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Abstract

One in eight men will be affected by prostate cancer (PCa) in their lives. While the current

clinical standard prognostic marker for PCa is the Gleason score, it is subject to inter-

reviewer variability. This study compares two machine learning methods for discriminating

between cancerous regions on digitized histology from 47 PCa patients. Whole-slide images

were annotated by a GU fellowship-trained pathologist for each Gleason pattern. High-reso-

lution tiles were extracted from annotated and unlabeled tissue. Patients were separated

into a training set of 31 patients (Cohort A, n = 9345 tiles) and a testing cohort of 16 patients

(Cohort B, n = 4375 tiles). Tiles from Cohort A were used to train a ResNet model, and

glands from these tiles were segmented to calculate pathomic features to train a bagged

ensemble model to discriminate tumors as (1) cancer and noncancer, (2) high- and low-

grade cancer from noncancer, and (3) all Gleason patterns. The outputs of these models

were compared to ground-truth pathologist annotations. The ensemble and ResNet models

had overall accuracies of 89% and 88%, respectively, at predicting cancer from noncancer.

The ResNet model was additionally able to differentiate Gleason patterns on data from

Cohort B while the ensemble model was not. Our results suggest that quantitative pathomic

features calculated from PCa histology can distinguish regions of cancer; however, texture

features captured by deep learning frameworks better differentiate unique Gleason

patterns.

Introduction

Prostate cancer (PCa) is the most diagnosed non-cutaneous cancer in men, affecting an esti-

mated 268,000 men in 2022 [1]. Improved prostate cancer screening and therapies have led to

a high five-year survival rate and the overall prognosis for PCa is one of the best compared
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amongst all cancers. Prostate cancer is currently graded using the Gleason grading system,

assigning scores corresponding to the two most predominant morphological patterns present.

More recently, it has been used to assign patients into one of five Grade Groups (GG) to pre-

dict prognosis [2, 3]. Clinically significant cancer (GG� 2, tumor volume� 0.5 mL, or

stage� T3) is often treated with radiation therapy and/or radical prostatectomy [4, 5]. Low-

grade cancer can often be monitored through annual prostate specific antigen (PSA) testing.

Side effects from prostate cancer treatment can include long-term complications such as impo-

tence and impaired urinary function [6], thus early and accurate detection of PCa is necessary

to minimize overtreatment while still addressing clinically significant cancer.

Digital pathology is playing an increasingly important role in clinical research, with applica-

tions in diagnosis and treatment decision support [7]. Fast acquisition time, management of

data, and interpretation of histology has made digital pathology popular and easier for pathol-

ogists to manage and share slides. Additionally, artificial intelligence (AI) with digital pathol-

ogy has created opportunities to incorporate computational algorithms into pathology

workflows or for AI-based computer-aided diagnostics [8]. Machine learning has shown

potential in decision-support systems, and in prostate cancer, can be applied to diagnostic

imaging, surgical interventions, and risk assessment [9].

In prostate cancer research, many machine learning applications have been focused on

automated Gleason grading. While the Gleason score is currently the gold standard prognostic

marker for prostate cancer, the process of assigning grades is a subjective, quantitative metric.

Additionally, pathologist-provided annotations for digital pathology studies is not only time

consuming, but can result in significant inter-observer variability [10, 11]. The primary focus

of these automated Gleason grading methods has been on biopsies or tissue microarrays as

opposed to whole-slide images [12–15]. A fast, automated tool for identifying Gleason patterns

in prostate histology could allow for rapid annotation and grading, as well as provide impor-

tant prognostic information such as recurrence probabilities.

Previous studies have used a myriad of machine and deep learning architectures for Glea-

son pattern annotations. Machine learning models are often chosen based on overarching con-

siderations of the model including size of training data, accuracy or interpretability of the

output, training time, linearity, and number of features [16]. Data sets with fewer observations

and higher number of features may benefit from using algorithms with high bias and low vari-

ance such as linear regression, Naïve Bayes, and linear SVM, whereas KNN, decision trees, and

kernel SVMs work well with large data sets. Linear regression models are highly interpretable

but are restricted to generate only linear functions, compared to a KNN which considers all

input data. Faster training time is achievable with models such a Naïve Bayes and linear and

logistic regressions; SVM, neural networks, and decisions trees require lots of time to train the

data but may see increased accuracy.

Deep supervised learning models, such as convolutional neural networks, are of the simpler

deep learning techniques and can generate a data output with provided labels; however, the

decision boundaries may be impacted by imbalanced data. AlexNet takes in an RGB image,

augments data to reduce over-fitting, normalize neighborhood pixels, and using a drop-out

layer to avoid over-fitting [17]. VGGNet reduces the number of variables used in AlexNet for

faster learning and is more robust to over-fitting [18]. ResNet finds simpler mapping by

employing Identity and Projection shortcuts which push learned maps through the network

[19]. This framework has one of the highest accuracies compared to the others but requires

more training time and energy.

In this study, we developed an Automated Tumor Assessment of pRostate cancer hIstology

(ATARI) classification model for the Gleason grading of whole-mount prostate histology

using quantitative histomorphometric features calculated from digitized prostate cancer slides.
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The results of this model were validated using ground truth pathologist annotations. In addi-

tion, we compared this model to a residual network with 101 layers (ResNet101) for automated

Gleason grading [20]. Specifically, we tested the hypothesis that a machine learning model

applied to second-order features calculated from digitized histology could discriminate pros-

tate cancer from normal tissue. We also hypothesized that deep learning model would differ in

classification accuracy, both in detecting cancer and differentiating Gleason patterns.

Materials and methods

Patient population and data acquisition

Data from 47 prospectively recruited patients (mean age 59 years) with pathologically con-

firmed prostate cancer were analyzed for this study. This study was conducted according to

the guidelines of the Declaration of Helsinki and approved by the Institutional Review Board

of the Medical College of Wisconsin. Written informed consent was obtained from all subjects

involved in the study. The data presented in this study are available on request from the corre-

sponding author. The data are not publicly available due to patient privacy concerns. For

model development, subjects were split into 2/3 training (n = 31 patients) and 1/3 testing

(n = 16 patients) data sets, matched for tumor grade and other clinical characteristics (see

Table 1).

Tissue collection and processing

Prostatectomy was performed using a da Vinci robotic system (Intuitive Surgical, Sunnyvale,

CA) [21, 22]. Whole prostate samples were fixed in formalin overnight and sectioned using

custom axially oriented slicing jigs [23]. Briefly, prostate masks were manually segmented

from the patient’s pre-surgical T2-weighted magnetic resonance image using AFNI (v.19.1.00)

(Analysis of Functional NeuroImages, http://afni.nimh.nih.gov/) [24]. Patient-specific slicing

jigs were modeled using Blender 2.79b (https://www.blender.org/) to match the orientation

and slice thickness of each patient’s T2-weighted image [10, 25–27], and 3D printed using a

fifth-generation Makerbot (Makerbot Industries, Brooklyn, NY). The MRI scans were not

used beyond slicing molds for the remainder of this study.

Whole-mount tissue sections were processed, paraffin embedded, and resulting whole

mount slides were hematoxylin and eosin (H&E) stained. The slides were then digitally

scanned using a slide scanner (Olympus America Inc., Center Valley, PA, USA) at a resolution

of 0.34 microns per pixel (40x magnification) to produce whole slide images (WSI), and

Table 1. Patient demographics.

Training Testing

(n = 31) (n = 16)

Age at RP, years (mean, SD) 59 (6.8) 59 (4.9)

Preoperative PSA, ng/mL (mean, SD) 7.9 (6.2) 7.7 (4.5)

Grade group at RP (n, %) (n = 72)

6 8 (26) 2 (12)

3+4 13 (41) 7 (44)

4+3 4 (13) 3 (19)

8 3 (10) 1 (6)

� 9 3 (10) 3 (19)

Clinicopathological features of the study cohort at the time of radical prostatectomy (RP).

https://doi.org/10.1371/journal.pone.0278084.t001
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down-sampled by a factor of 8 to decrease processing time. A total of 330 digitized slides were

manually annotated using a Microsoft Surface Pro 4 (Microsoft, Seattle, WA, USA) with a pre-

loaded color palette for different Gleason patterns [2] by a GU fellowship-trained pathologist

(KAI). An example of the prostate annotation process is shown in Fig 1.

Annotation segmentation

Digital whole-mount slides were divided into high resolution tiles that were 3000x3000 pixels

and labeled using their corresponding xy-coordinates within the image. This size tile was

Fig 1. Model designs. Top: Annotation and tile extraction process. After manual annotation of digitized slides, 3000x3000 pixel tiles are extracted from

unique annotated regions. Those tiles are then further divided into 1024x1024 pixel tiles and those that remain within a mask are saved (black tiles indicate

unsaved tiles). Middle: Workflow for the ATARI classifier. Quantitative pathomic features calculated from the large tiles are used as input to a compact

classification ensemble to predict cancer vs non-cancer in a whole-slide image. Bottom: Workflow for the ResNet101 classifier. 1024x1024 pixel annotated

tiles are used as input into the ResNet model to predict non-cancer vs Gleason grade groups. Abbreviations: HGPIN = high-grade prostatic intraepithelial

neoplasia; G3 = Gleason pattern 3; G4CG = Gleason pattern 4 cribriform; G4NC = Gleason pattern 4 non-cribriform; G5 = Gleason pattern 5.

https://doi.org/10.1371/journal.pone.0278084.g001
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chosen as it is the smallest resolution that our pathologist could determine Gleason grades.

These tiles were then stitched back together to recreate the whole-mount image while concur-

rently creating x- and y-coordinate look-up tables. A subset of slides was rescanned on the

Olympus slide scanner, and annotations that were performed on lower resolution digitized

versions of the slide were quantitatively transferred (n = 201 slides). Briefly, the analogous

annotated image was aligned to the newly digitized slide using MATLAB 2021b’s imregister
function (The MathWorks Inc., Natick, MA, USA). The annotations were isolated to create a

single mask for each of eight possible classes: seminal vesicles, atrophy, high-grade prostatic

intraepithelial neoplasia (HGPIN), Gleason 3 (G3), Gleason 4 cribriform gland (G4CG), Glea-

son 4 non-cribriform glands (G4NC), Gleason 5 (G5), and unlabeled benign tissue. Gleason 4

patterns have been separated in our annotations as there are notable prognostic differences

between the cribriform and non-cribriform patterns [28–31]. An additional averaged white

image of non-tissue (i.e., background, lumen, and other artifacts) was found to remove these

areas from the annotation masks to ensure the most representative histology remained for

analysis. Each region of interest (ROI) within an individual class was individually compared to

the xy-look-up tables to determine coordinates corresponding to tiles, and only those with

over 50% of a specific annotation were included. Five tiles from each ROI were saved into

annotation-specific directories for use with the ATARI model, except for unlabeled benign tis-

sue where 15 tiles were randomly saved from each slide. ROIs that were too small to extract 5

tiles from were excluded.

Each annotated tile was further divided into 1024x1024 pixel tiles at the same image resolu-

tion for use with the ResNet101 model, resulting in upwards of 9 sub-tiles used for the

ResNet101 per full-sized tile used for the ATARI model. Sub-tiles that remained within a mask

were saved into annotation-specific directories, similarly to the large tiles used for the ATARI

model. The ResNet101 additionally was trained using background tiles determined by areas

that were included in the average white image. Tiles used for training were augmented by

resizing (250x250 pixel), random cropping (240x240), applying color jitter (0.3, 0.3, 0.3), add-

ing random rotations (±0-30º), applying random horizontal and vertical flips and center crop-

ping to the ResNet input size of 224x224 as well as normalizing to ImageNet’s mean (0.485,

0.456, 0.406) and standard deviation (0.229, 0.224, 0.225). This tile extraction process is dem-

onstrated in Fig 1, and breakdown of slides and sorted tiles can be found in Table 2.

Pathomic feature extraction

High resolution tiles were down-sampled to increase processing time, and then were processed

using a custom, in-house MATLAB function to extract pathological features for use with the

ATARI model. First, a color deconvolution algorithm was applied to each image to segment

stroma, epithelium, and lumen based on their corresponding stain optical densities (i.e., posi-

tive hematoxylin or eosin, and background) [32]. These features were then further smoothed

and filtered to remove excess noise and improve segmentations. Glands with lumen touching

the edge of a tile were excluded. Overall stromal and epithelial areas were calculated on a

whole-image basis, and an additional six features were calculated on an individual gland-basis:

epithelial area, roundness, and wall thickness; luminal area and roundness, and cell fraction

(i.e., the percent of epithelial cells per total gland area, defined by the area of the epithelium

without lumen).

Model training

Flowcharts for the ATARI model and ResNet101 classifier can be found in Fig 1. A bagged

ensemble algorithm was used as the framework for developing the ATARI classifier on 31
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subjects based in MATLAB (Mathworks, Inc. Natick, MA), which fitted predictors trained on

bootstrapped samples from the training data set to obtain a combined ensemble model that

minimized variance across learners [33, 34]. Bagged ensemble models prevent a single model

from seeing the complete dataset and learns relationships across different components of the

data, which reduces variance, prevents overfitting, and thus improves accuracy. Additionally,

bagged ensembles are useful in cases where there are both linear and nonlinear data in the

dataset, as would be assumed within histological data. Inputs for this model were mean,

median, and variance of the calculated pathomic features averaged across each tile, z-scored

across the training data.

To test a deep learning approach for comparison, a ResNet model with 101 layers was

implemented in Python using the PyTorch framework (v.1.8.1) [20, 35]. The ResNet frame-

work was chosen for the deep learning model due to its adaptable pre-trained framework,

accuracy, and short training time. We found that the framework with 101 layers had the best

performance in the model-tuning stage of our analysis. The same tiling procedure as previ-

ously described was used to curate the dataset for this network, with the addition of splitting

all tiles into smaller 1024x1024 pixel patches and saving those that remained 50% within an

annotation mask. Data from Cohort A was split into 80/20 training and validation datasets to

prevent overfitting and several data augmentation techniques were used to increase training

samples. The image patches were resized to 250x250 pixels, randomly cropped to 240x240 pix-

els, augmented and center cropped to generate the needed input size of 224x224 pixels. The

same three model designs as the ATARI were trained using the ResNet101 framework. Class

imbalance of the training dataset was addressed by introducing sample number-based class

weights in the cross-entropy loss function. To test the granularity of Gleason pattern predic-

tion, we trained predictive models using several different levels of tumor specificity including

all Gleason grades; high- (G4+) and low-grade (G3) cancer and benign tissue (HG vs LG

model); and non-cancer and cancer (G3+) (NC vs CA model). To test generalizability, the

model was applied to a left-out test set. Predictions were then plotted on three slides from the

test data set using the same features calculated across all tiles for the slide to assess successful

identification of tumor and compared to ground-truth pathologist annotations and the ResNet

Table 2. Model input data.

Training Testing

(n = 31) (n = 16)

Tissue samples (n, %) 213 117

Samples per patient (mean, SD) 6.9 (2.3) 7.3 (1.9)

Annotated Tiles (n, %) ATARI ResNet101 ATARI ResNet101

Atrophy 3555 (38) 30000 (24) 1675 (38) 72098 (57)

G3 990 (11) 16000 (13) 475 (11) 14565 (11)

G4CG 130 (1) 5477 (4) 60 (1) 1078 (1)

G4NC 515 (6) 16482 (13) 235 (5) 5382 (4)

G5 75 (1) 4118 (3) 55 (1) 236 (<1)

HGPIN 285 (86) 4785 (4) 45 (1) 610 (<1)

Seminal Vesicles 435 (67) 10456 (8) 210 (5) 5728 (5)

Unlabeled Benign Tissue 3360 (67) 20000 (16) 1620 (37) 13483 (11)

Background 0 (0) 20000 (16) 0 (0) 14027 (11)

Total 9345 127319 4375 (32) 127207

Breakdown of annotated image tiles used for the training and testing datasets for the two models.

https://doi.org/10.1371/journal.pone.0278084.t002
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model. All available code and generated models used for this study can be found at (https://

github.com/sduenweg/Gleason_Annotation/tree/main) [36].

Results

The accuracy of both models was analyzed using a left-out test dataset from 17 patients (95,875

image patches for the ResNet; 4,375 image tiles for ATARI). The ATARI model was unable to

successfully classify Gleason grades (overall accuracy 85%, per-class accuracy range 0% - 99%)

nor high- (HG) and low-grade (LG) cancer (overall accuracy 83%, per-class accuracy range

<1% - 99%). In both models, normal tissue was classified well above chance level (20% for all

Gleason grades, 33% for high- and low-grade cancer), with G3 in the Gleason grades model

and HG in the HG vs LG model performing at chance. The ATARI non-cancer (NC) vs cancer

(CA) model had an overall accuracy of 89% and a per class accuracy of 97% and 53% for NC

and CA, respectively. The ResNet model was able to successfully classify all Gleason grades

with an absolute overall accuracy of 79% (per class accuracy range 25% - 87%), HG vs LG

(overall accuracy 72%, per class accuracy range 55% - 72%), and NC vs CA (overall accuracy

83%) with an accuracy 91% and 74% for non-cancer and cancer (Fig 2). The sensitivity of each

annotation grade was typically higher in the ResNet models (0.45–0.8 for all Gleason grades,

0.74–0.9 for HG and LG) compared to ATARI (0–0.35 for all Gleason grades, 0.44–0.77 for

HG and LG), except for G4NC (0.29 ResNet, 0.35 ATARI) and LG (0.66 ResNet, 0.68 ATARI).

Similar results were observed for specificity and positive predictive value (PPV) (Table 3).

Fig 3 show the representative slides as their ATARI and ResNet101 annotations as com-

pared to ground-truth annotations. Although the ATARI model was unable to capture unique

Gleason patterns, it was able to define the region of tumor present on the slide. The ResNet101

model was able to accurately predict the Gleason patterns with a per class accuracy of 25–52%.

Discussion

In this study, high-resolution tiles taken from annotated regions on whole-mount digital slides

after radical prostatectomy were used to train models to support pathologist diagnoses of pros-

tate cancer. Specifically, the ATARI model used quantitative features to classify glandular fea-

tures, whereas the ResNet101 classifier used deeper textural features of histology. The ATARI

Fig 2. Model results. Confusion matrices for the three classification models for both the ResNet101 and ATARI. The ResNet101 was able to distinguish

between unique Gleason patterns at higher accuracies that the corresponding ATARI models.

https://doi.org/10.1371/journal.pone.0278084.g002
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was only able to accurately predict cancer and non-cancer, whereas the ResNet101 classifier

was able to further predict unique Gleason grades present on the slide. The results from our

study indicate that while machine learning models using calculated features may be successful

at differentiating tumor from non-tumor, deeper features found using neural networks can

further define unique patterns. This may indicate that Gleason patterns exist beyond simple

glandular features and may be more readably quantified using textural features. The absolute

accuracies of 89% and 83% for the ATARI and ResNet101 models, respectively, show the need

for a more general approach to using machine learning for cancer diagnosis.

The models tested in this study used divergent inputs per their algorithm requirements that

may have resulted in their conflicting performances. The ATARI model was trained using

eight quantitative pathomic features calculated across 3000x3000 pixel tiles as input

(n = 9345), and the mean, median, and variance of each feature was calculated across tiles,

resulting in 224,280 overall features. The ResNet model used the 1024x1024 pixel tiles them-

selves (n = 127319) and applied image augmentations to increase the number of examples in

the training set and introduce more variety in what the model can learn from. This imbalance

may have aided the ResNet in determining finer details to differentiate Gleason patterns,

resulting in an overall accuracy, sensitivity, specificity, and positive predictive value across

each annotation class for each model that generally was higher than those seen in the ATARI

models. The ATARI model did, however, match or outperform the ResNet’s PPV in each

model for the benign tiles, further indicating its ability to detect cancer from non-cancer.

Machine and deep learning applications are becoming prominent in clinical research.

Machine learning focuses on the use of data and algorithms to imitate the way that humans

learn. Data used in machine learning applications are human-derived, quantitative metrics

that are then analyzed through statistical methods to make classifications or predictions. Deep

learning is a sub-field of machine learning that automates the feature extraction without the

need for human intervention. It can uncover more nuanced patterns within the data to gener-

ate predictions. In this study, our proposed machine-learning model outperformed the ResNet

model at classifying cancer from non-cancer; however, the ResNet could classify unique Glea-

son grades. This may indicate that the features of Gleason grades do not have strong quantita-

tive differences, but rather texture differences that are discernible using a deep learning model.

This was especially true in the case of Gleason pattern 5, which the ATARI model had 0%

Table 3. Model performance.

ResNet101 ATARI

Model Class Sensitivity Specificity PPV NPV Sensitivity Specificity PPV NPV

All Grades G3 0.45 0.87 0.52 0.84 0.31 0.82 0.21 0.88

G4CG 0.68 0.87 0.44 0.95 0.00 0.80 0.00 1.00

G4NC 0.29 0.82 0.25 0.84 0.35 0.81 0.06 0.97

G5 0.80 0.88 0.45 0.97 0.00 0.80 0.00 1.00

NC 0.50 0.97 0.90 0.78 0.24 0.97 0.97 0.21

HG vs LG HG 0.79 0.81 0.60 0.91 0.77 0.74 0.33 0.95

LG 0.66 0.84 0.71 0.80 0.68 0.71 0.21 0.95

NC 0.74 0.94 0.88 0.86 0.44 0.97 0.98 0.36

NC vs CA CA 0.90 0.78 0.74 0.92 0.95 0.67 0.53 0.97

NC 0.78 0.90 0.92 0.74 0.67 0.95 0.97 0.53

Performance metrics across annotated classes for each of the tested machine and deep learning models. Abbreviations: HG = high grade; LG = low grade;

NC = noncancer; CA = cancer; PPV = positive predictive value; NPV = negative predictive value.

https://doi.org/10.1371/journal.pone.0278084.t003
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Fig 3. Example annotated slides. Ground truth annotation maps compared to the ResNet101 model for all Gleason grades and the

three tested ATARI models: all Gleason grades, high- vs low-grade cancer, and cancer vs non-cancer only. ResNet101 model for all

Gleason grades and the three ATARI models: all Gleason grades, high- vs low-grade cancer, and cancer vs non-cancer only.

https://doi.org/10.1371/journal.pone.0278084.g003
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accuracy in detecting. It would have been expected that the G5 pattern would be clearly dis-

cernible from the other Gleason patterns as it contains densely packed cells with small lumen,

however, our pathomic feature calculator relies on the appearance of a distinct gland that has a

clear epithelial wall around the lumen, which may be a limitation of the pathomic feature cal-

culator compared to the deep learning. Additional pathomic features may increase the accu-

racy in detecting this pattern specifically. Other prior studies have shown similar results where

a trained deep learning model outperformed a simple model trained on handcrafted features

[37–39].

Automated Gleason grading applications have been previously applied for multiple pur-

poses. One prior study trained a convolutional neural network (CNN) using WSI-level features

constructed from a CNN-based PCa detection model that was trained from slide-level annota-

tions to predict the final patient Gleason Grade Group [40]. This model achieved a 94.7% accu-

racy at detecting cancer and 77.5% accuracy at predicting the patient Grade Group. While

promising, this model does not provide histological annotations to WSI, but rather only pre-

dict patient Grade Group. Several previous studies have applied deep learning models to pros-

tate biopsy specimens [15, 41, 42]. While these models have achieved high accuracies at

annotating biopsy cores, our ResNet101 model was able to annotate whole-slides images and

could distinguish between regions of Gleason 4 cribriform and non-cribriform tumors. This

distinction in detecting underlying features of G4CG and G4NC tumors is especially impor-

tant to pathologists, as cribriform glands specifically have worse prognostic differences and

thus requiring more aggressive treatment than the G4 non-cribriform patterns.

Integrating rapid annotation of Gleason patterns after tissue resection into the clinical

workflow could save a tremendous amount of pathologist time. Once slides are digitally

scanned, a diagnosis could be predicted automatically based on the automated annotations.

This could then be used to rank slides by order of importance for pathologist review and to aid

in treatment planning. The proposed models could be applied to large data sets and would

decrease the workload on pathologists. Additionally, annotations provided from quantitative

metrics may eliminate variability in Gleason annotations.

One major limitation of the study is the use of only one pathologist for annotating the train-

ing and test datasets. Inter-observer variability is a known issue in prostate cancer diagnosis,

and thus should be addressed in the training phase. Additionally, only one slide scanner was

used to digitize the slides used in this study. Future studies should investigate the impact addi-

tional slide scanners would have on the generalizability of the models, as this analysis was out-

side the scope of the current study. The models trained in this study also used input images of

different sizes for training. While the ResNet model used a smaller input image with greater

detail in small regions, the ATARI model used larger tiles for more accurate pathomic feature

calculation across entire glands. Glands were often clipped in the smaller tiles used for the

ResNet model in a way that would have made computed features unrepresentative of the actual

histology, which limits the image resolution in a way that textural features used in deep learn-

ing models are not. Further research is warranted to determine the impact that input image

sizes have on deep learning models. Finally, future studies should look at larger populations to

provide a more robust dataset of Gleason patterns which may increase accuracy in the machine

learning models, as this study had a relatively small cohort of 47 patients.

Conclusion

We demonstrate in a cohort of 47 patients that machine learning models and neural networks

can accurately predict regions of prostate cancer, where the latter network was further able to

classify unique Gleason patterns. These models are anticipated to aid in prostate cancer
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decision support by decreasing the diagnostic burden of pathologists. Future studies should

determine how inter-observer and slide scanner resolution impact these networks in their

classifications.
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