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Abstract

We describe the Predicting Protein–Compound Interactions (PrePCI) database

which comprises over 5 billion predicted interactions between 6.8 million

chemical compounds and 19,797 human proteins. PrePCI relies on a

proteome-wide database of structural models based on both traditional model-

ing techniques and the AlphaFold Protein Structure Database. Sequence- and

structural similarity-based metrics are established between template

proteins, T, in the Protein Data Bank that bind compounds, C, and query pro-

teins in the model database, Q. When the metrics exceed threshold values, it is

assumed that C also binds to Q with a likelihood ratio (LR) derived from

machine learning. If the relationship is based on structural similarity, the LR

is based on a scoring function that measures the extent to which C is compati-

ble with the binding site of Q as described in the LT-scanner algorithm. For

every predicted complex derived in this way, chemical similarity based on the

Tanimoto coefficient identifies other small molecules that may bind to Q. An

overall LR for the binding of C to Q is obtained from Naive Bayesian statistics.

The PrePCI database can be queried by entering a UniProt ID or gene name

for a protein to obtain a list of compounds predicted to bind to it along with

associated LRs. Alternatively, entering an identifier for the compound outputs

a list of proteins it is predicted to bind. Specific applications of the database to

lead discovery, elucidation of drug mechanism of action, and biological func-

tion annotation are described.
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1 | INTRODUCTION

Protein-small molecule interactions, termed here
protein–compound interactions (PCIs), play essential
roles at all biological levels (Cappelletti et al., 2021;
Diether et al., 2019; Feng et al., 2014; Lempp et al., 2019;
Milanesi et al., 2020). Delineation of PCIs for the human
proteome is essential for developing a systems-level
understanding of biological networks and the molecular
basis of therapeutic and off-target effects of drugs. Recent
advances in mass spectrometry have enabled high-
throughput identification of PCIs for focused sets of
metabolites and drugs, uncovering many previously unre-
ported PCIs (Diether et al., 2019; Lempp et al., 2019;
Piazza et al., 2018, 2020), suggesting that much of
protein–compound space remains to be discovered. We
previously reported LT-scanner (Hwang et al., 2017), a
template-based method that uses protein structural align-
ment between models of query proteins and experimen-
tally determined protein–compound complexes to predict
PCIs involving 26 K compounds in the Protein Data Bank
(PDB; Berman et al., 2000). Here we describe Predicting
Protein–Compound Interactions (PrePCI), which extends
LT-scanner by dramatically increasing the number of
compounds and proteins considered. Calculating chemi-
cal similarity with the Tanimoto coefficient (TC; Bajusz
et al., 2015) between molecular fingerprints of PDB
ligands and compounds in the PubChem database (Kim
et al., 2019, 2021) expands the chemical space explored to
6.8 million compounds. In addition, combining protein
models from the PDB (Berman et al., 2000), the Alpha-
Fold Protein Structure Database (Jumper et al., 2021;
Varadi et al., 2022), and our in-house homology database
PrePMod (Garz�on et al., 2016) provides almost complete
structural coverage of the human proteome. PrePCI pro-
vides predictions for �5 billion PCIs, and, as reported
below, is extensively validated.

Many computational approaches have been devel-
oped to predict PCIs. Docking-based methods generate
poses of compounds in complex with a protein of interest
which are subsequently scored to estimate binding affini-
ties by functions typically based on physical forcefields
(Bottegoni et al., 2009; Friesner et al., 2006; Miller
et al., 2021; Murphy et al., 2016; Trott & Olson, 2009).
Such strategies have enabled structure-based virtual
screening of hundreds of millions to billions of small
molecules and have discovered novel protein chemotypes
(Lyu et al., 2019; Sadybekov et al., 2022). However, the
computational costs of pose generation and scoring cur-
rently prevent docking methods from being applied at a
proteome scale. Ligand-based approaches like Similarity
Ensemble Approach (Keiser et al., 2007) and QSAR-based
methods (Nikolova & Jaworska, 2004) infer novel PCIs

based on the similarity of query compounds to seed com-
pounds that are already known to bind the query protein
(Willett, 2010). Such methods are able to leverage
increasingly large amounts of high-throughput screening
data and are generally rapid enough to use with large-
scale chemical libraries. However, since most proteins do
not have a set of known binders against which to com-
pare, ligand-based methods have difficulty scaling to
proteome-wide applications. More recent approaches
include (1) machine-learned scoring functions
(Ballester & Mitchell, 2010; Brown et al., 2021; Paggi
et al., 2021; W�ojcikowski et al., 2017; Zhu et al., 2020),
(2) protein–ligand interaction fingerprints which com-
pare predicted poses to experimentally determined com-
plexes (Da & Kireev, 2014; Perez-Nueno et al., 2009), and
(3) convolutional neural networks which learn structural
features directly from PCI structures (Ragoza et al., 2017;
Stepniewska-Dziubinska et al., 2018; Wallach et al.,
2015).

In contrast, proteochemometric methods which infer
PCIs using independent protein and compound features
are potentially amenable to proteome-scale PCI predic-
tion as they do not require pose generation for each PCI.
For example, algorithms such as REMAP (Lim, Poleksic,
et al., 2016), COSINE (Lim, Gray, et al., 2016), NRLMF
(Liu et al., 2016), and MDMF2A (Liu et al., 2022), formu-
late PCI prediction as a matrix factorization problem in
which low rank matrices representing abstract protein
and chemical features are derived from protein sequence
similarity and chemical similarity, respectively (Lim,
Poleksic, et al., 2016). 3D-REMAP augments REMAP
with ligand binding site similarity and binding affinities
for compounds of interest (Lim et al., 2019).

LT-scanner uses experimentally resolved protein–
compound complexes from the PDB (Berman et al., 2000)
to scan large databases of protein models to identify resi-
dues on their surfaces that are likely to bind similar
ligands (Hwang et al., 2017). Use of a simple scoring
function enables proteome-wide application. Most closely
related to PrePCI is the FINDSITE suite of programs
which use protein threading to identify regions within a
query protein which can be reasonably modeled using a
PDB protein–compound complex as a template (Zhou
et al., 2018, 2021). Ligands bound to identified binding
sites are then used as seeds for ligand-based virtual
screening. Unique to PrePCI is the large proteome-wide
database of predicted PCIs described in this publication.

To illustrate potential applications of the PrePCI data-
base we present a number of case studies where PrePCI
is used to generate suggestions of novel lead compounds
for cancer targets and possible targets underlying drug
mechanisms of action and to annotate protein function
based on interactions with cellular signaling molecules.
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Notably, in each of these cases, the predictions emphasize
the contribution of structure to proteome-scale PCI pre-
diction. We anticipate that PrePCI will be a useful
resource for generating hypotheses regarding protein–
compound interactions in multiple applications. PrePCI
predictions can be queried through the web-hosted data-
base application available at https://honiglab.c2b2.
columbia.edu/prepci.html.

2 | RESULTS

2.1 | PrePCI overview

The PrePCI algorithm is depicted in Figure 1 and consists
of three components. Figure 1a illustrates the sequence
similarity component where a query protein sequence is
matched to protein sequences from PDB template–
compound complexes with BLAST. A query protein is
predicted as a target of a compound which appears in a
PDB complex based on the sequence alignment score of
the query with the template protein (see Section 4).
Figure 1b illustrates the LT-scanner component in which
a query protein is structurally aligned to a template com-
plex in the PDB (Berman et al., 2000) with the Ska pro-
gram (Yang & Honig, 2000), which calculates a protein
structure distance (PSD) between the aligned structures.
Ska emphasizes local versus global alignment with the
effect of highlighting structural elements of likely

functional relevance, enabling the comparison of the pre-
dicted query interface with the template binding site
(Yang & Honig, 2000). The transformation that aligns the
two proteins is used to place the PDB compound in the
coordinate frame of the query. The LT-scanner scoring
function (Hwang et al., 2017) assesses the compatibility
of the compound with the query protein by calculating a
score based on the extent to which residues in the query
binding site recapitulate the physicochemical interactions
between the protein and compound in the template com-
plex. The sequence similarity and LT-scanner calcula-
tions are performed for all query protein sequences and
models and against all PDB protein–compound tem-
plates. Figure 1c illustrates the chemical similarity com-
ponent where PDB compounds are matched to
topologically similar PubChem compounds. When the
TC between a PDB compound and a Pubchem compound
exceeds 0.5, the Pubchem compound is predicted to tar-
get the protein found by either sequence similarity
(Figure 1a) or LT-scanner (Figure 1b). A Bayesian proce-
dure is used to integrate the sequence, structure, and
chemical similarity scores for each query protein–
compound prediction into a likelihood ratio derived from
a true positive set of experimentally characterized PCIs.
The scored PCI predictions comprise the PrePCI database
(PrePCI/DB).

An essential component of LT-scanner is a database
of structural models for most query proteins and their
constituent domains in the human proteome. To date, we

FIGURE 1 PrePCI algorithm for the prediction of protein-compound interactions. PrePCI uses BLAST and LT-scanner for the query

protein (aqua sequence and model, left) to identify proteins within PDB protein-compound complexes that have (a) sequence and/or

(b) structural similarity to the query. (c) Compounds predicted to bind the query are identified using a Tanimoto coefficient (TC) chemical

similarity search of fingerprints representing the PDB compound and compounds from PubChem. In this example, the sequence and model

for Paladin (PALD1) are matched to the PDB complex (PDB ID 4wu2) of Selenomonas ruminatum myo-inositol hexaphosphate

phosphohydrolase bound to the PDB compound I3P with BLAST e-value 1.1 and LT-scanner score 0.61. A query compound from PubChem

(CID 439444) has TC = 0.5 with the PDB compound. The LR for the interaction between PALD1 and the query compound is the product of

the LRs from sequence, structure, and chemical similarity scores.

TRUDEAU ET AL. 3 of 14

https://honiglab.c2b2.columbia.edu/prepci.html
https://honiglab.c2b2.columbia.edu/prepci.html
http://bioinformatics.org/firstglance/fgij//fg.htm?mol=4wu2


have relied on our PrePMod database of homology
models (Garz�on et al., 2016). Currently, PrePMod con-
tains models for 76,816 protein domains as defined by the
Conserved Domain Database (CDD; Marchler-Bauer
et al., 2011) where 17,150 human proteins have at least
one domain modeled. As described in Section 4, a data-
base was constructed of models taken either directly from
the AlphaFold Protein Structure Database (AF; Jumper
et al., 2021; Varadi et al., 2022) or obtained after parsing
AF models into CDD domains (AF/CDD; Marchler-
Bauer et al., 2011). AF/CDD contains 89,645 domain
models covering 20,546 proteins while the union of
AF/CDD and PrePMod contains models of 90,308
domains spanning 20,599 proteins. This constitutes a sig-
nificant (�15%–20%) increase in structural coverage
which now includes one representative for essentially
every coding gene in the human proteome (Bateman
et al., 2022).

2.2 | PrePCI training and evaluation

To evaluate PrePCI's performance, a Naive Bayes Classi-
fier was trained using 10-fold cross-validation with a true
positive set of PCIs that have bioactivity data in Pub-
Chem (Kim et al., 2019, 2021). As described in Section 4,
the true positive set consists of 285 K PCIs for 142 K com-
pounds and 2,926 proteins. The negative set consists of
417 M hypothetical PCIs between the 142 K compounds

and 2,926 proteins for which PubChem provides no bio-
activity data. For each of the 10-folds, PrePCI's perfor-
mance was evaluated by ranking predictions by their
likelihood ratio (LR) and computing the area under the
receiver operator characteristic (ROC) curve (AUROC)
and the average precision (or area under the precision–
recall curve, AUPRC; Figure 2). The resulting ROC and
precision–recall curves are highly concordant, with mean
AUROC and average precision of 0.828 ± 0.001 and
0.168 ± 0.002, respectively. It is important to note that,
due to the size of the negative set, the testing set is
heavily imbalanced, and random precision would thus be
7 � 10�4. The average precision of 0.168, therefore, con-
stitutes a substantial enrichment of true positive predic-
tions and is likely an underestimate as many PCIs
considered false positives presumably correspond to as
yet undiscovered true interactions.

Moreover, experimentally known PCIs with low Pre-
PCI scores, corresponding to the high false positive
region of the ROC curve, are primarily cases where Pre-
PCI could not identify a template compound that was
both similar to the query compound and predicted to
bind the query protein. Consequently, these PCIs could
not be effectively scored, limiting the maximum AUROC
obtained, as reflected by the sharp elbow in the ROC
curve (Figure 2a). To evaluate PrePCI's performance on
its meaningful predictions, we recomputed ROC and
precision–recall curves for each of the 10-folds, restricting
the evaluation to PCIs where a template could be

FIGURE 2 PrePCI performance on unbiased, all-against-all experimental protein–compound data from PubChem. (a) Receiver

operating characteristic (ROC) curve and (b) Precision Recall curve for each of the 10-folds of cross-validation for training and testing

PrePCI on experimentally observed PCIs from PubChem. Curves for the median area under the ROC curve (AUROC, a) and average

precision (b) across all cross-validation folds are darker, while curves for remaining folds (lighter blue) are included to display the range of

results obtained from the individual folds. PrePCI's average AUROC and Average Precision on the PubChem dataset are 0.828 ± 0.001 and

0.168 ± 0.002, respectively.
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identified (see Section 4), which yielded improved perfor-
mance in AUROC and AUPRC to 0.936 ± 0.001 and
0.235 ± 0.002 with a more constant precision over most
of the recall range (see Figure S1 and related discussion).

2.3 | PrePCI performance on an
independent drug-target interaction gold
standard data set

To compare PrePCI to matrix factorization methods, we
performed 10-fold cross-validation with four benchmark
datasets originally created by Yamanishi et al. (2008) and
recently updated by Liu et al. (2022), each corresponding
to a separate class of protein targets: Enzymes, Nuclear
Receptors, GPCRs, and Ion channels (Table S5 and
Section 4). For each class, all possible protein–compound
pairs were scored, and similar performance as with
PubChem-derived data was obtained (Table S6). Despite
quite high AUROC scores, PrePCI performance is less
impressive than the other methods which utilize many
more tunable parameters and do not rely on the availabil-
ity of PDB template complexes. Moreover, given its rela-
tive simplicity, its ability to provide structures for its
predictions, and its proteome-wide applicability, the good
performance within specific protein classes underscores
PrePCI's utility for more focused studies as illustrated
below.

2.4 | LT-scanner and sequence similarity
are synergistic

PrePCI performance was compared with the performance
of classifiers using features based only on sequence simi-
larity or LT-scanner alone. Sequence similarity outper-
forms LT-scanner and performs comparably to PrePCI
(Figure S2) although PrePCI's use of both enables supe-
rior performance (Figure S2). In ROC curve analysis,
PCIs present in the PDB were excluded from LT-scanner
testing. However, because a sequence identity cutoff was
not implemented, many of the sequence similarity targets
are likely to be obvious and, thus, underlie the perfor-
mance of the sequence similarity classifier. The unique
feature of LT-scanner is its ability to identify non-trivial
relationships. Indeed, as can be seen in Table S1, LT-
scanner identifies many more relationships than avail-
able from sequence similarity alone. The combined use of
sequence and structure yields the greatest coverage of
true positive PCIs without impairing performance as each
method identifies PCIs not detected by the other at com-
parable LRs (Figure S2).

2.5 | The union of homology models and
AlphaFold structures as targets increases
PCI coverage

PrePCI performance was evaluated with predictions for
query structures from PrepMod versus AF/CDD. As
shown in Figure S3, performance is similar regardless of
the query model database used. While the number of pre-
dictions is greater with AF/CDD versus PrePMod struc-
tures, the combination of the databases is synergistic and
results in the highest number of PCI predictions
(Table S2). For example, as depicted in the first row of
Table S2, in cases where the query model aligns well with
the template complex (LT-scanner score ≥0.6), PrePCI-
PrePMod predicts 64 K PCIs and PrePCI-AF/CDD pre-
dicts 77 K PCIs. The intersection of the two sets is 39 K
PCIs and the union is 101 K PCIs.

2.6 | The PrePCI database—PrePCI/DB

PrePCI predictions are available through a web-hosted
searchable database (PrePCI/DB) at https://honiglab.
c2b2.columbia.edu/prepci.html. PrePCI/DB contains pre-
dictions for �5 billion PCIs involving 6.8 M compounds
and 75,643 CDD domains representing 19,797 human
proteins. Users can query the database for proteins (with
UniProt Accession ID or gene name) or for compounds
(PDB compound ID, PubChem CID, or SMILES) to
obtain PrePCI predictions for compounds and targets,
respectively. Searching by protein will return a list of
PDB compounds predicted to bind the protein by either
LT-scanner (Figure 1b), sequence similarity (Figure 1a),
or both, along with the corresponding LT-scanner scores,
BLAST e-values and PrePCI LRs (Figure 3). From our
benchmarking results, we found that the LRs of
1,400,000, 15,000, and 190 correspond to FPR values of
10�4, 10�3, and 10�2, respectively. While predictions with
higher LRs are more likely to be correct, predictions with
lower LRs, particularly those with high LT-scanner
scores, are more likely to be evolutionarily conserved and
thus constitute novel PCIs. The “Click to view PCI” icon
will trigger the website to display interactive JSMol win-
dows for exploration of the predicted binding interface as
well the structural superposition of the query protein
model and the PDB template complex. PDB-formatted
files for both the interaction model and the structural
superposition can be downloaded for further analysis
including more detailed docking studies, as described
below. Additional similar compounds (Figure 1c) can be
retrieved by clicking on the “Click to Find Other PCIs”
icon which will open a new tab containing all PubChem
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compounds that are similar to the selected PDB com-
pound (Figure 3). Together with the interaction visualiza-
tion windows, this two-step procedure allows the user to

evaluate predicted PCI interfaces before considering addi-
tional compounds likely to bind in a similar mode. Alter-
natively, users can query the database for a compound in

FIGURE 3 PrePCI webpage output. Protein query search: (a) The top of the webpage displays search criteria and the number of PCIs

predicted. (b) Two JSmol windows display the query protein–compound interaction model (left) and query-template superposition (right)

which a user may manipulate. (c) A table displays the PDB compounds predicted to interact with the query protein and their corresponding

LT-scanner scores, BLAST e-values, and PrePCI LRs. The “Experimental Database” column contains links to associated PDB and Pubchem

pages for experimentally validated PCIs. PCIs for chemically similar compounds: The “Click to View PCI” triggers the webpage to display

the interaction and superposition models (panel B) while “Click to Find Similar Compounds” opens (d) a new webpage listing PubChem

compounds similar to the query PDB compound, which can in turn be used to search for target proteins via the “Click to Find PCI” button.
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the form of a PDB ID, PubChem CID, or SMILES string.
The following case studies illustrate how both
strategies—querying PrePCI/DB for predicted targets and
for compounds—can be used to discover novel therapeu-
tically interesting lead compounds and generate novel
biological hypotheses.

2.7 | Applications of PrePCI/DB

2.7.1 | Lead compound discovery

We used PrePCI to search for compounds predicted to
bind to peroxisomal succinyl-coenzyme A thioesterase
(ACOT4), an enzyme involved in lipid metabolism. A
recent study found that pancreatic ductal adenocarci-
noma cells are dependent on free CoA generated by
ACOT4 while knockdown and catalytic inactivation of
ACOT4 impaired proliferation and tumor formation, sug-
gesting ACOT4 as a possible therapeutic target (Ni
et al., 2021). Notably, while no PCIs are predicted for

ACOT4 on the basis of sequence similarity, structural
alignment identified 41 PDB compounds with LT-scanner
scores ≥0.3. We chose to focus on C1E (Figure 4a) due to
its relatively high LT-scanner score (0.39) and the diver-
sity of similar compounds in PubChem for screening
(80 with TC <0.7). The C1E-ACOT4 interaction was pre-
dicted based on the crystal structure of C1E complexed
with the Burkholderia xenovorans C–C hydrolase (PDB
ID 2RHT, Chain A). Glide (Friesner et al., 2004, 2006)
was used to dock C1E into both ACOT4 and the template
protein structure as control, which yielded favorable glide
scores of �7.1 and �10.1 kcal/mol, respectively, indicat-
ing C1E is a reasonable lead for ACOT4. The 80 similar
compounds were similarly analyzed and the best scoring
ligand (�9.2 kcal/mol) was Pubchem CID 5367065
(Figure 4b,c). The predicted binding mode of CID
5367065 positions a benzaldehyde ring in a pose similar
to the template while the remainder of the compound
provides additional contacts and more fully occupies
ACOT4's active site. We used a similar strategy to identify
lead compounds for the ATPase MORC2 (Figure S4).

FIGURE 4 PrePCI guided structure-based virtual screening. (a) PrePCI predicts 41 PDB compounds bind to ACOT4 with LT-scanner

score ≥0.3, including C1E (top). In silico screening of C1E and similar compounds identifies PubChem CID 5367065 as a possible binder

(bottom). (b) The docking pose (left) is depicted as a blue backbone ribbon for the target (ACOT4) and space-filling representation for the

compound (5367065). The diagram (right) highlights atomic interactions predicted by docking.
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2.7.2 | Phosphoinositides

Many peripheral membrane proteins transiently associate
with membrane surfaces by recognizing phosphatidylinosi-
tol phosphates, such as PI(4,5)P2 (PIP2) and PI(3,4,5)P3
(PIP3) (Mandal, 2020; Overduin & Kervin, 2021;
Pemberton & Balla, 2019). Structural studies have eluci-
dated the binding mode of a wide array of protein domains
to the head groups of PIP2 and PIP3 (denoted here by their
PDB IDs, I3P, and 4IP), which appear as non-covalent
ligands in 46 and 27 PDB complexes, respectively. PrePCI
predicts over 400 targets for each (LT-scanner score of at
least 0.3), many of which are novel. Figure 1 provides an
example of a novel I3P target. Paladin was previously anno-
tated as an inactive protein phosphatase but is predicted by
PrePCI to bind to I3P through its first protein-tyrosine
phosphatase-like domain, suggesting Paladin may be a lipid
phosphatase thus correcting the original annotation. Con-
sistent with this prediction, Paladin was recently identified
as a PIP2 phosphatase through a colorimetric screen for
phosphate in the presence of PIP2 (Nitzsche et al., 2021). As
depicted in Figure 1, PrePCI also predicts that Paladin binds
Ins(1,4)P2 (PubChem CID 439444), a compound chemically
similar to I3P which corresponds to the head group of PI4P.
Since PI4P is the product of 5-phosphatase activity against
PI(4,5)P2, the prediction that Paladin binds the head groups
of both reactant (PI(4,5)P2) and product (PI4P) suggests that
Paladin may be a 5-phosphatase. As a cautionary note, Pre-
PCI predicts that Paladin also binds 4IP (Ins(1,3,4,5)P4)
albeit with a lower LR (93 for 4IP vs. 315 for 3IP). Addi-
tional computational and experimental analysis is required
to determine whether Paladin is a PIP2 phosphatase, a PIP3
phosphatase, or both.

The integration of PrePCI with high-throughput lipido-
mic assays provides structural annotation of protein–lipid
interactions, boosts confidence in the discovery of novel
binders and, thus, expands phosphatidylinositol phosphate
interactomes. Two studies used mass spectrometry-based
methods to identify PIP3-binding proteins in HeLa cells
(Jungmichel et al., 2014) and human platelets (Durrant
et al., 2017). In both cases, PrePCI predicts 45% of the
30 highest scoring and 25% of all PIP3 binders as 4IP tar-
gets (Table S3). Of 21 proteins annotated as known binders
(Jungmichel et al., 2014), PrePCI predicts all 21 with LRs
ranging from 100 to 690 K. Mass spectrometry and PrePCI
jointly identify 16 of the known PIP3 binders as well as an
additional 70 potentially novel PIP3 interactors (Table S3).

2.7.3 | Drug mechanism of action

The DeMAND algorithm is a network-based approach to
elucidating drug mechanism of action as defined by a

compound's direct and indirect targets (effectors and
modulators) through the analysis of cellular perturbation
gene expression profiles (Woo et al., 2015). The integra-
tion of DeMAND and PrePCI predictions identify direct
targets and off-targets of compounds on a genome-wide
scale in particular cellular contexts. For example, high-
scoring predictions in both DeMAND and PrePCI for
methotrexate (a chemotherapy agent and immune-
system suppressant) and genistein (a flavonoid in clinical
trials as a treatment for prostate cancer) recapitulate
known targets and highlight potential off-targets in dif-
fuse large B cell lymphoma cells (Table S4). The WW
domain-containing oxidoreductase (WWOX) is predicted
as a novel target of methotrexate. WWOX regulates sus-
ceptibility of squamous cell carcinoma to methotrexate,
and small interfering RNA against WWOX blocked
methotrexate-mediated cell death (Tsai et al., 2013) sup-
porting WWOX as a direct target. Polo-like kinase
1 (PLK1) is predicted as an off-target of genistein, which
was shown to function as a mitotic blocker by directly
inhibiting PLK1 activity in transformed cells (Shin
et al., 2017) supporting PLK1 as a direct target.

3 | DISCUSSION

We have presented the PrePCI algorithm, and a corre-
sponding database PrePCI/DB, which integrates protein
structure and chemical and sequence similarity to predict
protein compound interactions (Figure 1). PrePCI is an
extension of our template-based PCI prediction algo-
rithm, LT-scanner (Hwang et al., 2017), which identifies
protein targets of small molecules present in the PDB
(Berman et al., 2000). The LT-scanner query model data-
base has been updated with structures from the Alpha-
Fold Protein Structure Database providing essentially
complete structural coverage for all human protein-
coding genes. In addition, PrePCI uses chemical com-
pound similarity based on Tanimoto coefficients among
chemical fingerprints to link PDB compounds to com-
pounds in PubChem, which has the effect of increasing
the number of compounds that can be explored by more
than 200-fold. The increased structural coverage of the
human proteome and the expanded chemical space have
enabled the prediction of over 5 billion PCIs, each with
component scores and an overall likelihood ratio that
allow users to prioritize predictions. While this consti-
tutes a significant expansion over our previous work, it
still excludes many compounds which are dissimilar from
those in the PDB but for which non-structural bioactivity
data is available. Integration of PrePCI scores with
machine learning methods (Table S6) could enable fur-
ther expansion into chemical space while preserving
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structure-based and proteome-scale predictions. Finally,
PrePCI achieves high precision for evaluation on large-
scale bioactivity data (PubChem, Figure 2) strongly indi-
cating that many novel interactions may be present
among the most highly ranked predictions in the nega-
tive PCI dataset.

There are, of course, significant limitations to PrePCI
performance. First, because LT-scanner compares the
binding interfaces of individual protein chains, it can yield
high-scoring predictions for compounds which are
observed to bind at protein–protein interfaces that are pre-
sent in the template PDB complex. While LT-scanner
detects the high structural similarity with one chain in the
template, it is currently unable to penalize the query PCI
for lacking additional contacts provided by the second pro-
tein chain, and it can thus predict interactions that appear
visually implausible in the absence of the partner protein.
We speculate that this feature of LT-scanner can be lever-
aged to identify compounds that can bind at protein–
protein interfaces and act either as molecular glue or bias
molecular complexes into specific conformations. Second,
the protein models provided by PrePCI lack metal ions,
cofactors, and compounds which can play central roles in
ligand binding. Third, the Tanimoto coefficient measures
overall topological similarity and may therefore identify
compounds lacking critical interacting functional groups
or with large changes in physical features such as net
charge. The user is therefore encouraged to review the
template PDB complex on which a prediction is based to
verify whether the provided interaction is lacking features
which could make the prediction more or less plausible.

We have demonstrated how PrePCI can be used for
common medicinal chemistry tasks, such as the identifi-
cation of small chemical fragments as lead compounds
for structure-based virtual screening (Figure 4) or eluci-
dation of a drug's mechanism of action, as well as the
generation of biological hypotheses (Figure 1) by detect-
ing novel protein–ligand interactions. Importantly, for
compounds present in the PDB (Berman et al., 2000),
PrePCI generates 3D interaction models and predicts
interfacial residues. Given how they are constructed, the
models are expected to be crude but can be refined with
various docking strategies as illustrated above. While an
interaction model is not created for a PCI predicted by
chemical similarity (Figure 1c), the predicted compound
can be cross-docked to the template PDB compound in
the underlying LT-scanner model (Figures 4 and S4). In
this regard, it is important to emphasize that PrePCI is
primarily intended for hypothesis generation. PrePCI/
DB, which encompasses 5 billion predicted PCIs involv-
ing 6.8 million compounds and 19,797 protein targets, is
a conveniently accessible structure-informed resource to

search for compounds that potentially bind a given pro-
tein or, alternatively, proteins that are potential targets of
a given compound.

4 | MATERIALS AND METHODS

4.1 | Template and model selection

LT-scanner requires databases of query protein structure
models and experimentally resolved holo-structures of
protein–ligand co-complexes. To select a representative
set of template PDB holo-structures, all PDB complexes
identified in the PDB ligand expo (http://ligand-expo.
rcsb.org/) were parsed to identify protein chains bound to
ligands, and all chains were mapped to their respective
UniProt IDs using the SIFTS database (Dana et al., 2019;
Velankar et al., 2013). Chains with more than one corre-
sponding UniProt ID, commonly chimeric fusion pro-
teins, as well as chains that did not map to a UniProt ID
were excluded. X-ray crystal structures and cryo-EM
structures with resolution >4 and 4.5 Å, respectively,
were removed, and, when a PCI was represented more
than once, the highest resolution complex was retained.
This procedure yielded 55,994 unique template PCIs
between 17,705 proteins and 25,613 compounds after
removing compounds with molecular weight <200 Da
and fewer than six heavy atoms.

4.2 | Model databases

For the human reference proteome (Jumper et al., 2021;
Varadi et al., 2022; https://www.uniprot.org/proteomes/
UP000005640), structural models for full-length
sequences and protein domains as defined by the con-
served domain database (CDD; Marchler-Bauer
et al., 2011) were constructed as follows.

4.2.1 | PrePMod

BLAST was used to identify proteins in the PDB with
sequences similar to the query sequence. For BLAST e-
value ≤10�12, a homology model for the query sequence
with the PDB structure as template was created with Nest
(Petrey et al., 2003). If no template was identified, remote
sequence homologs within the PDB were identified by
HHblits (Remmert et al., 2012) with 5 iterations, and, for
e-value ≤10�12, a homology model was created with Nest
(Petrey et al., 2003). Otherwise, a homology model for the
query was not created. This process yielded PrePMod, a
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protein model database containing 76,816 domain models
for 17,150 human proteins.

4.2.2 | AlphaFold/CDD (AF/CDD)

Models for query proteins and their CDD domains were
taken from the AlphaFold Protein Structure Database
(AF). For proteins with more than 2700 residues, AF pro-
vides multiple sequence-redundant models. In these
cases, the pLDDT scores (the per-residue confidence met-
ric) were summed across the CDD (Marchler-Bauer
et al., 2011) domains identified, and the model with the
largest total pLDDT was chosen. This procedure yielded
89,645 domain models for 20,526 proteins.

Altogether, the combination of PrePMod and
AF/CDD provides 166,461 models for 90,308 domains for
20,599 proteins.

4.3 | PrePCI

4.3.1 | LT-scanner

The LT-scanner algorithm which uses structure alignment
to relate query proteins to PDB template complexes has
been described previously (Hwang et al., 2017). Briefly, the
extent to which a query protein is able to recapitulate the
intermolecular interactions formed between a template
and its ligand is calculated by a similarity score, SIM. For
each potential protein–compound interaction, the LT-
scanner score is defined as the maximal observed SIM
score between the query protein and any structurally simi-
lar template in the holo-structure database. LT-scanner
was applied to both the PrePMod and AF/CDD model
databases. In cases where PrePMod and AF/CDD contain
models for the same protein/domain, the query model that
obtains the higher LT-scanner score was included in the
LT-scanner evaluation analyses (Table S2).

4.3.2 | Sequence similarity

For each of the structures in the holo-structure template
database, BLAST was run using the sequence of the PDB
chain as a query against the human reference proteome
(UP000005640). For a given PCI, the PDB template complex
with the lowest e-value was assigned an interaction
sequence score of –ln(e-value). The e-values of 0 were re-
assigned to 1e�181, the smallest non-zero e-value obtained
from the BLAST results. The sequence similarity component
of PrePCI yields predictions for 17,864 proteins (Table S1).

4.3.3 | Chemical similarity

Chemical structure data for �110 M compounds and
26 K PDB compounds was obtained from PubChem (Kim
et al., 2019, 2021) and the PDB in SMILES format
(Weininger, 1988), Rdkit (RDKit) was used to compute
1024-bit Morgan2 fingerprints (Rogers & Hahn, 2010) for
each compound, and Tanimoto coefficients (Bajusz
et al., 2015) were computed for each PDB-PubChem com-
pound pair. The reliability of inferring novel compounds
from known compounds drops off at Tanimoto coeffi-
cients below 0.5 (Bajorath et al., 2013) so only those pairs
of compounds with TC ≥0.5 were retained, yielding
6,835,528 compounds similar to at least one PDB com-
pound. Overall, PrePCI provides predictions for 6.8 M
compounds.

4.3.4 | Naive Bayes integration

A Naive Bayes Classifier was trained to integrate scores
into a single likelihood ratio (LR; Figure 1). For each
query PCI, the reference PDB compound is the highest
TC PDB compound predicted by either LT-scanner or
sequence similarity. The chemical, structural, and
sequence scores are then defined as (1) the TC between
the query compound and the reference compound,
(2) the LT-scanner score for the query protein-reference
compound pair, and (3) the sequence score between the
query protein and the most similar template protein from
among complexes with the reference compound, respec-
tively. The number of bins was chosen as 10, 10, and
20 for chemical similarity, structural similarity, and
sequence similarity, respectively, and the range of scores
for each feature was divided into equal intervals. Likeli-
hood ratios for each feature and bin were computed as

LR bin Ið Þ¼ P bin IjTPð Þ
P bin IjTNð Þ¼

N bin I andTPð Þ
N TPð Þ

N bin I andTNð Þ
N TNð Þ

¼N bin I andTPð Þ �N TNð Þ
N TPð Þ �N bin I andTNð Þ

The final likelihood ratio for a PCI is defined as the
product of the three component feature likelihood ratios:

LR PCIð Þ¼
Y

i¼chemical,

structure,

sequence

LRi bin scoreð Þð Þ
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4.4 | PubChem benchmarking

All available protein bioactivity data for human proteins
was downloaded as PubChem's “Tested Compounds”
data from the “Chemicals and Bioactivities Data”
section (Kim et al., 2019, 2021). The data was filtered to
retain active, nonredundant experimental PCIs defined
as “Active” for the “activity” feature or “<” or “=” for the
“acqualifier” feature. This process yielded 1,122,699 PCIs
involving 3,559 proteins and 642,498 compounds. Of the
642,498 Pubchem PubChem compounds, 142,490 (22%)
have Tanimoto coefficient ≥0.5 with at least one PDB
compound, and 2,926 of the 3,559 proteins have experi-
mental evidence supporting an interaction with at least
one of the 142,490 compounds. After filtering, the true
positive set comprised 285,108 PCIs. The true negative set
was defined as the remaining 416,640,632 protein-
compound pairwise combinations (2,926 * 142,490 –
285,108) not identified as true positives in Pubchem. We
split both the positive and negative sets into 10 mutually
disjoint subsets and, using each subset in turn as a test
set, trained LRs using the PCIs from the remaining 9 sets
as a training set. PCIs in the test set were scored and
ranked by their composite LR, and the AUROC was
computed.

To better evaluate the accuracy of PrePCI's predic-
tions, we removed PCIs for which PrePCI does not make
a prediction from the positive and negative sets which
resulted in 204,919 true positive and 62,414,150 true neg-
ative PCIs which are 72% and 15% the size of the original
PubChem benchmark set. We computed ROC and
precision–recall curves for each of the 10-folds using this
restricted set of PCIs. Further, to evaluate PrePCI's per-
formance using a more balanced dataset, we randomly
sampled 2,049,190 of the 62,414,150 true negative interac-
tions such that ratio of negatives to positives in each fold
was 10:1 and generated ROC and precision–recall curves.

4.5 | Benchmarking on an independent
drug target interaction gold standard
dataset

Updated versions of the protein class datasets compiled
by Yamanishi et al. (2008) and updated in Liu et al.
(2022) were obtained from https://github.com/
intelligence-csd-auth-gr/DTI_MDMF2A/tree/main/
datasets_mv. KEGG Compound IDs were mapped to
SMILES strings using the Pubchem Chemical Identifier
Exchange Service (https://pubchem.ncbi.nlm.nih.gov/
idexchange/idexchange.cgi). KEGG protein IDs were
mapped to Uniprot IDs using the Uniprot ID mapping
tool (https://www.uniprot.org/id-mapping). PCIs present

in each dataset were considered true positives while the
remaining all-on-all protein–compound pairs were con-
sidered true negatives. We performed 10-fold cross-
validation and calculated performance statistics.

4.6 | Docking analysis and screening

An initial putative interaction model of the PCI was cre-
ated by aligning the query protein to the template protein
using ska (Yang & Honig, 2000). Protein structures were
then prepared in the presence of the template ligand
using the Protein Preparation Wizard in Maestro version
13.1 with default settings (Madhavi Sastry et al., 2013).
Receptor grids were generated around the template
ligand setting all neighboring groups as rotatable with
other settings taken as the defaults. Ligand structures
were prepared using Ligprep: C1E was prepared from its
coordinates, and its chirality was inferred from 3D struc-
ture; screening compounds were prepared from SMILES
strings and all combinations of chiral centers were gener-
ated to expand diversity of the screening pool. All dock-
ing was performed with flexible ligand sampling using
the XP scoring function.
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The subset corresponding to human proteins used in this
study is available in table S3; Demanding Evaluation Kits
for Objective In Silico Screening 2.0 (DEKOIS 2.0) at
http://www.pharmchem.uni-tuebingen.de/dekois/, refer-
ence 43. The subset corresponding to human proteins
used in this study is available in Table S4; SIFTS database
at https://www.ebi.ac.uk/pdbe/docs/sifts/quick.html, ref-
erences 50,51; Template/Model proteins and
PDB/Pubchem Compounds used in PrePCI are accessible
via PrePCI/DB website interface described above.
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