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ABSTRACT

With over 15 FDA approved drugs on the market and numerous ongoing clinical trials, RNA therapeutics, such as small
interfering RNAs (siRNAs) and antisense oligonucleotides (ASOs), have shown great potential to treat human disease.
Their mechanism of action is based entirely on the sequence of validated disease-causing genes without the prerequisite
knowledge of protein structure, activity or cellular location. In contrast to small molecule therapeutics that passively diffuse
across the cell membrane’s lipid bilayer, RNA therapeutics are too large, too charged, and/or too hydrophilic to passively
diffuse across the cellularmembrane and instead are taken up into cells by endocytosis. However, endosomes are also com-
posed of a lipid bilayer barrier that results in endosomal capture and retention of 99% of RNA therapeutics with 1% or less
entering the cytoplasm. Although this very low level of endosomal escape has proven sufficient for liver and some CNS
disorders, it is insufficient for the vast majority of extra-hepatic diseases. Unfortunately, there are currently no acceptable
solutions to the endosomal escape problem. Consequently, before RNA therapeutics can be used to treat widespread hu-
man disease, the rate-limiting delivery problem of endosomal escape must be solved in a nontoxic manner.
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INTRODUCTION

During the first year of our laboratory some 29 years ago,
we indirectly stumbled into the endosomal escape prob-
lem (Ezhevsky et al. 1997), and we have been working
directly on the problem for the last 15-plus years (Wadia
et al. 2004; Lönn et al. 2016). Given the magnitude of
impact that solving the endosomal escape problem would
have on the entire RNA therapeutics field (and perhaps
others), if it was easy, it would have already been solved.
Unfortunately, endosomal escape has remained a highly
recalcitrant problem (Dowdy et al. 2022). In fact, the
more we work on it, the greater the appreciation I have
for how difficult it will be to successfully overcome while
maintaining a low level of cytotoxicity. My guess is that it
will take years of significant effort frommultiple groups be-
fore we devise a clinically acceptable approach to endoso-
mal escape.

Built on ∼50 years of oligonucleotide chemistry that has
resulted in an increased on-target activity and metabolic
stability, while decreasing off-target activity and immuno-
genicity (Dowdy 2017; Khvorova and Watts 2017; Crooke
et al. 2021), there are currently more than 15 FDA ap-

proved combined siRNAs, phosphorothioate backbone
ASOs and neutral phosphorodiamidate morpholino oligo-
mer (PMO) RNA therapeutics targeting disease-causing
genes in the liver, muscle and CNS (Hammond et al.
2021; Corey et al. 2022). As one example, inclisiran, a
GalNAc–siRNA conjugate targeting the PSCK9 gene in liv-
er to treat hypercholesterolemia, has a single-dose 6 mo
duration of response (Fitzgerald et al. 2017). Not surpris-
ingly, due to these clinical successes, there has been sig-
nificant interest and investment in RNA therapeutics by
biotechs and large pharmaceutical companies resulting
in numerous ongoing early- and late-stage clinical trials.

The mechanism of action of oligonucleotide RNA thera-
peutics is based entirely on targeting the mRNA sequence
of validated disease-causing genes and does not a priori
require the structure of the protein product, knowing the
protein activity and/or its cellular location (Dowdy 2017).
In comparison to small molecule drugs that, based on an
extracellular concentration gradient, are capable of pas-
sively diffusing across the cell membrane (Lipinski 2004),
RNA therapeutics are too charged, too large and/or too
hydrophilic to diffuse across the cell membrane and in-
stead are taken up by endocytosis into cells (Fig. 1).
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However, endosomes contain a lipid bilayer that entrap
and retain ∼99% of RNA therapeutics (Juliano 2021;
Dowdy et al. 2022). Indeed, using quantitative NanoSIMS
microscopy, Haibo Jiang’s laboratory at the University of
Hong Kong determined that only 1%–2% of GalNAc-
ASO conjugates escape from endosomes in hepatocytes
in vivo (He et al. 2021). Due to siRNA degradation both
in the cytoplasm and inside the endosome, Vasant Jad-
hav’s group from Alnylam Pharmaceuticals experimentally
found that only 0.3% of endocytosed GalNAc–siRNA con-
jugate was present in the cytoplasm in vivo at any given
time (Brown et al. 2020). Although endosomally trapped
RNA therapeutics serve as a depot, enabling long single-
dose duration of responses, this also results in ∼99% of
endocytosed RNA therapeutics failing to enter the cyto-
plasm. Consequently, whereas escape from endosomes
remains the rate-limiting delivery problem to solve before
RNA therapeutics can be widely applied to treat human
disease, this will need to be balanced to maintain a partial
depot effect for long duration of responses.
Unlike small molecule therapeutics that require 100,000

to 500,000 intracellular molecules to achieve therapeutic
activity, siRNAs appear to only require ∼2000 cytoplasmic
molecules and ASOs require ∼50,000 for maximal activity
(Wittrup et al. 2015; Buntz et al. 2019). Surprisingly, single-
dose GalNAc–siRNA conjugates require 2–3 wk before
achieving a maximal RNAi response in human clinical trials
(Fitzgerald et al. 2017), suggesting a very slow rate of spon-
taneous endosomal escape. Whereas insects have func-

tional RNA transporters, mammals do not. In fact, it
remains entirely unknown mechanistically how endoso-
mally trapped FDA approved RNA therapeutics escape
into the cytoplasm (Fig. 1). We hypothesize that there is
a spontaneous, short lived, small breach (<10 nm) of the
endosomal lipid bilayer that repeatedly occurs over time
and that if an RNA therapeutic were proximal to the
breach, it would be drawn into the cytoplasm. Alternative-
ly, fusion events between endosomes, multivesicular bod-
ies and lysosomes potentially generate a temporary
breach of the lipid bilayer for RNA therapeutics to leak
into the cytoplasm (Dowdy et al. 2022). Lastly, there is in-
complete, but suggestive data, that RNA therapeutics
may also escape via retro-transport from the Golgi (Juliano
2021). Due to the ∼1% of RNA therapeutics that produc-
tively escapes from endosomes, definitively determining
if any, or all, of these mechanisms are involved in endoso-
mal escape has been technically challenging. However,
understanding the spontaneous mechanism of endosomal
escape would offer the potential to selectively enhance it.

CURRENT STRATEGIES FOR ENHANCING
ENDOSOMAL ESCAPE OF RNA THERAPEUTICS

Although there has been a litany of approaches put forward
to address the endosomal escape problem, unfortunately,
none of these has yet sufficiently succeeded in disengaging
enhanced endosomal escape from toxicity, especially
in vivo. There are two generalized mechanisms: (i)

FIGURE 1. Where do RNA therapeutics escape from endosomes? Unlike small molecule drugs, RNA therapeutics (siRNAs, ASOs, and PMOs) are
too large, too charged and/or too hydrophilic to passively diffuse across the cell membrane lipid bilayer, but instead are taken up into cells by
various forms of endocytosis. Endosomes are also composed of a lipid bilayer barrier that prevents the vast majority (∼99%) of RNA therapeutics
from entering the cytoplasm. Following endocytosis, early endosomes mature into late endosomes and then fuse with lysosomes. Although it
remains unclear where RNA therapeutics escape from endosomes, they likely escape frommultiple types of endosomes. Depot endosomes occur
in vivo, but their origins and composition are uncharacterized. RNA therapeutics escaping from depot endosomes results in long duration of re-
sponses (3 to 6 mo or more). Increasing the efficiency of endosomal escape can be thought of as two generalized approaches: (i) endosomal rup-
ture; or (ii) enhanced endosomal escape.
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endosomal rupture; and (ii) enhancing endosomal escape
(Fig. 1). Unfortunately, to date, the majority of effort has
(likely) resulted in endosomal rupture with its inherent con-
comitant cytotoxicity due to release of a wide array of endo-
somally compartmentalized proteins and molecules into
the cytoplasm, resulting in activation of the innate immune
system and other toxic pathways (Dowdy et al. 2022). Rudy
Juliano from the University of North Carolina has recently
put forth a series of in-depth reviews describing these ap-
proaches and detailing the endocytotic routes of RNA ther-
apeutics (Juliano et al. 2018; Juliano 2018, 2021).

Endolytic small molecule agents, typified by chloroquine,
an antimalarial agent, embody someof the earliest direct at-
tempts to enhance endosomal escape of RNA therapeutics
(Dowdy 2017; Juliano et al. 2018). Chloroquine and related
compounds are membrane permeable and freely diffuse
into cells; however, once they diffuse into the low pH envi-
ronment of endosomes they becomeprotonated (positively
charged) and trapped inside. Due to this sink effect, the
endosomal concentration increases logarithmically result-
ing in endosomal rupture due to insertion of chloroquine’s
bicyclic aromatic rings into the endosomal lipid bilayer
(Dowdy et al. 2022). Unfortunately, other endolytic agents
show similar patterns of enhanced endosomal escape, but
also at cytotoxic concentrations, which is a class pharmaco-
logical feature. Moreover, endolytic agents not only rupture
endosomes containing RNA therapeutic cargo, but also
rupture many other endosomes in target and nontarget
cells. Consequently, although chloroquine treatment results
in enhanced endosomal escape, it concomitantly results in
significant and unacceptably high cytotoxicity at the effec-
tive concentrations.

Cationic peptides and related synthetic peptidomimet-
ics have been used to enhance endosomal escape of
RNA therapeutics. Due to the anionic phosphodiester
and phosphorothioate backbones, cationic peptides and
derivatives form ionic aggregates with siRNAs and ASOs
and are therefore restricted to delivery of neutral back-
bone PMOs and peptide nucleic acid (PNAs). Impressively,
the team of Mike Gait (University of Cambridge) and Mat-
thew Wood (University of Oxford) as well as Sarepta Ther-
apeutics have shown significant enhanced exon skipping
activity in mouse models by conjugating neutral PMOs
to cationic peptide domains (Hammond et al. 2016; Gan
et al. 2022). Indeed, Sarepta currently has a cationic pep-
tide PMO (PPMO) in clinical trials that at monthly dosing
shows 18-fold more activity than weekly dosing of the
FDA approved noncationic eteplirsen PMO for the treat-
ment of Duchenne muscular dystrophy (DMD) (Sarepta
2022). We have previously shown that cationic peptides
strongly bind to the anionic surface of cells, including all
blood cells (Ho et al. 2001), stimulate endocytosis, specif-
ically macropinocytosis, and facilitate endosomal escape
(Wadia et al. 2004). The difficult aspect that both groups
have mastered is in balancing just the right amount and

type of cationic charge to allow cell adhesion, but not
too tightly. Based on more than 25 years of work on the
cationic TAT peptide and determining its endosomal es-
cape rate of ∼1% (Lönn et al. 2016), my guess is that these
cationic peptide PMO conjugates also have a similar rate
of endosomal escape. Although the exact molecular
mechanism that cationic peptides use to escape the endo-
somes is unknown, we speculate that they carpet the
endosomal membrane by binding to anionic phospholipid
head groups and thereby disorganize the lipid bilayer ar-
chitecture leading to endosomal membrane disruption
and leakage into the cytoplasm. Although still early in clin-
ical trials, the cationic peptide delivery approach looks to
be a game changer for neutral PMOs (and potentially for
neutral PNAs), but not for anionic siRNA and ASOs.

Endolytic peptides and derivatives from insect toxins
and enveloped viruses have been utilized to enhance
endosomal escape of RNA therapeutics with mixed results
(Dowdy 2017; Hammond et al. 2021). A derivative of influ-
enza’s hemagglutinin 2 (HA2) fusogenic domain, called
INF7 (Mastrobattista et al. 2002), when conjugated to Gal-
NAc and codelivered in vivo with GalNAc–siRNA conju-
gates resulted in a 20-fold increase in activity in liver
hepatocytes, from enhanced endosomal escape (Brown
et al. 2020). However, this required a 30-fold molar excess
of GalNAc–INF7 peptide to GalNAc–siRNA and was cyto-
toxic, likely due to endosomal rupture. Bee venommelittin
peptide, which contains a hydrophobic amino terminus
and cationic carboxyl terminus, forms pores throughmem-
branes that siRNAs can pass through (Houa et al. 2015).
Not surprisingly, melittin is exceedingly cytotoxic, difficult
to control and ultimately too immunogenic to use for the
clinical delivery of RNA therapeutics. In an attempt to
tame the cytotoxicity of toxin peptides, we synthesized
short hydrophobic endosomal escape domain (EED) pep-
tides containing two or three aromatic Trp or Phe residues
and found that we could enhance endosomal escape
eightfold (Lönn et al. 2016). Although hydrophobic EED
peptides pointed us in the right direction, due to the ex-
posed aromatic hydrophobicity, they inserted into the
cell membrane, causing cytotoxicity. Consequently, at
the current level of development, it is difficult to envision
any of these viral or insect toxin peptide approaches mov-
ing forward to clinical trials.

Tamping down the extent of hydrophobicity to reduce
cytotoxicity, while still maintaining enhanced endosomal
escape, has shown significantly more success than toxin
peptides. Front and center, the addition of the clinically val-
idated phosphorothioate (PS) backbone to ASOs, where
one of the nonbridging oxygens is substituted with a bio-
chemically more “hydrophobic” sulfur atom, confers an in-
creased metabolic stability and protein binding that results
in increased pharmacokinetics, delivery and enhanced
endosomal escape (Crooke et al. 2021). The extent of PS
conferred hydrophobicity is on the far weak side of the
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spectrum (vs. the extreme hydrophobicity of toxin pep-
tides), resulting in a clinically tolerable cytotoxicity profile
and 1%–2% endosomal escape of PS ASOs (He et al.
2021). Likewise, to increase metabolic stability from exo-
RNases, the currentmost advanced siRNA chemistry utilizes
one or two PS bonds on the ends of each strand (Khvorova
and Watts 2017). This also likely has the added benefit of
enhancing endosomal escape due to the more hydropho-
bic PS biophysical properties versus highly anionic
phosphodiester bonds. The conjugation ofmore hydropho-
bicity to both ASOs and siRNAs, such as cholesterol or lip-
ids, results in both semiselective delivery to tissues,
especially the liver and neurons of the CNS likely due to in-
sertion into LDL particles, and an enhanced endosomal es-
cape (Soutschek et al. 2004; Biscans et al. 2019; Wang et al.
2019; Brown et al. 2022). However, this level of increased
hydrophobicity can also dominate the RNA therapeutic’s
overall biophysical properties and thereby limit or nullify in-
corporation of selective targeting domains.

HOW DO WE SOLVE THE RATE-LIMITING
ENDOSOMAL ESCAPE PROBLEM?

Although, we currently have more than 15 FDA approved
RNA therapeutics, surprisingly, we have not yet ascertained
the mechanism through which they escape from endo-
somes. RNA therapeutics are too large, too charged and/
or too hydrophilic to passively diffuse across lipid bilayer
membranes. There are also no known mammalian RNA
therapeutic transporters and RNA therapeutics do not con-
tain pore forming abilities, yet they clearly escape across the
endosomal membrane and enter the cytoplasm of cells. To
this end, there has been significant effort to address this
mechanism for ASOs from Stan Crooke’s group at Ionis
Pharmaceuticals (Crooke et al. 2021). In contrast, there
has been a dearth of understanding for escape of siRNA
therapeutics, though it is likely a similar mechanism as for
ASOs involving the limited number of PS bonds on the
ends of each siRNA strand. A detailed comprehensive un-
derstanding of the molecular mechanism could open up
development of approaches capable of further enhancing
it in a highly selective and nontoxic manner. However, this
will require significantly more effort than is currently being
put forth.
We speculate that the hydrophobic backbone PS, and

cholesterol and lipid conjugates aid with enhancing endo-
somal escape by concentrating RNA therapeutics to the lu-
minal surface of the endosomal membrane via binding to
membrane proteins and various degrees of interaction
with the hydrophobic lipid bilayer. Likewise, cationic pep-
tides concentrate PMOs onto the endosomal surface via
ionic interactions with anionic phospholipid head groups.
This is followed by a rare, though consistent, spontaneous,
yet exceedingly temporary, breach of the endosomal lipid
bilayer through which proximal RNA therapeutics are drawn

into the cytoplasm, followed by rapid repair of the lipid bi-
layer breach.
In looking for clues from Mother Nature on how to dra-

matically increase RNA therapeutic endosomal escape, vi-
ruses stand out for already having efficiently solved this
problem (Cohen 2016). Indeed, endocytosed enveloped
viruses demonstrate a profoundly efficient ability to es-
cape endosomes with a calculated estimate of 30% to
70% (Lagache et al. 2012). Of the enveloped viruses, influ-
enza virus is themost well studied. Influenza’s surface hem-
agglutinin (HA) homotrimer protein is composed of two
subdomains: HA1 and HA2. HA1 is the receptor binding
domain (RBD) that both stimulates endocytosis by binding
cell surface sialic acid and it also masks HA2’s hydrophobic
endosomal escape domain (Fig. 2). Mechanistically, upon
entrance into the low pH of endosomes, HA1 is shed off of
HA2 allowing it to undergo a gymnastic conformational
change resulting in the insertion of HA2’s fusion peptide
into the endosomal lipid bilayer membrane, driving capsid
entrance into the cytoplasm in a nontoxic manner (Staring
et al. 2018). Thus, in our view, HA is the bar that all endo-
somal escape approaches should be held up to.
Not surprisingly, as one of nature’s most evolutionarily

efficient mechanisms of endosomal escape, HA causes a
localized endosomal membrane disruption, not endoso-
mal rupture. However, attempting to directly pirate this ap-
proach to deliver RNA therapeutics is decidedly not
straightforward. HA and related proteins from other envel-
oped viruses, such as Env from HIV, GP from ebola and
spike from SARS-CoV-2 (Cohen 2016), serve as vaccine im-
munogens and will likely stimulate an adaptive immune re-
sponse after repeated dosing. Therefore, they cannot
merely be produced in vitro and conjugated to RNA ther-
apeutics. Moreover, HA is composed of a complex protein
architecture that has been recalcitrant to reduction into
short functionalized peptide motifs, which, even if possi-
ble, could also ultimately become immunogenic after re-
peated dosing. However, the overall mechanism and
design of HAwith an external hydrophilic domain masking
an interior hydrophobic endosomal escape domain is a
highly appealing strategy. The creative trick will be to de-
vise a synthetic biomimetic (not composed of peptides)
that is inert in plasma, but selectively activated inside of
endosomes and where the byproducts are not inherently
toxic.
For more than 40 years, escape from endosomes has re-

mained the most significant problem for delivery of RNA
therapeutics that is preventing us from treating cancer,
pandemic viruses, and many other systemic indications
(Dowdy et al. 2022). In our way of thinking of potential so-
lutions, a successful endosomal escape domain (EED)
should incorporate the following parameters:

1. 10-fold or greater enhanced endosomal escape in the
absence of cytotoxicity;
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2. Covalently linked to RNA therapeutic, hydrophilic
and inert in plasma, but selectively activated inside of
endosomes to expose hydrophobicity and/or cationic
charge;

3. Causes a localized endosomal lipid bilayer disruption,
not endosomal rupture;

4. Biophysical properties do not interfere with targeting
domains.

Whereas this sounds straightforward and achievable, to
date, developing EEDs capable of fulfilling all four param-
eters has remained elusive. Indeed, many, if not most, of
the approaches that dramatically enhance endosomal es-
cape appear to result in endosomal rupture, which even
if engineered to be highly controllable, will likely result in
clinically unacceptable toxicity. Consequently, signifi-
cantly more resources, effort and especially creativity fo-
cused on enhancing endosomal escape are going to be
required before we ultimately achieve widespread use of
RNA therapeutics to treat human disease. In my opinion,
we are currently only at the beginning of the beginning
for effectively enhancing endosomal escape.
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