mainstay and first-line treatment for severe irAE with organ-specific 

immunosuppressive strategies employed to treat steroid-refractory irAE. It remains to be 

understood how the genesis of the immune infiltrate differs to drive steroid-refractoriness. 

Notably, the study of immune checkpoint-related arthritis identified an increase in Th17 

cells in the synovial fluid of subjects treated with combination anti-CTLA-4/anti-PD-1 

therapy compared to those subjects treated with anti-PD-1 alone, and the presence of 

Th17 cells made the inflammatory arthritis less likely to be steroid responsive [31]. How 

combination therapy would preferentially drive the presence of Th17 cells is unclear.

Immune Checkpoint Ligand Reverse Signaling

Recent work indicates there may be bidirectional functional interactions between immune 

checkpoint receptors and their ligands. While signaling through the immune checkpoint 

receptors into T cells is well established, emerging data show that reverse signaling 

through the ligands of immune checkpoint receptors, such as PD-L1, can exert cell-intrinsic 

effects. Much of the biology related to this reverse signaling comes from studies of 

ligand signaling within tumor cells [35]. Deletion of the PD-L1 cytoplasmic tail in tumor 

cells increased susceptibility to T-cell mediated lysis, indicating PD-L1 plays a critical 

cell intrinsic role in shielding tumor cells against killing [36]. PD-L1 signaling in tumor 

cells modulates cell proliferation and motility, mammalian target of rapamycin complex 1 

(mTORC1) activation, autophagy, survival, and interferon cytotoxicity [37–40]. Signaling 

proteins bind the cytoplasmic tail of PD-L1 to transmit biochemical signals [41]. In a tumor 

model, oncogenic signaling through EGFR recruited phospholipase C-γ1 (PLC-γ1) to the 

cytoplasmic tail of PD-L1, led to increased protein kinase C activation, Rho GTPases, 

and calcium flux; and resulted in increased cell motility and invasiveness [42]. Further 

studies are needed to determine whether similar signaling pathways are activated in non-

hematopoietic cells during autoimmunity. For example, PD-L1 upregulation on beta islet 

cells in the T1D mouse model is driven by IFN expression and has a protective effect on cell 

survival [43]. This effect could be due, at least in part, to PD-L1 signaling in beta cells.

The PD1-PD-L1 axis also drives cell-intrinsic effects within myeloid cells [44]. Deletion of 

PD-L1 on DC results in exacerbated EAE through impaired initial activation of CD4+ T 

cells [45]. PD-L1 is required for proper chemokine mediated dermal dendritic cell migration 

to the draining lymph node, which is dependent on a three amino acid sequence within the 

cytoplasmic tail of PD-L1 [46]. Mice containing a deletion in this motif exhibit impaired 

CCR7 signaling, ultimately hampering CCL21 G protein activation, actin polymerization, 

and ERK phosphorylation. Defects in dendritic cell migration resulted in reduced T cell 

priming in infection models requiring dendritic cell trafficking to the lymph node [46]. 

Collectively, these studies underscore the diverse functions of PD-1/PD-L1 bidirectional 

signaling events on immune cells and cancer.
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Conclusions and future directions

Immune checkpoint receptors such as PD-1, CTLA-4 and LAG3 collectively serve as a 

rheostat to balance protective immunity, tolerance, immune-mediated tissue damage and 

homeostasis. They can regulate T cell activation, and fine-tune T cell fates and functions 

with roles dependent on anatomic location (lymphoid and peripheral tissues), specific 

immune checkpoint receptor, and T cell type. The presence of genetic polymorphisms in 

immune checkpoint molecules in humans may layer additional complexity to this rheostat. 

Given these genetic polymorphisms, targeting immune checkpoint receptors, either by 

agonistic or antagonistic antibodies, may affect tolerance differently across individuals 

and provide one explanation for the differing presentations and likelihood of developing 

immune related adverse events. Further understanding of the multifaceted functions of 

immune checkpoint receptors and the impact of these genetic polymorphism may provide 

insights into how to best modulate these pathways to suppress pathologic responses during 

autoimmunity and promote anti-tumor immunity while limiting irAEs.
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Table 1:

Selected immune checkpoint receptors, their cell-type-specific expression patterns, and ligands in non-tumor 

tissue.

Immune checkpoint 
receptor (Alternate 
name, Gene name)

Cell types expressing 
receptor

Immune 
checkpoint ligand 
(Gene name)

Cell types expressing ligand Ref

PD-1 (Pdcd1) CD279 T cells
B cells
NK cells
Myeloid

PD-L1 (B7-H1; 
CD274)

Hematopoietic (antigenpresenting cells, T 
cells, B cells)
Non-hematopoietic (e.g., vascular endothelial 
cells, pancreatic islets, liver non-parenchymal 
cells, placental syncytiotrophoblasts)

[1]

PD-L2 (B7-DC; 
CD273)

Hematopoietic (dendritic cells, macrophages, 
some B cells, some mast cells, Th2 CD4+ 
cells); non-hematopoietic (lung epithelial 
cells)

CTLA-4 (Ctla4) 
CD152

T cells
B1a cells

B7–1 (Cd80) Hematopoietic (antigen presenting cells) [47,48]

B7–2 (Cd86)

LAG3 (Lag3) CD223 T cells
NK cells
NKT
B cells

MHC-II Hematopoietic (antigenpresenting cells, T 
cells, B cells, macrophages)

[49,50]

Galectin-3 Non-hematopoietic tissues (e.g., epithelial 
cells, endothelial cells)

LSECtin Liver

FGL-1 Liver

TIGIT (Tigit) 
WUCAM,
VSIG9,
VSTM3

T cells
NK cells
Gamma-delta T cells

CD115 (Pvr) Hematopoietic (antigenpresenting cells, 
T cells, B cells, macrophages) Non-
hematopoietic cells

[49,51]

CD112 (PVRL2; 
Nectin-2)

CD113 (PVRL3; 
Nectin-3)

Non-hematopoietic cells
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