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Stage 3 type 1 diabetes
n = 29 

Stage 2 type 1 diabetes
n = 42 (≥2 AAb, abnormal OGTT)

Stage 1 type 1 diabetes
n = 53 (≥2 AAb, normal OGTT)

CGM Metrics Associated with
Progression to Stage 3 Type 1 

Diabetes

• ≥5% or ≥8% time with glucose 
≥140 mg/dL or 160 mg/dL

• Stage 2 participants exhibited 
higher mean day glucose values,
had more time over 140 and 
160 mg/dL, and had greater 
glucose variability as measured 
by DySF (dynamic stress factor 
exploratory metric)

Abbreviations: Autoantibodies (AAb); Oral Glucose Tolerance Test (OGTT)

ARTICLE HIGHLIGHTS

• We aimed to determine whether CGM metrics provide additional insights into progression to clinical stage 3 type 1
diabetes.

• We asked if the percent time above various glucose thresholds identifies first-degree relatives likely to progress
to clinical stage 3 type 1 diabetes.

• We found that stage 2 participants, and those who progressed to stage 3, exhibited higher mean daytime glucose
values; spent more time with glucose values over 120, 140, and 160 mg/dL; and had greater glucose variability.

• CGM findings may improve current understanding of dysglycemia preceding clinical stage 3 type 1 diabetes on-
set, possibly influencing decision-making for future prevention trials.
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OBJECTIVE

Continuous glucose monitoring (CGM) parameters may identify individuals at risk
for progression to overt type 1 diabetes. We aimed to determine whether CGM
metrics provide additional insights into progression to clinical stage 3 type 1
diabetes.

RESEARCH DESIGN AND METHODS

One hundred five relatives of individuals in type 1 diabetes probands (median age
16.8 years; 89% non-HispanicWhite; 43.8% female) from the TrialNet Pathway to Pre-
vention study underwent 7-day CGM assessments and oral glucose tolerance tests
(OGTTs) at 6-month intervals. The baseline data are reported here. Three groups were
evaluated: individuals with 1) stage 2 type 1 diabetes (n = 42) with two ormore diabe-
tes-related autoantibodies and abnormal OGTT; 2) stage 1 type 1 diabetes (n = 53)
with two or more diabetes-related autoantibodies and normal OGTT; and 3) negative
test for all diabetes-related autoantibodies and normal OGTT (n = 10).

RESULTS

Multiple CGM metrics were associated with progression to stage 3 type 1 diabe-
tes. Specifically, spending ‡5% time with glucose levels ‡140 mg/dL (P = 0.01),
‡8% time with glucose levels ‡140 mg/dL (P = 0.02), ‡5% time with glucose levels
‡160 mg/dL (P = 0.0001), and ‡8% time with glucose levels ‡160 mg/dL (P = 0.02)
were all associated with progression to stage 3 disease. Stage 2 participants and
those who progressed to stage 3 also exhibited higher mean daytime glucose values;
spent more time with glucose values over 120, 140, and 160 mg/dL; and had greater
variability.

CONCLUSIONS

CGM could aid in the identification of individuals, including those with a normal
OGTT, who are likely to rapidly progress to stage 3 type 1 diabetes.

Continuous glucose monitoring (CGM) is an important tool for type 1 diabetes
management (1–3). While efforts to decipher the contributions of immunologic
and metabolic abnormalities in type 1 diabetes progression have consistently re-
mained strong, more attention has recently been given to understanding the role
of dysglycemia and CGM metrics during the natural history of type 1 diabetes. The
potential to integrate CGM data into models that better stage and predict disease
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progression in at-risk individuals (4,5) has
been driven, in part, by studies directed
toward understanding the dynamic devel-
opment of dysglycemia captured from
CGM-based metrics measured during stages
of preclinical type 1 diabetes (6–8). The
presence of two or more type 1 diabetes-
associated islet autoantibodies is highly
predictive of the eventual development
of clinical disease and now serves as the
basis for defining stage 1 type 1 diabetes
(9–12). The addition of dysglycemia, diag-
nosed by oral glucose tolerance tests
(OGTT), defines stage 2 type 1 diabetes
and provides functional evidence for de-
teriorating insulin secretion and glucose
regulation as the disease progresses to
clinical type 1 diabetes (stage 3) (13).
The concept of type 1 diabetes stages

has facilitated the design of prevention
trials whereby OGTT is used as an entry
or outcome criterion. Staging has also
proven crucial for explaining the concepts
of risk and disease progression to regula-
tors, health care professionals, and peo-
ple at risk for type 1 diabetes. However,
it has long been recognized that OGTT-
defined categories have limitations (14),
particularly for identifying the transition
from stage 2 to stage 3 disease, where
the OGTT results frequently vary between
impaired glucose levels and those results
that meet diagnostic thresholds for stage 3
disease on repeated testing.
To date, limited data from pilot studies

suggest that CGM metrics can improve
the prediction of type 1 diabetes progres-
sion in autoantibody-positive participants
with normal OGTT (8,15). In the Auto-
immunity Screening for Kids (ASK) study,
various CGM metrics, both individual and
combined CGM variables, predict progres-
sion to stage 3 disease within 12 months
in children with islet autoantibodies (15).
To the best of our knowledge, an inte-
grated approach providing a comprehen-
sive and accurate assessment of glycemic
excursions during the preclinical state of
type 1 diabetes has not yet been applied
to the TrialNet population. Therefore, the
main objective of this study was to deter-
mine whether various CGM metrics, par-
ticularly the percent time above various
thresholds, obtained from the baseline
CGM data can maximize the identification
of first-degree relatives who are likely to
progress to the clinical onset of type 1
diabetes. In addition to comparing those
participants who progressed to stage 3
type 1 diabetes, we compared participants

in stage 1 with those in stage 2 type 1 dia-
betes. Early identification of high-risk indi-
viduals may prevent acute complications
at clinical diagnosis (like diabetic ketoacido-
sis) and aid in the selection of participants
for clinical trials of potential therapies to
preserve endogenous insulin secretion and
delay the onset of stage 3 type 1 diabetes.

RESEARCH DESIGN AND METHODS

Participant Population
We enrolled a total of 105 participants
(median age 16.8 years; 89% non-Hispanic
White; 43.8% female) from the NIH Trial-
Net Pathway to Prevention (PTP) study
TN01 (16) in the TrialNet-approved TN01-
CGM Metrics and Dysglycemia ancillary
study. All participants had a first- or sec-
ond-degree relative with type 1 diabetes.
Three groups of relatives were evaluated
based on the following eligibility criteria
performed within 1 year of enrollment:
individuals with 1) two or more islet auto-
antibodies and normal glucose tolerance
(stage 1, n = 53); 2) two or more islet
autoantibodies and abnormal glucose tol-
erance (stage 2, n = 42); and 3) confirmed
negative islet autoantibody tests and
normal OGTT (low risk, n = 10) (9). Ab-
normal glucose tolerance was defined as
fasting plasma glucose levels $110 mg/dL
and <126 mg/dL, 2-h plasma glucose
levels $140 mg/dL and <200 mg/dL, or
30-, 60-, and 90-min plasma glucose lev-
els during OGTT of $140 mg/dL and
<200 mg/dL (11). Participants did not
undergo a confirmatory OGTT prior to
staging or CGM placement. Asymptom-
atic individuals with two consecutive,
diabetic OGTTs within 1 year of follow-
up testing were excluded from the CGM
study. Individuals who were pregnant,
lactating, or currently enrolled in a type 1
diabetes prevention trial were also ex-
cluded from enrolling in the study.

OGTT and autoantibody data were
obtained from each participant’s most
recent TrialNet PTP visit (within 1 year
of enrollment in this CGM study). In ac-
cordance with the institutional review
board-approved protocol across all par-
ticipating sites, participants were con-
sented/assented to undergo up to three
CGM assessment periods, �6 months
apart, coincident with their TrialNet PTP-
TN01 study visits. Data from baseline
(visit 1) are analyzed in this report. Each
participant and/or their legal guardian
provided informed consent and assent at

each respective TrialNet enrollment site
where the study was performed. American
Diabetes Association criteria (13) were
used to diagnose stage 3 type 1 diabetes,
and the diagnosis was confirmed during
the participant’s regular PTP-TN01 follow-
up. This investigation was an ancillary
study of the TrialNet Patway to Preven-
tion of T1D monitoring phase, clinical trial
reg. no. NCT00097292.

CGM
Study participants had no acute illnesses
at the time of CGM placement. During
the study period of 2015–2018, these in-
dividuals agreed to wear the Dexcom G4
Platinum CGM system (Dexcom, San Diego,
CA) for up to 7 days while continuing their
daily routines. Participants were blinded to
their glucose readings while wearing the
sensor. They were provided with a home
glucometer (Contour Next EZ; Ascensia
Diabetes Care, Parsippany-Troy Hills, NJ)
for required calibrations. While wearing
the Dexcom G4 sensor, participants were
instructed to forgo acetaminophen inges-
tion due to known interference with
sensor glucose readings, resulting in er-
roneously elevated interstitial glucose
values (17). The first 12 h of CGM read-
ings were excluded from the analysis,
given that issues with less accurate
measures are known to occur on the
day of the CGM placement with the de-
vices used. Additionally, the data were
truncated at 6:00 A.M. on the morning of
the OGTT, as previously reported (18). If
missing >20% of data on any given day,
the remaining data for that day were ex-
cluded. At least 4 full days (96 h) of
evaluable CGM data were required for
analysis. We analyzed the data at time
of eligibility and baseline (visit 1) CGM
data for this report.

To quantify glucose variability, SD, co-
efficient of variation (CV), mean ampli-
tude of glycemic excursions (MAGE) (19),
mean of daily differences (MODD) (20),
dynamic stress factor (DySF) (used as an
exploratory metric) (21), and continuous
overall net glycemic action (CONGA)
were used (22). MAGE is commonly
used to gauge the degree of glucose
level fluctuations (23). DySF quantifies
glucose volatility by considering the speed
and magnitude of glycemic excursions
between clinically defined states. DySF
can pick up variations in the data due
to its ability to track significant changes
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in glucose levels over the course of hours
and is not limited to averages over longer
time periods that are seen in the other
metrics. DySF employs the transition den-
sity profile from CGM-GUIDE (24), which
analyzes glucose excursions and transi-
tions across different glycemic ranges to
predict the likelihood of onset of severe
hypoglycemic episodes in patients with
type 1 diabetes. Based on continuous glu-
cose dynamics, DySF represents a mea-
sure of a patient’s daily glucose volatility.
CONGA assesses glucose variability within
a predetermined time window; calcula-
tion of this parameter is based on assess-
ment of the differences between glucose
values measured at regular time intervals
and then on the SD of these differences
(22). Daytime was defined as 6:00 A.M. to
midnight for the analysis.

Islet Autoantibodies
Islet autoantibodies were measured by
the TrialNet PTP core laboratories at the
University of Colorado Barbara Davis
Center for Diabetes in Aurora, CO, and
the University of Florida Diabetes Insti-
tute in Gainesville, FL. Autoantibodies
specific for insulin, glutamic acid decar-
boxylase (GAD65), insulinoma-associated
protein 2 (IA-2), and zinc transporter
8 (ZnT8) were assessed by standardized
radioimmunoassay (25). Islet cell autoan-
tibodies were measured by indirect im-
munofluorescence using human blood
group O pancreas (26).

OGTT and HbA1c

The OGTT and hemoglobin A1c (HbA1c)
analyses were performed as part of PTP
scheduled monitoring, with one excep-
tion: autoantibody-negative participants
had a 6-month visit added to their an-
nual monitoring schedule. The window
around this target was �2 to 12 days
(i.e., days 5–9). If the OGTT was unable
to occur while the participant was wear-
ing the CGM, these procedures were
performed separately as long as both
occurred within the target window of
every 6 months ±6 weeks.

Statistical Analysis
Data were analyzed using GraphPad
Prism 7 (GraphPad Software, Inc., La Jolla,
CA) and SPSS 23.0 (SPSS, Chicago, IL). Life
table analysis was applied to estimate the
cumulative risk of developing type 1 dia-
betes with data censored according to

the length of follow-up. Kaplan-Meier
curves were compared using the log-
rank test. Results confirmed the highly
satisfactory performance of the exact
procedure conditioning on realized fol-
low-up, particularly in the case of un-
equal follow-up. Categorical data were
compared using x2 or Fisher’s exact
tests. Student’s t tests were used to
compare CGM metrics between two
groups and one-way ANOVA for com-
parisons across all three groups. Since
age was not normally distributed, re-
sults are expressed as median and in-
terquartile range (IQR). The ages in
the three risk groups were compared
using Kruskal-Wallis test for nonnor-
mal distributed data. The ages of the
progressors versus nonprogressors were
compared using the Mann-Whitney
U test for nonnormally distributed data.
Bonferroni correction was not used, as
the conclusions of this study were not
based on either a false-positive contin-
gency or the data from the low-risk
group. Individual means for a given CGM
metric were calculated using all evalu-
able data for the participant over the
entire collection period and were then
compared between the groups. P values
<0.05 were considered statistically sig-
nificant. Receiver operating characteristic
(ROC) curves (27,28), using continuous
data, were generated to compare the
area under the curve of percent time
over the threshold values of 140 and
160 mg/dL interstitial glucose for type 1
diabetes prediction. The ROC curves were
created by plotting the true-positive rate
(sensitivity) against the false-positive rate
(1 � specificity) for both threshold set-
tings. Sensitivity, specificity, positive pre-
dictive value, and negative predictive
value for diabetes prediction were calcu-
lated for the optimal CGM metric cut-
offs. We used the R package stats to
compare the predictive effect of the vari-
ables of percent time CGM $140 mg/dL
and percent time CGM $160 mg/dL
and to distinguish diabetes progres-
sors from nonprogressors using logis-
tic regression models accounting for
sex, number of islet autoantibodies,
first-degree-relative status (FDR), and
age at sampling. The data set analyzed
during the current study is available from
the corresponding author upon reasonable
request. Longitudinal analysis of 6- and 12-
month data will be presented in a subse-
quent publication.

RESULTS

Table 1 shows demographic characteris-
tics and baseline CGM data from 105
participants who were followed as part
of the TrialNet PTP study for a median
(IQR) time of 31.7 (24.1–36.4) (autoanti-
body-negative participants), 35.7 (23.9–53)
(stage 1 participants), and 28.3 (15.9–39.3)
(stage 2 participants) months. There were
no significant differences in age, reported
race, sex, or BMI across the three study
groups.

Compared with the low-risk participants,
individuals with stage 1 and stage 2 type 1
diabetes exhibited higher mean glucose
levels (particularly during daytime hours)
and had greater percent time over
the threshold values of 120, 140, and
160 mg/dL (Table 1, Fig. 1A–E). HbA1c
values were slightly elevated and statisti-
cally significant compared with those of
the low-risk group; however, the statisti-
cal significance was not as great be-
tween groups with increased disease risk
(Table 1, Fig. 1F). Glucose variability, as
measured by DySF, was significantly
higher in the stage 2 group compared
with stage 1 participants (2.5 vs. 3.8;
P = 0.01) (Table 1, Fig. 1G).

During follow-up, 29 (30.5%) of the
multiple islet autoantibody-positive par-
ticipants progressed to clinical type 1 di-
abetes (stage 3) in a median time of
18.1 (8.6–31.2) months and at a median
age of 12 (8.6–16) years. Race and BMI
were similar between islet autoanti-
body-positive participants who pro-
gressed to diabetes and those who did
not progress to the disease. Those who
progressed to type 1 diabetes were
younger (P = 0.002) and more likely to
be male (P = 0.04) (Table 1). Baseline
HbA1c was significantly higher in pro-
gressors than in nonprogressors (5.3%
vs. 5.1%, respectively; P = 0.008) (Table 1,
Fig. 2B). Progressors also exhibited higher
mean daytime glucose levels and had
greater percent time over the thresh-
old values of 120, 140, and 160 mg/dL
as well as a significantly higher glycemic
variability (mean SD 22 vs. 19.2 mg/dL;
CONGA 21.2 vs. 18.5; DySF 4 vs. 2.6;
MAGE 44.3 vs. 38.4; and MODD 21.7 vs.
18.5) (Table 1, Fig. 2C–I). The number
and distribution of specific islet auto-
antibodies among the autoantibody-
positive participants who did and did
not progress are shown in Supplementary
Table 1.
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The baseline characteristics and CGM
measurements of glycemic control and
variability of the 29 participants who pro-
gressed to type 1 diabetes from stages 1
and 2 are summarized in Supplementary
Table 2. Age, sex, race, and BMI were
similar between progressors from the
stage 1 group and progressors from the
stage 2 group. Baseline HbA1c was higher
in the progressors from stage 2 (5.4% vs.
5.1%), but this difference was not statis-
tically significant (P = 0.06). Compared
with stage 1 progressors, participants
who developed type 1 diabetes among
the stage 2 participants had significantly
increased glycemic variability measured
by MODD (19.3 vs. 23.2; P = 0.05). Pro-
gressors from stage 2 spent 10.4% of the
time $140 mg/dL and 4.2% of the time
$160 mg/dL compared with 4% and
0.8%, respectively, for progressors from
the stage 1 group (P = 0.03 and P =
0.01) (Supplementary Table 2).
Using Kaplan-Meier analysis, we

observed that spending $5% and

$8% of the time with interstitial glucose
$140 mg/dL and $160 mg/dL was a
good predictor of progression to stage 3
type 1 diabetes (Fig. 3). The risk of pro-
gression to type 1 diabetes in 2 years
since the baseline CGM was 40% in
those relatives who spent $5% of the
time at $140 mg/dL. In contrast, only
6.5% of the participants who spent less
than 5% of the time at $140 mg/dL de-
veloped the disease (P = 0.01) (Fig. 3A).
Similarly, the risk of progression to stage 3
by 2 years was 62% vs. 40% in partici-
pants who spent $5% of the time at
$160 mg/dL vs. those who spent <5% at
$160 mg/dL (P# 0.001) (Fig. 3C).

In addition, ROC curves evaluating
baseline data for the percentage of time
spent at $140 mg/dL and $160 mg/dL
supported the use of 5% and 8% as cut-
offs without a significant loss of specificity
(80–100%). The cutoffs of 5% and 8% of
time spent at $140 mg/dL had 80% spe-
cificity and 48% sensitivity and 90% spe-
cificity and 38% sensitivity, respectively,

for diabetes prediction. The cutoffs of 5%
and 8% of the time spent at$160 mg/dL
had 100% specificity and 28% sensitivity
and 100% specificity and 14% sensitivity,
respectively, for diabetes prediction (Sup-
plementary Fig. 1 and Supplementary
Tables 3 and 4).

Logistic regression models including
age, sex, FDR, and number of islet auto-
antibodies indicated that the percent-
age of time spent at CGM $140 mg/dL
is a significant predictor of progression
to stage 3 type 1 diabetes. Over the en-
tire population, the Akaike information
criterion (AIC) scoring values of the logis-
tic regression model that used the per-
centage of time at CGM $140 mg/dL
(i.e., AIC = 106.34) and one that used
percentage of time at CGM $160 mg/dL
(i.e., AIC = 109.04) showed that the
former cutoff is better (see details in
Supplementary Table 5) (29). Thus, ac-
cording to this model, the percentage
of time spent at CGM $140 mg/dL
appears to be a good predictor when

Table 1—Demographic data and CGM measures of interstitial glucose control and variability

Variables
Low risk
(n = 10)

Stage 1
(n = 53)

Stage 2
(n = 42) P value

$2 AAb1

nonprogressors
(n = 66)

$2 AAb1

progressors
(n = 29) P value

Demographics
Age, years (median [IQR]) 16.3 (15.1–18) 17.2 (11.7–36.4) 15.5 (11.6–37.5) 0.93 21.1 (14.4–42) 12 (8.6–16) 0.0003
Sex (male, n [%]) 3 (30) 25 (47.2) 18 (42.9) 0.59 25 (37.9) 18 (62.1) 0.04
Race (White, n [%]) 9/10 (90) 50/50 (100) 39/40 (97.5) 0.38 62/62 (100) 27/28 (96.4) 0.31
Mean BMI z score �0.01 ± 1.0 0.00 ± 0.99 �0.16 ± 0.36 0.65 �0.11 ± 0.42 0.00 ± 1.0 0.45
Progressors (n [%]) 0 (0) 11 (20.8) 18 (44.4) 0.03 29 NA
Time to Dx/last contact, months (median [IQR]) 31.7 (24.1–36.4) 35.7 (23.9–54) 28.3 (15.9–39.3) 0.03 38.9 (27.1–54.3) 18.1 (8.6–31.2) 0.0001
HbA1c, % 5.0 ± 0.3 5.1 ± 0.3 5.3 ± 0.3 0.006 5.1 ± 0.3 5.3 ± 0.4 0.008
No. of days of CGM data (mean [range]) 5.0 (4–6) 5.5 (4–6) 5.2 (4–6) 0.20 5.4 (4–6) 5.4 (4–6) 0.93

CGM metrics

Mean glucose, mg/dL 93.9 ± 6.5 99.3 ± 7.8 102.8 ± 11.8 0.02 99.8 ± 9.2 103.1 ± 11.1 0.13
SD, mg/dL 18.4 ± 6.4 19.3 ± 6.9 21.0 ± 5.8 0.33 19.2 ± 6.7 22.0 ± 5.4 0.05
CV, mg/dL 19.6 ± 6.7 19.4 ± 6.4 20.3 ± 4.3 0.77 19.2 ± 6.0 21.2 ± 4.2 0.11
Maximum CGM glucose, mg/dL 165.8 ± 36.0 179.6 ± 47.9 183.7 ± 32.8 0.47 179.1 ± 44.5 186.8 ± 34.8 0.41
Minimum CGM glucose, mg/dL 45.4 ± 14.6 54.5 ± 12.2 57.0 ± 12.3 0.03 56.6 ± 11.2 53.4 ± 14.3 0.24
Mean glucose range, mg/dL 120.4 ± 43.1 125.2 ± 52.9 126.7 ± 33.0 0.92 122.5 ± 48.8 133.4 ± 34.3 0.28
% Time CGM $120 mg/dL 9.4 ± 7.4 14.4 ± 9.4 20.8 ± 15.6 0.008 15.3 ± 11.7 21.7 ± 14.3 0.02
% Time CGM $140 mg/dL 2.4 ± 3.3 3.8 ± 3.7 8.1 ± 8.8 0.002 4.7 ± 6.0 8.0 ± 8.0 0.03
% Time CGM $160 mg/dL 0.6 ± 1.2 1.0 ± 1.8 3.0 ± 4.4 0.004 1.4 ± 3.1 3.1 ± 3.6 0.02
CONGA 18.2 ± 6.6 18.5 ± 5.5 20.5 ± 4.9 0.17 18.5 ± 5.4 21.2 ± 4.7 0.02
DySF 2.8 ± 2.4 2.5 ± 2.0 3.8 ± 2.8 0.04 2.6 ± 2.1 4.0 ± 3.0 0.01
MAGE 35.5 ± 10.7 38.9 ± 15.1 41.6 ± 10.3 0.35 38.4 ± 14.0 44.3 ± 9.9 0.04
MODD 18.2 ± 6.2 18.5 ± 6.1 20.6 ± 5.8 0.19 18.5 ± 6.0 21.7 ± 5.3 0.02

Daytime CGM metrics†

Mean daytime glucose, mg/dL 94.6 ± 4.8 99.3 ± 7.3 103.5 ± 11.5 0.01 99.8 ± 8.8 104.0 ± 10.8 0.04
Maximum daytime glucose value, mg/dL 165.1 ± 36.5 171.9 ± 37.3 181.7 ± 32.4 0.26 171.8 ± 34.9 186.2 ± 35.0 0.06

Overnight CGM metrics

Mean night glucose, mg/dL 91.9 ± 12.4 99.3 ± 13.0 100.9 ± 14.4 0.18 99.7 ± 13.1 100.7 ± 14.9 0.74
Maximum night glucose value, mg/dL 136.6 ± 20.3 155.5 ± 47.8 152.2 ± 32.6 0.40 155.1 ± 46.2 151.8 ± 29.0 0.72

Unless otherwise noted, values are the mean ± SD (continuous variables). P values in boldface are statistically significant. AAb1, autoantibody
positive; CV, coefficient of variation; Dx, diagnosis; NA, not applicable. †Values between 6:00 A.M. and midnight.

diabetesjournals.org/care Wilson and Associates 529

https://doi.org/10.2337/figshare.21667085
https://doi.org/10.2337/figshare.21667085
https://doi.org/10.2337/figshare.21667085
https://doi.org/10.2337/figshare.21667085
https://doi.org/10.2337/figshare.21667085
https://doi.org/10.2337/figshare.21667085
https://doi.org/10.2337/figshare.21667085
https://doi.org/10.2337/figshare.21667085
https://doi.org/10.2337/figshare.21667085
https://diabetesjournals.org/care


other factors, such as age, sex, FDR,
and the number of islet autoantibodies,
are considered jointly in a prediction
model.

CONCLUSIONS

In the current study, we show that the
presence of dysglycemia, as identified

by CGM metrics, may identify those
with a heightened risk of progression to
stage 3 type 1 diabetes (Fig. 3). In par-
ticular, we found that the percent time
$140 mg/dL is associated with higher
risk of progression in islet autoantibody-
positive relatives of type 1 diabetes pa-
tients, confirming earlier studies in smaller

groups. We have also shown what we
believe is a novel finding in that anti-
body-positive individuals with stage 2
type 1 diabetes have higher values on
many CGM metrics than those in stage 3.

The staging of type 1 diabetes has fa-
cilitated the design of prevention trials
whereby OGTT criteria are used as entry

Figure 1—Dot plot violin charts for HbA1c and various CGM metrics between low-risk, stage 1, and stage 2 participants. A: Mean overall glucose
level; B: mean daytime (values between 6:00 A.M. and midnight) glucose level; C: time spent $120 mg/dL (%); D: time spent $140 mg/dL (%);
E: time spent$160 mg/dL (%); F: HbA1c (%); G: DySF (*, nonprogressors;�, progressors).
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Figure 2—Dot plot violin charts for HbA1c and various CGM metrics between autoantibody-positive (AAb1) progressors and islet antibody-positive
nonprogressors. A: Mean daytime (values between 6:00 A.M. and midnight) glucose level; B: HbA1c (%); C: time spent $120 mg/dL (%); D: time
spent $140 mg/dL (%); E: time spent $160 mg/dL (%); F: CONGA; G: DySF; H: MAGE; and I: MODD (*, nonprogressors; �, progressors). Note
that the results seen with DySF may appear opposite those of the other metrics, but this is due to its ability to measure volatility. While some out-
liers may be seen, the averages for all the patients are in line with the other metrics.
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or outcome criteria and has proven im-
portant in explaining the concepts of
risk and disease progression in people
at risk for type 1 diabetes. However, it
has long been recognized that OGTT-
defined categories, which represent a cat-
egorical depiction of continuous data,
have limitations (14). Even with stan-
dardized testing procedures, there is
heterogeneity in OGTT outcomes within
disease staging categories with potential
implications for disease progression. This
was clearly demonstrated by the TrialNet

Oral Insulin for Prevention of Diabetes in
Relatives at Risk for Type 1 Diabetes
Mellitus (TN07) trial, in which a subgroup
of individuals with stage 1 type 1 diabetes
and low first-phase insulin secretion had
a markedly different rate of disease pro-
gression than stage 1 participants with
normal insulin release kinetics (30). As a
result, TrialNet has moved beyond tradi-
tional risk categories of low, medium,
and high to type 1 diabetes staging in
recent disease prevention trials (9). For
instance, stratification within stages is

sometimes performed using demographics
and insulin secretion data obtained from
baseline OGTT. One of the main objectives
of the current study was to determine
whether CGM metrics could identify par-
ticipants who may progress to stage 3
type 1 diabetes.

Although CGM is a powerful tool and
its use is increasing in clinical practice
(31–33), there is a relative paucity of CGM
data from underpowered studies in the
preclinical stages of type 1 diabetes (7,8).
Steck et al. (18) studied 14 autoantibody-

Figure 3—Progression to type 1 diabetes (T1D) by time spent $140 mg/dL and $160 mg/dL. A: Time spent $140 mg/dL with cutoff $5% vs.
<5%; B: time spent$140 mg/dL with cutoff$8% vs. <8%; C: time spent$160 mg/dL with cutoff$5% vs. <5%; and D: time spent$160 mg/dL
with cutoff$8% vs.<8%. Follow-up time was defined as the time between baseline CGM and diabetes onset for the progressors or last visit/con-
tact for those who did not develop type 1 diabetes. CR, cumulative risk.
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positive and 9 autoantibody-negative
adolescents using the Dexcom SEVEN
CGM platform. In that study, 35% of 14
autoantibody-positive participants pro-
gressed to stage 3 type 1 diabetes.
Compared with those who did not de-
velop clinical type 1 diabetes, progres-
sors had a higher percent time with
glucose values $140 mg/dL (31% vs.
12%) on CGM and a higher daytime glu-
cose area under the curve.
Use of a time-above-range threshold

of 140 mg/dL has been supported by
other studies assessing those at risk for
type 1 diabetes. Helminen et al. (7) com-
pared 10 autoantibody-positive participants
with high-risk HLA to 10 autoantibody-
negative age- and sex-matched controls
from the Type 1 Diabetes Prediction and
Prevention (DIPP) study using data col-
lected with the Dexcom G4. In this study,
both the percent time with glucose read-
ings $140 mg/dL (5.8% vs. 0.4%) on
CGM and mean 7-day sensor glucose
(97.2 mg/dL vs. 84.6 mg/dL) were higher
in the autoantibody-positive group. There
were no significant differences at any of
the five OGTT time points evaluated, sug-
gesting the potential for more frequent
measurements of physiologic glucose dis-
ruptions feasible with CGM could be su-
perior to the classical OGTT approach to
detect dysglycemia. However, the num-
ber of participants was quite small.
Steck et al. (8) compared glucose val-

ues from multiple CGM platforms (Dex-
com SEVEN Plus before July 2014 and
G4 after that date) in 23 autoantibody-
positive participants, eight of whom
progressed to stage 3 type 1 diabetes
within the 26-month mean study fol-
low-up period. From baseline CGM
data, they reported the best predictor
of progression was $18% of the time
at CGM $140 mg/dL (8). In a larger
study from the same group, 91 auto-
antibody-positive children with a base-
line CGM (Dexcom G4 before April
2019 and Dexcom G6 after that date)
were followed for the development of
diabetes for a median of 6 months. Of
these, 16 children progressed to stage 3
disease. They showed that spending
more than 10% of the time at CGM
readings >140 mg/dL is associated with
a high risk of progression to diabetes
within 1 year (15).
Given that our findings reinforce the

concept that CGM metrics could be use-
ful as markers of progression to stage 3

type 1 diabetes, one would need to bal-
ance the burden of 7 days of CGM use
with the added value for prediction.
While there are clear differences be-
tween progressor and nonprogressor
groups for most of the CGM parame-
ters, there is substantial overlap among
each participant’s individual values. This
limits the predictive value for an individ-
ual participant.

Limitations of the current study in-
clude that the participants were all rela-
tives of individuals in type 1 diabetes
probands. Additionally, the majority were
of non-Hispanic Caucasian descent, which
reflects, at least in part, the high preva-
lence of type 1 diabetes in this ethnic
group in the U.S. This may limit our un-
derstanding of CGM variations in preclini-
cal type 1 diabetes stages in individuals
with different ancestry. Moreover, some
of our analyses categorize continuous
data using specific thresholds, e.g., $5%
time over 140 mg/dL, potentially losing
important information. At the time of
this study’s initiation, the available Dexcom
G4 sensor required calibration by the par-
ticipants. Newer sensors such as the Dex-
com G6, Freestyle Libre 2, and Medtronic
Guardian 4 offer the advantage of factory
calibration with improvements in sensor
accuracy. As this report summarizes the
baseline data, further work is needed to
evaluate the time-dependent predictive
value of CGM metrics for disease progres-
sion using the participant’s longitudinally
collected glucose sensor data. As this is a
cross-sectional study, we do not precisely
know where a particular participant is
along their path to stage 3 type 1 diabetes.
Those who are closer to stage 3 will likely
arrive sooner. Future analysis combining
various CGM variables with the longitudinal
data may add value to determining risk
and rate of progression to stage 3. Because
changes in glucose measures are secondary
consequences of the pathophysiology of
disease progression, such as loss of b-cell
mass, more precise measures of endoge-
nous insulin secretion may be a more di-
rect way of looking at disease progression.

In summary, the current study adds
to the knowledge about the metabolic
abnormalities in the months to years
preceding clinical stage 3 type 1 diabe-
tes onset and contributes to the mission
of the TrialNet PTP study. These CGM
findings may lead to a deeper under-
standing of dysglycemia during the nat-
ural history of type 1 diabetes, which

could influence decision-making for fu-
ture type 1 diabetes prevention trials.
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