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Abstract

Background

Customized fetal growth charts assume birthweight at term to be normally distributed across

the population with a constant coefficient of variation at earlier gestational ages. Thus, stan-

dard deviation used for computing percentiles (e.g., 10th, 90th) is assumed to be proportional

to the customized mean, although this assumption has never been formally tested.

Methods

In a secondary analysis of NICHD Fetal Growth Studies-Singletons (12 U.S. sites, 2009–

2013) using longitudinal sonographic biometric data (n = 2288 pregnancies), we investi-

gated the assumptions of normality and constant coefficient of variation by examining

behavior of the mean and standard deviation, computed following the Gardosi method. We

then created a more flexible model that customizes both mean and standard deviation using

heteroscedastic regression and calculated customized percentiles directly using quantile

regression, with an application in a separate study of 102, 012 deliveries, 37–41 weeks.

Results

Analysis of term optimal birthweight challenged assumptions of proportionality and that val-

ues were normally distributed: at different mean birthweight values, standard deviation did

not change linearly with mean birthweight and the percentile computed with the normality

assumption deviated from empirical percentiles. Composite neonatal morbidity and mortality

rates in relation to birthweight < 10th were higher for heteroscedastic and quantile models

(10.3% and 10.0%, respectively) than the Gardosi model (7.2%), although prediction perfor-

mance was similar among all three (c-statistic 0.52–0.53).
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Conclusions

Our findings question normality and constant coefficient of variation assumptions of the Gar-

dosi customization method. A heteroscedastic model captures unstable variance in custom-

ization characteristics which may improve detection of abnormal growth percentiles.

Trial registration

ClinicalTrials.gov identifier: NCT00912132.

Introduction

Fetal undergrowth as often characterized by fetal growth restriction (FGR) and small-for-ges-

tational age (SGA) is associated with an increased risk of perinatal morbidity and mortality

[1]. SGA is often defined as birthweight < 10th percentile using a population based growth ref-

erence [2]. However, this approach identifies fetuses who are constitutionally small but other-

wise healthy and misses fetuses who did not meet their growth potential but whose weight is at

or above the 10th percentile. In 1992, Gardosi et al proposed a customized method for birth-

weight references that took into account six pregnancy characteristics known to influence

birthweight and thought to be physiologic, namely gestational age, maternal pre-pregnancy

weight, height, race, parity, and fetal sex [3]. This method was further extrapolated from birth-

weight to estimated fetal weight during gestation by using fetal ultrasonographic biometric

data and a commonly used fetal growth reference from Hadlock [4, 5]. The percentiles for the

ultrasound estimated fetal weight (EFW) curves (e.g., 10th, 50th and 90th) were proportionately

adjusted upwards or downwards according to the Gardosi method’s expected optimal birth-

weight at term for a given set of maternal and fetal characteristics. Customized fetal growth ref-

erences are appealing as they provide a more personalized definition of FGR and SGA, in line

with a precision medicine approach; however, whether their use improves the clinical detec-

tion of fetuses with suboptimal growth and at risk of morbidity and mortality is controversial

[6–8]. Nevertheless, they have been recommended for use by national guidelines in some

countries including Britain, Ireland and New Zealand [9]. A recent randomized trial did not

demonstrate improved prenatal detection of SGA using the Growth Assessment Protocol

based on customized fetal growth charts compared to standard care, although the negative

results have been questioned because of lack of adherence to the intervention study arm and

bleeding of some parts of the intervention in the “standard care” arm [10, 11].

The primary metric of the Gardosi method is a customized term optimal birthweight

(TOW) at 40 weeks which is then extrapolated to EFW at any gestational time using the pro-

portionality model [12]. Based on the model and the proportionality assumption, the percen-

tiles (e.g., 5th, 10th, 90th, 95th etc.) for the EFW are produced at all gestational ages between 24

and 42 weeks. However, the customized TOW percentiles are based on the assumptions that

the distribution of birthweight is normal, and the standard deviation used for calculating the

percentiles (e.g., 10th, 90th), is proportional to the mean, i.e., the coefficient of variation (CV) is

constant; these assumptions have never been formally tested yet have important clinical impli-

cations, because different percentile cutoffs will identify different proportions of fetuses as

SGA versus non-SGA. This differential classification would potentially increase the risk of still-

birth in those pregnancies where SGA goes undetected or cause unnecessary iatrogenic earlier

delivery in pregnancies where SGA is erroneously diagnosed.
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This study was a secondary analysis of the NICHD Fetal Growth Studies–Singletons, a pro-

spective pregnancy cohort study with the primary aim to establish fetal growth standards for

size and velocity in the U.S. [13–15]. Our objectives were first, to evaluate the assumptions of

the Gardosi customization model that the distribution of TOW around its customized mean

value was normal and the standard deviation used for calculating the CV was proportional to

the mean TOW. Second, we created a new customization method that has more flexibility in

calculating customized percentiles using a heteroscedastic regression that customizes both
mean TOW (and hence EFW by extrapolation) and standard deviation [16]. To be precise, the

heteroscedastic model customizes a transformed value of the standard deviation but because

that makes the standard deviation depend on the customizing factors, hereafter we refer to it

as a model for customizing the standard deviation. Also, since clinical outcomes of SGA and

LGA are essentially percentiles (e.g. 10th, 90th), we further customized fetal growth using quan-

tile regression, which directly calculates the percentiles without being reliant on the model for

the mean and the assumption of normality [17]. We compared the performance of all three

customization methods in relation to SGA and LGA birthweight with neonatal morbidity and

mortality within the NICHD Fetal Growth Study and also in a concurrent analysis from the

Consortium on Safe Labor because it has a larger number of births.

Materials and methods

Study design and participants

The NICHD Fetal Growth Studies–Singletons recruited 2334 non-obese women (BMI 19�0–

29�9 kg/m2) from four different race/ethnic groups who were non-smokers and had low-risk

medical and obstetrical histories (e.g., no chronic diseases) from 2009 to 2013 at 12 U.S. cen-

ters. Details of recruitment and study design have been previously reported [18]. An additional

468 women with BMI 30�0–44�9 kg/m2 were recruited with similar inclusion criteria, although

relaxed to allow certain chronic conditions (e.g. chronic hypertension controlled on medica-

tion), given the higher prevalence of concurrent morbidities with obesity [19]. Institutional

review board approval was obtained at all participating sites as well as the NIH (IRB approval

#09-CH-N152) on December 2009 prior to the study beginning. All participants provided

written informed consent prior to data collection.

Procedures

Gestational age was based on a certain last menstrual period and confirmed by first trimester

ultrasound [18]. At enrollment, information on demographics, obstetrical and medical histo-

ries, and lifestyle and health leading up to and during the first trimester of pregnancy was col-

lected via in-person interview. After an enrollment sonogram at 10–13 weeks of gestation,

women were randomly assigned to one of four ultrasound schedules for follow up visits at

ranges 16–22, 24–29, 30–33, 34–37 and 38–41 weeks of gestation. For the assigned study visit,

± 1 week was allowed to accommodate women’s availability. Sonographers for the study

underwent uniform, centralized training and credentialing. A standardized protocol was used

to obtain ultrasound measurements for fetal biometry including head circumference (HC),

abdominal circumference (AC), and femur length (FL) at each study visit using identical,

high-resolution ultrasound units at each center. The HC, AC, and FL were used to calculate

EFW using a Hadlock formula [20]. Information on lifestyle, reproductive and medical history

were obtained via in-person interviews at each research visit. Demographic data and antenatal,

labor, delivery and neonatal course and outcomes were abstracted from the prenatal record,

labor and delivery summary, hospital and neonatal records by trained research personnel.

Paternal height and weight were by maternal report.
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Outcomes included SGA and LGA birthweight defined as< 10th or > 90th using the Dur-

yea reference with neonatal morbidity and mortality [21]. Neonatal morbidities associated

with SGA or LGA included: metabolic acidosis (pH<7.1 and base deficit >12mmol/L), neo-

natal intensive care unit (NICU) stay greater than three days, pneumonia, respiratory distress

syndrome, persistent pulmonary hypertension, seizures, hyperbilirubinemia requiring

exchange transfusion, intrapartum aspiration (meconium, amniotic fluid, blood), neonatal

death, mechanical ventilation at term, necrotizing enterocolitis, hypoglycemia, hypoxic ische-

mic encephalopathy, periventricular leukomalacia (SGA only), sepsis based on blood culture

(SGA only), bronchopulmonary dysplasia/chronic lung disease (SGA only), retinopathy of

prematurity (SGA only), and birth injury (LGA only) [22–26].

SGA and LGA associated with neonatal morbidities were defined similarly in a concurrent

analysis of n = 102, 012 deliveries between 37–41 weeks from the Consortium on Safe Labor

(CSL) [27]. Pregnancy, labor and delivery information was electronically abstracted from

maternal records. Neonatal records included information on gestational age, NICU admission,

medical conditions and discharge diagnoses. International Classification of Diseases, 9th Revi-

sion, Clinical Modification (ICD-9-CM) codes were collected and linked to deliveries. Out-

comes were defined to be consistent with previous CSL studies [28].

Statistical analysis

Demographic data were summarized as n (%) or mean (± SD). We developed a fetal growth per-

centile customization model using the Gardosi method [4]. Linear regression was used to predict

birthweight at 40 weeks as the outcome, designated as the term optimal weight (TOW), using six

customization variables: gestational age, maternal pre-pregnancy weight, height, race/ethnicity,

parity, and infant sex. We then explored some of the assumptions of the Gardosi model, namely

the assumption of normality and the constant CV assumption for the TOW distribution. If the

Gardosi assumption of normality and constant CV were to hold, the percentiles computed based

on Gardosi model should agree with the empirical percentiles across different levels of the mean

birthweight. We stratified the estimated birthweight into eight contiguous intervals (depicting

eight different values of mean birthweight) and investigated the agreement of the empirical per-

centiles with those obtained from the Gardosi model for each interval. To verify the assumption

of constant CV, we looked at the relationship between the empirical standard deviation and the

mean birthweight across the different birthweight intervals. As an extension to the Gardosi

model which assumes that the standard deviation is proportional to the customized mean, we

then created a model to customize both mean and standard deviation of the TOW using hetero-

scedastic regression with predicted birthweight at 40 weeks as the outcome and the same six cus-

tomization variables [4]. The new customized mean and SD yielded customized values for the

target percentiles using the quantile formula for normal distribution (S1 Table).

In a third customization model, we calculated customized percentiles directly using quan-

tile regression with monotonic smoothing, a flexible model that does not assume a normal dis-

tribution [17]. Note that quantile regression customizes the target percentiles directly without

using a 2-step model where first the customized mean and the customized standard deviation

are obtained and then the percentiles are computed using the quantile formula for normal dis-

tribution. All three models included the same customizing variables containing cubic and qua-

dratic terms of deviation of gestational time at delivery from the optimal 280 days mark a

priori per the Gardosi model. In addition to the six proposed “physiological” variables that

influence fetal growth, models also included “pathological” variables, smoking, BMI (kg/m2),

and gestational diabetes, gestational hypertensive disease/preeclampsia, and antepartum bleed-

ing. The analysis was centered on 280 days’ gestation, height 163 cm, pre-pregnancy weight 64

PLOS ONE New customized fetal growth method

PLOS ONE | https://doi.org/10.1371/journal.pone.0282791 March 16, 2023 4 / 20

https://doi.org/10.1371/journal.pone.0282791


kg, nulliparous, and Non-Hispanic White race/ethnicity. However, only the coefficients for

the six “physiologic” variables (as designated by the Gardosi method) were included in an

additive model to calculate the TOW percentiles [12]. The six variables were categorized simi-

lar to the Gardosi model with some slight alterations due to the availability of the data. Specifi-

cally, we included four race/ethnic groups (Asian, Hispanic, Non-Hispanic Black, Non-

Hispanic White) instead of ethnic origin which was not available in our study. Parity 2 and

greater (P2+) was combined into one group because of sparse data for higher parity whereas

the Gardosi model includes each one separately: P0 (ref), P1, P2, P3, P> = 4. Standard good-

ness-of-fit and model diagnostics were performed.

The customization method of fetal growth based on the previously noted 6 maternal and

fetal factors calculates the term optimal weight at 40 weeks which is then extrapolated back to

ultrasound EFW across gestation using the Hadlock reference, proportionately adjusting the

percentiles (e.g., 10th, 50th, 90th) upward or downward based on the profile. Therefore, to check

cross-sectional consistency of the variance, the heteroscedastic model was executed a second

time using EFW for pairs of weeks, i.e., 21–22, 22–23, etc. instead of extrapolating. Pairs of

weeks were chosen because there were insufficient observations at each individual week.

Both the heteroscedastic regression model with separately customizable mean and standard

deviation and the quantile regression model that explicitly produced customized percentiles

were then compared to the Gardosi model [29]. Note that under the normality assumption in

the Gardosi and heteroscedastic models, the mean is equal to the median value. We computed

the 5th, 10th, 50th, 90th and 95th percentiles for birthweight for deliveries at 37–41 weeks for a

hypothetical mother whose customization factors were set to population average values in the

NICHD Fetal Growth Studies–Singletons. The analysis was performed for each of the 3 models

and the estimated percentiles were plotted for comparison. The equations to calculate the per-

centiles for the 3 models are presented in the Supplement. We also calculated the mean,

median, SD, 10th, and 90th percentiles for the 3 models using EFW (instead of birthweight) at

38 and 39 weeks in the NICHD Fetal Growth Studies–Singletons.

We also compared the performance of the three customization models (Gardosi, heterosce-

dastic and quantile regression) and the Duryea birthweight reference in relation to SGA and

LGA birthweight with neonatal morbidity and mortality [21]. Sensitivity, specificity, positive

predictive values (PPV) and negative predictive values (NPV) were calculated for the associa-

tion between each of the SGA and LGA classifications from the three customization models

against the observed neonatal morbidity and mortality using multivariable logistic regression.

Comparison of the performance of the customization models was first performed using the

EFW at 38–39 weeks from the NICHD Fetal Growth Studies–Singletons. Analyses were then

repeated using birthweight from the CSL study (because EFW was not available in the CSL).

This step was for examining reproducibility and generalizability of the findings albeit using

birthweight, since the CSL study included a much larger sample of deliveries on which out-of-

sample prediction performance was tested. Moreover, the NICHD Fetal Growth Studies–Sin-

gletons targeted recruitment of low-risk pregnancies whose primary goal was developing a

fetal growth standard, excluding pregnancies at higher risk for fetal growth abnormalities; the

recruitment criterion for CSL did not have this restriction/limitation.

All analyses were completed with the use of SAS software (version 9�4, SAS Institute, Inc.,

Cary, NC) or R (version 3�5�2, available at http://www.R-project.org).

Results

Of the 2802 women recruited for the NICHD Fetal Growth Studies–Singletons, we excluded

those who were deemed ineligible after enrollment, fetal anomalies, neonatal aneuploidy,

PLOS ONE New customized fetal growth method

PLOS ONE | https://doi.org/10.1371/journal.pone.0282791 March 16, 2023 5 / 20

http://www.r-project.org/
https://doi.org/10.1371/journal.pone.0282791


deactivated (e.g., for pregnancy loss, moved, pregnancy termination, or lost to follow-up),

delivered < 37 weeks, or had missing information, leaving 2288 for final analysis (S1 Fig).

Study participants were racially/ethnically diverse with a mean maternal age of 28.2 (± 5.4)

years; 46% were nulliparous, 56% had a BMI 18.5 to< 25 kg/m2, 26% had a BMI 25 to< 30

kg/m2 and 16% a BMI 30.0 or greater kg/m2 (Table 1).

Evaluation of customization assumptions

In order to evaluate the assumptions of normality and constant CV we examined the data as

follows. The data were sorted by the mean estimated TOW based on the Gardosi model and

divided into eight contiguous equal length intervals, where each interval represents cases with

a specific value of TOW (the mean birth weight value in the interval). The number of observa-

tions in each interval were not equal with fewer observations for the extreme intervals. How-

ever, there were substantial observations in each for the mean, the standard deviation and the

percentiles to be estimated accurately. For each interval, we computed the empirical percen-

tiles of birthweight and the standard deviation as well as the mean predicted TOW from the

Gardosi model. We also computed the percentiles using the normality and the constant CV

assumption from the Gardosi model. The results are presented in Figs 1 and 2. Fig 1 shows the

relationship between the empirical percentiles of birthweight and those estimated based on

Gardosi assumptions for different values of mean birthweight. The empirical percentiles often

differ from those obtained from the model. The 5th percentile was generally being over-esti-

mated by the model while the 95th was generally underestimated. The difference was as big as

150gm. In Fig 2, the standard deviation of TOW for specific values of mean TOW are pre-

sented. If the Gardosi assumption of constant CV was satisfied the standard deviations would

fall on the line with constant slope equal to the value of the CV. However, we observed consid-

erable departure from the constant CV model.

We further investigated the assumption of normality by checking the residuals from the

model fits for the Gardosi and the heteroscedastic models. The quantile regression does not

assume normality and hence it was not included in the investigation. The residuals did not

show any glaring departure from normality (S2 Fig).

Creation and comparison of three customization models

Table 2 presents the results from the 3 models. As expected, the term optimal weight of 3510 g

was similar for both Gardosi and heteroscedastic models since the mean would be the same as

the median under the assumption of normality. However, in the quantile regression, the

median term optimal weight was lower, 3487 g, challenging the assumption of normality.

The beta-coefficients and standard errors for the mean characteristics in the heteroscedastic

model and the Gardosi models were similar (Table 2). Interestingly, only the linear terms for

maternal height and weight were statistically significant (in both models) but not the quadratic or

cubic terms. However, we retained the quadratic and cubic terms in the model since they are

included in the Gardosi model, and our main interest was to assess the variance terms. In the het-

eroscedastic model, only pre-pregnancy weight significantly affected the standard deviation (lin-

ear term β = 0.0145). Some of the other variables showed a potentially non-constant influence on

the variability of TOW. Standard goodness-of-fit and model diagnostics indicated that overall, all

3 models appeared to fit well whereas the residuals did not show any appreciable departure.

Evaluation of model performance across gestation

The heteroscedastic model was executed again using EFW for pairs of weeks, i.e., 21–22, 22–

23, etc. instead of birthweight to check the cross-sectional consistency of variance (i.e., whether
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the model assumptions hold at any unspecified point in gestation, not just at delivery with

birthweight) (S2 Table). Though sporadic differences in variances were observed by maternal

Table 1. Participant and pregnancy characteristics in the NICHD Fetal Growth Studies–Singletons (N = 2,288).

Characteristic n (%) or mean ± SD

Maternal age (y) 28.2 (5.4)

Maternal height (cm) 162.8 (7.0)

Maternal weight (kg) 67.4 (14.9)

BMI (kg/m2)

< 18.5 12 (0.5%)

18.5 to < 25 1290 (56.4%)

25 to < 30 595 (26.0%)

30 to <35 251 (11.0%)

� 35 140 (6.1%)

Parity

0 1062 (46.4%)

1 791 (34.6%)

2+ 435 (19.0%)

Race/ethnic group

Non-Hispanic white 643 (28.1%)

Non-Hispanic black 607 (26.5%)

Hispanic 665 (29.1%)

Asian/Pacific Islander 373 (16.3%)

Smoking 10 (0.4%)

Gestational Diabetes 96 (4.2%)

Maternal hypertensive disease

No Hypertension 2147 (93.8%)

Mild Gestational Hypertension 59 (2.6%)

Severe Gestational Hypertension 4 (0.2%)

Mild Preeclampsia 48 (2.1%)

Severe Preeclampsia 13 (0.6%)

Unspecified Hypertension 17 (0.7%)

Other Diseases

Asthma 5 (0.2%)

Thyroid disease 4 (0.2%)

Hematologic disorders 5 (0.2%)

Antepartum bleeding 620 (27.1%)

Abruption 9 (0.4%)

Gestational age at delivery (wk) 39.5 (1.1)

Infant birthweight (g) 3390.6 (438.5)

Infant sex

Male 1162 (50.8%)

Female 1126 (49.2%)

Neonatal death 1 (0.0%)

Paternal height (cm)a 177.66 (8.50)

Paternal weight (kg) a 84.8 (16.2)

a n = 2040

Data are from the NICHD Fetal Growth Studies–Singleton.

https://doi.org/10.1371/journal.pone.0282791.t001
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weight and height, no systematic dependence on any particular characteristic was found across

gestation. These findings from the rolling weekly pair analysis indicate that there was no spe-

cific departure from the heteroscedastic customization model across gestation. Interestingly,

however, the main effects of three of the six characteristics, maternal height, weight, and parity,

in mean customization model for EFW were not consistent across gestational weeks. Maternal

height was associated with increased EFW from around 28 to 30 weeks of gestation, and again

around 33 weeks onward. Maternal weight also was associated with increased EFW from

around 29 to 31 weeks and again around 33 weeks onward. Increasing parity was associated

with increased EFW starting at the beginning of the third trimester around 28 weeks, although

did not reach statistical significance until towards the end of pregnancy (not adjusted for mul-

tiple testing).

Fig 1. Empirical percentiles (5th and 95th) of term optimal birthweight at different levels of mean birthweight are compared with the percentiles

obtained from the Gardosi model which assumes normality and constant CV to compute the percentiles. Data are from the NICHD Fetal Growth

Studies–Singleton. The lines are from the models while the points are empirical observations.

https://doi.org/10.1371/journal.pone.0282791.g001
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Evaluation of model performance across customization characteristics

Comparison of the 5th, 10th, 50th, 90th and 95th percentiles among the three models were per-

formed for the six characteristics to evaluate model performance. Analyses comparing birth-

weight for deliveries at 37–41 weeks in the NICHD Fetal Growth Studies–Singletons are

presented in Fig 3 for illustration. The 50th percentile was similar across all 3 models with the

quantile regression percentile being only slightly lower than the other two. The percentiles for

the Gardosi model were father apart than the other two models, meaning that there was a

slightly lower birthweight for the 5th and 10th percentile cutpoints and slightly higher birth-

weight for the 90th and 95th percentile cutpoints than the heteroscedastic and quantile

Fig 2. Empirical and Gardosi model based standard deviation of birthweight at different levels of mean birthweight. The constant

coefficient variation assumption in Gardosi model would imply the empirical standard deviations would fall along a straight line (red

line) with constant CV value as its slope. However, the empirical based fitted line (blue line) differs from the line based on the Gardosi

assumption and the empirical points don’t show a linear pattern. Data are from the NICHD Fetal Growth Studies–Singleton. The sample

size of each group is 5, 25, 85, 292, 668, 822, 350, and 41 for the point representing the grouped bins from smallest to largest predicted

birthweight, respectively.

https://doi.org/10.1371/journal.pone.0282791.g002
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Table 2. Coefficients for three customization models in the NICHD Fetal Growth Studies–Singletons (N = 2,288).

Gardosi Model a Heteroscedastic Model Quantile Regression Model

Variable Estimate SE P Estimate SE P Estimate 10% Estimate 50% Estimate 90% SE 50% P 50%

Mean Model
Intercept (Term Optimal Weight) 3509.722 21.250 <

.0001

3510.000 21.264 <

.0001

3069.076 3486.616 4041.833 24.289 <

.0001

Gestational age (from 280 d)

Linear term 14.944 1.818 <

.0001

14.944 1.850 <

.0001

13.366 17.147 8.282 2.269 <

.0001

Quadratic term -0.282 0.191 0.1403 -0.293 0.184 0.1103 -0.389 -0.403 -0.269 0.206 0.0509

Cubic term 0.026 0.012 0.034 0.025 0.012 0.0379 0.027 0.008 0.042 0.016 0.6414

Sex

Male 67.048 7.911 <

.0001

67.048 8.002 <

.0001

55.752 66.499 71.076 9.517 <

.0001

Female -67.048 7.911 <

.0001

-67.048 8.002 <

.0001

-55.752 -66.499 -71.076 9.517 <

.0001

Maternal height (from 163 cm)

Linear term 5.864 1.903 0.0021 5.861 2.007 0.0035 9.412 5.306 -4.789 2.129 0.0127

Quadratic term 0.041 0.117 0.7252 0.034 0.114 0.7691 0.173 0.130 -0.081 0.112 0.2464

Cubic term -0.001 0.008 0.8934 0.000 0.009 0.986 -0.018 0.002 0.020 0.008 0.7861

Maternal prepregnancy weight (from 64

kg)

Linear term 7.720 1.140 <

.0001

7.721 1.170 <

.0001

4.751 7.395 13.533 1.348 <

.0001

Quadratic term -0.114 0.063 0.0706 -0.119 0.065 0.0669 -0.086 -0.157 -0.203 0.075 0.0372

Cubic term 0.000 0.001 0.6579 0.000 0.001 0.7709 -0.001 0.001 -0.001 0.001 0.5762

Race

Non-Hispanic black -189.435 21.695 <

.0001

-189.435 21.880 <

.0001

-182.776 -193.922 -225.116 24.380 <

.0001

Hispanic -54.454 22.150 0.014 -54.454 22.964 0.0177 -77.925 -65.586 -74.850 28.232 0.0203

Asian/Pacific Islander -49.903 26.053 0.0556 -49.903 25.876 0.0538 -9.154 -69.425 -79.243 36.557 0.0577

Parity

1 92.614 18.070 <

.0001

92.614 18.394 <

.0001

72.759 97.666 59.634 22.623 <

.0001

2+ 101.536 22.391 <

.0001

101.536 23.535 <

.0001

117.866 102.512 45.780 28.195 0.0003

Variance Model b

Intercept 374.598 14.777 <

.0001

Gestational age (from 280 d)

Linear term -0.004 0.007 0.604

Quadratic term 0.000 0.001 0.8844

Cubic term 0.000 0.000 0.9483

Sex

Male 0.025 0.030 0.4035

Female -0.025 0.030 0.4035

Maternal height (from 163 cm)

Linear term -0.012 0.007 0.0922

Quadratic term 0.000 0.000 0.3882

Cubic term 0.000 0.000 0.1498

Maternal prepregnancy weight (from 64

kg)

(Continued)
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regression models which were more aligned. In the heteroscedastic and quantile regression

models, EFW 10th and 90th percentiles were also closer to one another than the Gardosi model

across a range of maternal weights: 57kg, 64kg and 75kg for the 25th, 50th, and 75th percentiles,

respectively (Table 3). For example, EFW 10th percentile at 37–38 weeks for a woman with a

pre-pregnancy weight of 57 kg was 99g larger with customized variance (2571g heteroscedas-

tic) and 131 g larger for quantile regression (2603 g) vs. Gardosi (2472 g), while EFWs at the

90th percentile were 99 g and 26 g smaller, respectively.

Assessment of the effect of paternal characteristics on birthweight

Paternal height and weight were also independently associated with birthweight (S3 Table). In

general, for each cm increase in paternal height from the average 177.8 cm, there was an

approximately 3 g increase in EFW (4 g using quantile regression), compared to the 5 g

increase (4 g increase for quantile regression) in EFW for each cm increase in maternal height

from the average 163 cm when both were included in the model. For each 1 kg increase in

paternal weight from the 81.6 kg average, there was also a 3 g increase in EFW compared to

the 7 g increase in EFW for each kg increase in maternal weight from the average of 64 kg.

Summary of actual and predicted birthweight for the NICHD Fetal Growth

Studies-Singletons

To evaluate comparative model performance, we calculated the median, 10th, 90th percentiles

for birthweight in the NICHD Fetal Growth Study. The empiric (observational) mean birth-

weight (37–41 weeks) was 3371 g which was similar to the estimated term optimal birthweight

of 3374 g for the Gardosi model and 3375 g for the heteroscedastic model, indicating that these

models performed well at estimating observed mean birthweight. The estimated term optimal

birthweight from the quantile regression was 3350 g, which was 22 g lower than the observed

Table 2. (Continued)

Gardosi Model a Heteroscedastic Model Quantile Regression Model

Variable Estimate SE P Estimate SE P Estimate 10% Estimate 50% Estimate 90% SE 50% P 50%

Linear term 0.015 0.004 <

.0001

Quadratic term 0.000 0.000 0.6577

Cubic term 0.000 0.000 0.5303

Race

Non-Hispanic black -0.111 0.082 0.1783

Hispanic -0.011 0.082 0.8963

Asian/Pacific Islander -0.041 0.100 0.6829

Parity

1 0.039 0.070 0.5723

2+ 0.040 0.083 0.6278

Note: 0.000 is used for any value <0.001.
a All three models included the same customizing variables containing cubic and quadratic terms of deviation of gestational time at delivery from the optimal 280 days

mark a priori per the Gardosi model [12]. In addition to the six proposed “physiological” variables (as designated by the Gardosi method) that influence fetal growth,

models also included smoking, BMI (kg/m2), gestational diabetes, gestational hypertensive disease/preeclampsia, and antepartum bleeding. Analysis was centered on

280 days’ gestation, height 163 cm, prepregnancy weight 64 kg, nulliparous, and Non-Hispanic White race/ethnicity. However, only the coefficients for the six

“physiologic” variables were included in an additive model to calculate the term optimal weight percentiles.
b Variance is only for the heteroscedastic model.

https://doi.org/10.1371/journal.pone.0282791.t002
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birthweight and expected since the quantile regression is modeling the median of the distribu-

tion rather than the mean. The standard deviations of the predicted birthweights were nar-

rower for the customization models (248 g for Gardosi, 246 g for the heteroscedastic, and 234

g for the quantile regression) compared to 447 g for the observed birthweight. This difference

can be explained because the extremes of the observed birthweight distribution are more

widely dispersed than those of the predicted distributions. Such a phenomenon is not unex-

pected. Since the customization models use measures of central tendency (i.e., mean/median),

the predicted distributions of birthweights are well-aligned with the observed distribution at

the center of the data. The discrepancy in the percentiles between the observed distributions

and the predicted distributions are more pronounced toward the tail of the distribution, with

the 10th and the 90th percentiles differing by two to three hundred grams.

Fig 3. Comparison of the three customization models for birthweight at term. The 5th, 10th, 50th, 90th and 95th percentiles for the Gardosi, heteroscedastic

and quantile regression models for birthweight for deliveries at 37–41 weeks. Data are from the NICHD Fetal Growth Studies–Singleton.

https://doi.org/10.1371/journal.pone.0282791.g003
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Neonatal morbidity prediction across three customization models

Finally, we applied the models to birthweight data at 37–41 weeks in the CSL and compared

classification of SGA and LGA in relation to neonatal morbidity and mortality in the CSL

(Table 4). While the composite neonatal morbidity and mortality rates in relation to SGA were

higher for the heteroscedastic and quantile regression models (10.3% and 10.0%, respectively)

than the Gardosi model (7.2%), the prediction performance was similar among the 3 customi-

zation models as well as the Duryea population-based birthweight reference (c-statistic 0.52–

0.54) [21]. The pattern was similar for LGA (c-statistic 0.53 for all). Findings were similar in

the NICHD Fetal Growth Studies–Singletons analysis for EFW at 38–39 weeks (S4 Table).

Discussion

We performed an in-depth examination of the statistical assumptions of the Gardosi customi-

zation method [4]. Our investigation indicates that the standard deviation varies differently

than the mean birthweight across gestation for the six customization characteristics. These

findings question the constant coefficient of variation assumption of the Gardosi customiza-

tion model that the standard deviation, and therefore the customized percentiles, is propor-

tional to the mean birthweight. Therefore, we created a model to simultaneously estimate both
customized mean and standard deviation with heteroscedastic regression. Also, since our find-

ings questioned the assumption that the data were normally distributed, we further investi-

gated direct customization using a quantile regression model that does not assume normal

distribution. While 50th percentile EFW was similar across models, 10th and 90th percentiles

Table 3. Comparison of three different methods across different levels of maternal prepregnancy weight for birthweight at 37–42 weeks in the NICHD Fetal

Growth Studies–Singletons (N = 2,288).

25th percentile maternal weight 50th percentile maternal weight 75th percentile maternal weight

Prepregnancy weight–kg 56.7 63.5 74.8

Gardosi 90th Percentile–g 4017 4085 4170

Heteroscedastic 90th Percentile–g 3901 3984 4094

Quantile regression 90th Percentile–g 3932 4035 4164

Gardosi Term Optimal Weight–g 3447 3506 3579

Heteroscedastic Term Optimal Weight–g 3447 3506 3579

Quantile regression Term Optimal Weight–g 3424 3483 3549

Gardosi 10th Percentile–g 2878 2927 2988

Heteroscedastic 10th Percentile–g 2994 3028 3065

Quantile regression 10th Percentile–g 3030 3067 3109

Note: All calculations were performed in SAS with non-rounded numbers. Proc GLM was used for the Gardosi based models, Proc AUTOREG was used for the

heteroscedastic models and Proc QUANTREG was used for the quantile regression model. The percentiles were calculated per the equations in S1 Table. For example,

the 90th percentile from the Gardosi model was calculated as term optimal weight (TOW) = TOW + (1.28 � Sigma), where sigma = TOW�0.129, and where .129 is the

coefficient of variation for the study population; the 90th percentile for the heteroscedastic model was calculated as TOW = TOW + (1.28�customized sigma), where the

customized sigma was determined using the customized variance beta coefficients: 354.504 for the 25th maternal weight percentile, 373.2451 for the 50th maternal

weight percentile, 402.0685 for the 75th maternal weight percentile. For example, for the 25th maternal weight percentile

epsi_het25 = 374.5975 �exp(0.5�(0.0145�(-7.301)-0.000103�(-7.301�-7.301)-0.0000028�(-7.301�-7.301�-7.301)

-0.0123�(0) -0.000357�(0)+0.0000472�(0)

-0.003582�(0) -0.000112�(0) -0.000003257�(0)

+ 0�(-0.1109)+ 0�(-0.0107)+ 0�(-0.0407)+ 0�(0.0394)+ 0�(0.0403)

+ 0.0236�(0)))

In both the Gardosi and Heteroscedastic, TOW was specific to each maternal weight percentile. For the quantile regression, the 10th and 90th percentiles were calculated

directly from the model.

https://doi.org/10.1371/journal.pone.0282791.t003
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for the Gardosi model were father apart, resulting in lower birthweight for 10th percentile and

higher for 90th percentile cutpoints, than other two models. Composite neonatal morbidity

and mortality rates in relation to birthweight< 10th percentile was higher for the heteroscedas-

tic and quantile regression models (10.3% and 10.0%, respectively) than the Gardosi model

(7.2%), although prediction performance was similar among all three (c-statistic 0.52–0.53).

Thus, while there was some departure from the assumptions of the Gardosi model, it still per-

formed well in comparison to a more flexible heteroscedastic model. While quantile regression

resolves the issue about assumption of normality, its similar performance in estimating the

percentiles indicates that other two models may generally be robust with respect to the

assumption of normality, at least for the study population considered, since the effect of non-

normality did not have an appreciable impact on model performance. In summary, the hetero-

scedastic model is equally straightforward to implement as the Gardosi model and has the

advantage of being able to capture unstable variance in the customization characteristics if

needed.

The quantile regression model seems to be a natural choice for modeling quantiles when

standard assumptions of normal distribution models are suspect. Quantile regression was used

to create the WHO fetal growth charts and also for a customized fetal growth reference in an

African-American population [30, 31]. However, the price of the greater flexibility of the quan-

tile regression is that it generally requires a greater sample size to yield accuracy as comparable

to the linear regression models [17]. In the study by Kabiri et al., a customized fetal growth ref-

erence based on quantile regression did not improve prediction of perinatal morbidity com-

pared with ultrasound references [30]. While in the present cohort the model also did not

show significant improvement in terms of birthweight prediction, it is expected that as more

data from controlled studies become available, the merits of flexible models compared to linear

regression-based models could be better evaluated in the context of birthweight

customization.

Table 4. Comparison of model performance for the three different methods in detecting SGA and LGA with morbidity for birthweight at 37–42 weeks of gestation

in the Consortium on Safe Labor study (N = 102,012).

Classification n Composite neonatal morbidity % PPV NPV Sensitivity Specificity Odds ratio (95% CI) c-statistic (95% CI)

LGA > 90th

Duryea 9,895 9.7 7.7 95.1 14.5 90.6 1.62 (1.50–1.75) 0.53 (0.52–0.53)

Gardosi 7,814 7.7 8.5 95.1 12.6 92.6 1.80 (1.65–1.96) 0.53 (0.52–0.53)

Heteroscedastic 10,497 10.3 7.7 95.1 15.3 90.0 1.63 (1.50–1.76) 0.53 (0.52–0.53)

Quantile 10,211 10.0 8.0 95.1 15.4 90.3 1.69 (1.56–1.83) 0.53 (0.52–0.53)

SGA < 10th

Duryea 9,385 9.2 6.5 96.3 15.2 91.04 1.82 (1.66–1.99) 0.54 (0.53–0.54)

Gardosi 7,294 7.2 7.2 96.3 13.2 93.09 2.05 (1.86–2.25) 0.53 (0.52–0.53)

Heteroscedastic 10,538 10.3 5.6 96.3 14.9 89.85 1.55 (1.41–1.69) 0.52 (0.52–0.52)

Quantile 10,201 10.0 5.9 96.3 15.0 90.20 1.63 (1.49–1.78 0.53 (0.52–0.53)

Note: In the Consortium on Safe Labor Study, birthweight was predicted by using models’ coefficients from the NICHD Fetal Growth Studies. Large- and small-for-

gestational-age (LGA and SGA, respectively) were defined according to different models, then calculated the positive predictive value (PPV), negative predictive value

(NPV), sensitivity, specificity, odds ratio and c-statistic using neonatal morbidity as the outcome. Neonatal morbidities were selected specifically for SGA or LGA based

on increased risks associated with these and included: metabolic acidosis (pH <7.1 and base deficit >12mmol/L), NICU stay greater than three days, pneumonia,

respiratory distress syndrome, persistent pulmonary hypertension, seizures, hyperbilirubinemia requiring exchange transfusion, intrapartum aspiration (meconium,

amniotic fluid, blood), neonatal death, mechanical ventilation at term, necrotizing enterocolitis, hypoglycemia, hypoxic ischemic encephalopathy, periventricular

leukomalacia (SGA only), sepsis based on blood culture (SGA only), bronchopulmonary dysplasia/chronic lung disease (SGA only), retinopathy of prematurity (SGA

only), and birth injury (LGA only) [22–26].

https://doi.org/10.1371/journal.pone.0282791.t004
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Our investigation into the statistical assumptions of customization methods of proportional

standard deviation across birthweight values is novel. In addition, the effect of the covariates

on fetal growth across gestation had also been assumed to be fixed, but we found the effect of

pre-pregnancy weight on EFW was both nonconstant and non-linear, and in the heteroscedas-

tic model, maternal pre-pregnancy weight significantly affected the variance. Maternal height

and parity were also associated with increased EFW starting at the beginning of the third tri-

mester, with little influence in the first and second trimesters. Some of the other customization

variables showed some non-constant influence on the distribution of EFW, although these

findings were not statistically significant which could have been due to limited power. Also,

the quadratic or cubic terms for maternal height and weight were not statistically significant in

either the Gardosi or heteroscedastic model, indicating that a linear term may be sufficient.

Removal of maternal weight from the customization model has previously been found to iden-

tify a greater proportion of LGA neonates with deliveries complicated by shoulder dystocia,

NICU admission and neonatal respiratory problems that were not identified by a population

based definition of LGA, although that analysis used the outcome of birthweight [32]. These

findings indicate that the characteristics (i.e. maternal weight) and terms in the Gardosi cus-

tomization model (i.e. quadratic and cubic) that are currently included may be unnecessary. In

our analysis of EFW at 38–39 weeks, customization with the heteroscedastic model identified a

slightly higher proportion of SGA neonates with morbidity (8.9%) compared to the Gardosi

method (5.7%), with a similar pattern for LGA and SGA neonates < 5th percentiles. Perhaps

the ability of the heteroscedastic model to allow for unstable variance in the customization

characteristics yielded a slight incremental improvement. Therefore, the heteroscedastic cus-

tomization method has potential to identify more fetuses at risk of growth restriction and

macrosomia, with associated improvement in targeting antenatal surveillance and obstetric

intervention to reduce neonatal morbidity and stillbirths.

Paternal factors have not traditionally been included in customization charts. We found

that increasing paternal height and weight had a positive, independent influence on fetal

growth, although maternal height and weight had a stronger effect. These findings are similar

to findings from the Generation R cohort of EFW in the Netherlands [33] and fetal biometric

measurements in an Italian cohort [34] although another study from the UK also found mater-

nal weight to have a stronger influence on birthweight, while maternal and paternal height had

similar contributions [35]. The fact that maternal factors have a stronger influence on anthro-

pometrics during fetal life compared to paternal factors has been hypothesized to be due to

maternal preservation in conditions of constraint [36].

While the six customization characteristics (gestational age, maternal pre-pregnancy

weight, height, race, parity, infant sex) are known to influence fetal growth, it is unclear

whether the changes in fetal growth in relation to these characteristics are a normal physiologic

adaptation or associated with increased risk for perinatal morbidity and mortality. Since

shorter and lighter women would be expected to have smaller neonates than taller and heavier

women, taking maternal height and weight into account should help identify fetuses that are

more likely to be constitutionally small or overgrown instead of being erroneously labeled as

not aligned with their growth potential [37]. While country (as a proxy for local ethnic mix)

has been found to be the principal factor in predicting adverse outcomes in infants compared

with customizing for additional individual characteristics, there is increased recognition that

customizing for race/ethnicity might have unintended clinical consequences [38, 39]. Birth-

weight is also known to increase with increasing parity until parity 4, with the largest increase

between parity 0 and 1 (68 g on average) [40]. Male neonates weigh larger than females, an

average 141 g larger at 40 weeks of gestation [21]. However, the influence of maternal short

stature and nulliparity on perinatal mortality has been found to be mediated in part through
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SGA indicating that smaller EFW associated with maternal constraint is both physiological

and pathological [41]. Finally, other factors can influence fetal growth, such as genetic and

external factors, including altitude, diet and lifestyle, and other environmental conditions

beyond the six factors included in the customization profile that are often routinely and easily

obtained during the antenatal period [29, 42–47].

Our study only found incremental improvements in detection of rates of neonatal morbid-

ity and mortality at term with SGA and LGA defined by all three customization models com-

pared to population based birthweight reference, with no difference in predictive ability (i.e.,

similar c-statistics across the models) which may have been due to smaller numbers of adverse

outcomes in a healthier population initially recruited for the primary study goals to create a

fetal growth standard [18]. However, the ability to test the customized methods in the CSL, a

large pregnancy cohort, with consistent results as our smaller ultrasound study strengthens

our findings. A major strength of our study was the longitudinal collection of ultrasound fetal

measurements which allowed us to evaluate the effect of the six customization characteristics

across gestation, and also the ability to explore not only birthweight but EFW which is argu-

ably more important clinically when considering obstetrical interventions such as antenatal

monitoring and earlier delivery to prevent stillbirth and birth related complications.

The concept of considering maternal and fetal characteristics is appealing as a personalized

medicine approach, although there is controversy on whether customization for maternal and

fetal factors improves clinically useful detection of SGA and LGA [6, 7]. Yet, the incremental

improvement depends on several factors and the obstetric implications of customization have

been understudied [8]. All three of the customization methods and the population-based birth-

weight reference had poor discrimination ability to predict neonatal morbidity and mortality

indicating that we need to move beyond using a percentile cut-point to identify fetuses at risk

even though this remains standard practice. Similarly, use of percentile cut-points to identify

SGA and LGA is also ingrained in standard care, and customization is used in clinical practice

[9]. We found that a customizing heteroscedastic model that allows for unstable variance in

the customization characteristics may represent an incremental improvement over current

customization methods in current use. Future work may consider additional maternal, fetal,

and paternal factors and identify other factors related to neonatal morbidity and mortality.

Randomized clinical trials are ultimately needed to compare whether and which customized

chart is associated with reductions in short and long-term neonatal morbidity.
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