Skip to main content
. 2023 Mar 16;18(3):e0282791. doi: 10.1371/journal.pone.0282791

Table 2. Coefficients for three customization models in the NICHD Fetal Growth Studies–Singletons (N = 2,288).

  Gardosi Model a Heteroscedastic Model Quantile Regression Model
Variable Estimate SE P Estimate SE P Estimate 10% Estimate 50% Estimate 90% SE 50% P 50%
Mean Model                      
Intercept (Term Optimal Weight) 3509.722 21.250 < .0001 3510.000 21.264 < .0001 3069.076 3486.616 4041.833 24.289 < .0001
Gestational age (from 280 d)                      
Linear term 14.944 1.818 < .0001 14.944 1.850 < .0001 13.366 17.147 8.282 2.269 < .0001
Quadratic term -0.282 0.191 0.1403 -0.293 0.184 0.1103 -0.389 -0.403 -0.269 0.206 0.0509
Cubic term 0.026 0.012 0.034 0.025 0.012 0.0379 0.027 0.008 0.042 0.016 0.6414
Sex                      
Male 67.048 7.911 < .0001 67.048 8.002 < .0001 55.752 66.499 71.076 9.517 < .0001
Female -67.048 7.911 < .0001 -67.048 8.002 < .0001 -55.752 -66.499 -71.076 9.517 < .0001
Maternal height (from 163 cm)                      
Linear term 5.864 1.903 0.0021 5.861 2.007 0.0035 9.412 5.306 -4.789 2.129 0.0127
Quadratic term 0.041 0.117 0.7252 0.034 0.114 0.7691 0.173 0.130 -0.081 0.112 0.2464
Cubic term -0.001 0.008 0.8934 0.000 0.009 0.986 -0.018 0.002 0.020 0.008 0.7861
Maternal prepregnancy weight (from 64 kg)                      
Linear term 7.720 1.140 < .0001 7.721 1.170 < .0001 4.751 7.395 13.533 1.348 < .0001
Quadratic term -0.114 0.063 0.0706 -0.119 0.065 0.0669 -0.086 -0.157 -0.203 0.075 0.0372
Cubic term 0.000 0.001 0.6579 0.000 0.001 0.7709 -0.001 0.001 -0.001 0.001 0.5762
Race                      
Non-Hispanic black -189.435 21.695 < .0001 -189.435 21.880 < .0001 -182.776 -193.922 -225.116 24.380 < .0001
Hispanic -54.454 22.150 0.014 -54.454 22.964 0.0177 -77.925 -65.586 -74.850 28.232 0.0203
Asian/Pacific Islander -49.903 26.053 0.0556 -49.903 25.876 0.0538 -9.154 -69.425 -79.243 36.557 0.0577
Parity                      
1 92.614 18.070 < .0001 92.614 18.394 < .0001 72.759 97.666 59.634 22.623 < .0001
2+ 101.536 22.391 < .0001 101.536 23.535 < .0001 117.866 102.512 45.780 28.195 0.0003
Variance Model b                      
Intercept       374.598 14.777 < .0001          
Gestational age (from 280 d)                      
Linear term       -0.004 0.007 0.604          
Quadratic term       0.000 0.001 0.8844          
Cubic term       0.000 0.000 0.9483          
Sex                      
Male       0.025 0.030 0.4035          
Female       -0.025 0.030 0.4035          
Maternal height (from 163 cm)                      
Linear term       -0.012 0.007 0.0922          
Quadratic term       0.000 0.000 0.3882          
Cubic term       0.000 0.000 0.1498          
Maternal prepregnancy weight (from 64 kg)                      
Linear term       0.015 0.004 < .0001          
Quadratic term       0.000 0.000 0.6577          
Cubic term       0.000 0.000 0.5303          
Race                      
Non-Hispanic black       -0.111 0.082 0.1783          
Hispanic       -0.011 0.082 0.8963          
Asian/Pacific Islander       -0.041 0.100 0.6829          
Parity                      
1       0.039 0.070 0.5723          
2+       0.040 0.083 0.6278          

Note: 0.000 is used for any value <0.001.

a All three models included the same customizing variables containing cubic and quadratic terms of deviation of gestational time at delivery from the optimal 280 days mark a priori per the Gardosi model [12]. In addition to the six proposed “physiological” variables (as designated by the Gardosi method) that influence fetal growth, models also included smoking, BMI (kg/m2), gestational diabetes, gestational hypertensive disease/preeclampsia, and antepartum bleeding. Analysis was centered on 280 days’ gestation, height 163 cm, prepregnancy weight 64 kg, nulliparous, and Non-Hispanic White race/ethnicity. However, only the coefficients for the six “physiologic” variables were included in an additive model to calculate the term optimal weight percentiles.

b Variance is only for the heteroscedastic model.