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A B S T R A C T   

Vascularization is a multifactorial and spatiotemporally regulated process, essential for cell and tissue survival. 
Vascular alterations have repercussions on the development and progression of diseases such as cancer, car
diovascular diseases, and diabetes, which are the leading causes of death worldwide. Additionally, vasculari
zation continues to be a challenge for tissue engineering and regenerative medicine. Hence, vascularization is the 
center of interest for physiology, pathophysiology, and therapeutic processes. Within vascularization, phos
phatase and tensin homolog deleted on chromosome 10 (PTEN) and Hippo signaling have pivotal roles in the 
development and homeostasis of the vascular system. Their suppression is related to several pathologies, 
including developmental defects and cancer. Non-coding RNAs (ncRNAs) are among the regulators of PTEN and/ 
or Hippo pathways during development and disease. The purpose of this paper is to review and discuss the 
mechanisms by which exosome-derived ncRNAs modulate endothelial cell plasticity during physiological and 
pathological angiogenesis, through the regulation of PTEN and Hippo pathways, aiming to establish new per
spectives on cellular communication during tumoral and regenerative vascularization.   

Introduction 

The vasculature is a complex, heterogeneous, and plastic system, 
which adapts to the tissue requirements to cope with microenviron
mental challenges. Blood vessels are prone to respond to variations in 
mechanical stimuli such as cyclic strain and fluid shear stress that may 
keep endothelial cells (ECs) in quiescence or induce their activation. 
Such activation is followed by phenotypic adaptations of ECs and blood 
vessels which safeguard critical processes such as nutrient supply, waste 
product disposal, inflammation, and other processes that require cell-to- 
cell communication. Important vascular responses, namely vascular 
adaptation include (a) angiogenesis, i.e. the formation of new capillaries 
from existing vessels; (b) changes in vascular reactivity, where the vessel 
diameter adjusts to specific tissue needs; (c) changes in the architecture 

of the vascular wall due to reorganization of ECs, pericytes, vascular 
smooth muscle cells (vSMCs), and fibroblasts as well as the extracellular 
matrix (ECM) [1]. 

Cancer is a pathology that drives vascular adaptation, where tumor 
cells develop strategies to become irrigated in response to the local 
hypoxic microenvironment. According to these strategies tumors can be 
classified as pro-angiogenic or non-angiogenic. Angiogenic tumors grow 
vessels from the pre-existing vasculature toward the tumor site. Non- 
angiogenic tumors use alternative strategies such as vascular mimicry 
to meet their metabolic demands to sustain proliferation and metastasis 
[2]. These alternative strategies vary depending on the tissue of origin, 
the development status of the tumor, or the anti-tumoral therapy used 
[3]. 

The tumor suppressor phosphatase and tensin homolog deleted on 

Abbreviations: EC, endothelial cell; ECM, extracellular matrix; EVs, Extracellular vesicles; HIF-1α, Hypoxia-inducible factor 1 alpha; lncRNA, long noncoding 
RNAs; miRNA, microRNA; ncRNAs, Non-coding RNAs; PC, pericytes; PI3K, phosphoinositide 3-kinase; PTEN, phosphatase and tensin homolog deleted on chro
mosome 10; VEGFA, vascular endothelial growth factor 2; vSMC, vascular smooth muscle cells; TAZ, transcription activator with PDZ binding motif; YAP, Yes- 
associated protein. 

* Corresponding author. 
E-mail address: m.c.harmsen@umcg.nl (M.C. Harmsen).   

1 These authors contributed equally to this work. 

Contents lists available at ScienceDirect 

Translational Oncology 

journal homepage: www.elsevier.com/locate/tranon 

https://doi.org/10.1016/j.tranon.2023.101633 
Received 24 October 2022; Received in revised form 20 December 2022; Accepted 25 January 2023   

mailto:m.c.harmsen@umcg.nl
www.sciencedirect.com/science/journal/19365233
https://www.elsevier.com/locate/tranon
https://doi.org/10.1016/j.tranon.2023.101633
https://doi.org/10.1016/j.tranon.2023.101633
https://doi.org/10.1016/j.tranon.2023.101633
http://creativecommons.org/licenses/by/4.0/


Translational Oncology 31 (2023) 101633

2

chromosome 10 (PTEN) is frequently inactivated in tumor cells [4]. 
PTEN loss causes constitutive activation of the class I phosphoinositide 
3-kinase (PI3K) pathway and is associated with increased endothelial 
Hypoxia-Inducible Factor 1α (HIF-1α) expression and vascularization 
stimulation through the PI3K/AKT/VEGF-ET-1 signaling pathway [5]. 
Furthermore, tumor angiogenesis is enhanced in PTEN-deficient models 
[6,7]. In contrast, PI3K signaling inactivation by PTEN impairs vascular 
sprouting by attenuating EC migration and proliferation. PTEN is also 
linked to vascular homeostasis through PI3K- independent mechanisms. 

Tumor development and dissemination depend on cell communica
tion to regulate pivotal processes such as vascularization. Besides the 
classical signaling through soluble (growth) factors, tumors exploit 
exosomes to influence their microenvironment. Exosomes are 
membrane-shelled extracellular vesicles (EVs) that mediate intercellular 
molecular communication, contributing to a wide range of biological 
processes in health and disease. Environmental alterations stimulate 
signaling pathways that influence exosome production rate and content. 
Tumor cells release around ten-fold more exosomes compared to non- 
tumoral cells [8], emphasizing the importance of these vesicles for 
tumor communication. Otherwise, non-coding RNAs (ncRNAs) which 
include microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), 
directly affect gene expression profile, and signaling pathway activity 
and therefore change the cell fate and plasticity. 

Exosomal ncRNAs from tumors and ECs regulate the expression of 
surface receptors, growth factors, ECM components, and signaling 
molecules involved in vascular adaptation [9]. Some of these ncRNAs 
influence PTEN signaling during development and pathology, inducing 
migration, proliferation, and survival in EC and stromal cells. These 
microenvironmental changes favor the increase in vascular density [10, 
11]. Moreover, specific exosomal molecule enrichment is associated 
with the development, progression, and/or outcome of several diseases 
such as cancer [12]. In this review, we summarize the current knowl
edge on the mechanisms by which tumor cell-derived exosomal ncRNAs 
regulate the endothelial phenotype and tumor vascular adaptations via 
PTEN signaling pathway. 

PTEN: a multi-tool protein phosphatase 

With an estimated 200,000 different phosphorylation sites in a 
cellular proteome, the human genome encodes about 612 kinases and 
170 phosphatases [13,14]. Interestingly, this small number of phos
phatases revert the actions of the dominating sets of kinases, balancing 
their reduced gene numbers by high protein abundance; suggesting that 
individual phosphatases have multiple roles and are critical for ho
meostasis [14]. 

Many types of allelic losses and sequence alterations in chromosomal 
region 10q23 in several human cancers led to the search for a tumor 
suppressor gene in this region, receiving various names including PTEN 
[6], gene mutated in multiple advanced cancers 1 (MMAC1) [15] and 
transforming growth factor-β-regulated and epithelial-cell enriched 
phosphatase 1 (TEP1) [7]. PTEN encodes a ubiquitously expressed lipid 
and protein phosphatase of 403 amino acids and about 47.1 KDa in 
humans. The N-terminal domain contains the protein tyrosine phos
phatase motif and the C-terminal has a C2 domain which has a mem
brane phospholipids affinity essential for the lipid phosphatase function 
[16]. PTEN has different subcellular localizations: membrane, cyto
plasm, nucleus, and mitochondria, where its distribution is kept under 
strict control [17]. PTEN is an evolutionarily conserved and functionally 
non-redundant protein with crucial roles in vascular development, 
angiogenesis, motility, proliferation, and metabolism [18]. PTEN is also 
described as a haploinsufficient tumor suppressor, i.e., one functional 
allele is not sufficient to sustain a wild-type condition, whereby subtle 
variations in PTEN dose predispose to tumorigenesis in a tissue-specific 
manner. Hence, PTEN is on the list of ‘quasi-insufficient’ tumor sup
pressor genes [19,20]. The homozygous deletion of PTEN is embryonic 
lethal due to aberrant angiogenesis which underpins its relevance in 

endothelial biology. 

PTEN regulation 

PTEN expression is regulated through transcriptional factors, 
epigenetic silencing (transcriptional); miRNAs silencing (post-tran
scriptional), and phosphorylation, SUMOylation, ubiquitination, redox 
regulation, acetylation, S-nitrosylation (post-translational). Its tran
scription is positively regulated by early growth-regulated transcription 
factor 1 (EGR1), peroxisome proliferator-activated receptor γ (PPARγ), 
and P53 among others, having effects on proliferation, cytoskeletal or
ganization, apoptosis evasion, and metabolic adaptations. Additionally, 
PTEN transcription is negatively regulated by the Nuclear factor kappa- 
light-chain-enhancer of activated β cells (NFκβ) and Transforming 
growth factor-beta (TGFβ), as well as by methylation, and miRNAs that 
target PTEN mRNA. The most widely described role of PTEN is to 
antagonize the PI3K action through its lipid phosphatase activity at the 
plasma membrane [15]. PTEN dephosphorylates the lipid substrate 
phosphatidylinositol [3–5]-triphosphate (PIP3), converting it back into 
phosphatidylinositol [4,5]-biphosphate (PIP2), leading to reduced PIP3 
levels and signaling. An overview of this process is shown in Fig. 1. 

PI3K is a part of the PI3K/AKT/mTOR pathway. Therefore, a nega
tive regulation of PI3K signaling by PTEN inhibits both protein synthesis 
through mTOR activity and phosphorylation of proteins involved in 
translational control. PTEN also acts as a negative regulatory signal for 
the PI3K mitogenic signaling pathway. For in-depth details, the reader is 
directed to Ref. [21]. During the last decade, other interesting functions 
for PTEN have been described. Nuclear translocation of PTEN has a role 
in chromosome stability through the interaction with CEN-P in primary 
mouse embryonic fibroblasts [22] and is also required for homologous 
recombination repair of DNA double-strand breaks induced by irradia
tion in cancer cells (e.g. glioblastoma, colorectal, and breast) [23]. PTEN 
phosphorylation by ataxia telangiectasia mutated (ATM) kinase in 
response to DNA damage in cancer cells, is associated with PTEN nuclear 
translocation and autophagy induction through p-JUN-SESN2/AMPK 
pathway [24]. Otherwise, PTEN also influences the metabolic switch 
through the expression of an alternative translation product, PTENα. 
PTENα stimulates mitochondrial cyclooxygenase (COX) activity through 
the maintenance of COX hypo-phosphorylation, increases ATP produc
tion, and helps to recruit PTEN to the mitochondria [25]. Consistent 
with the previous, mitochondrial PTEN is linked to increased 
oxygen-dependent metabolism in normal and tumor hepatic cells. 
Overexpression of PTEN not only prevents proliferation and migration 
but also reverts the Warburg effect from glycolysis to oxidative phos
phorylation, increasing the oxygen consumption rate [26] (Fig. 1). 

The identity of other protein substrates for PTEN is still under study 
and is also linked to vascular homeostasis through mechanisms inde
pendent of PI3K signaling. Growing literature demonstrates that PTEN is 
versatile beyond its canonical function in the AKT signaling pathway, 
but PTEN also requires both lipid and protein phosphatase activity for 
tumor-suppressing functions [27]. 

Vascularization during development and pathology 

Vascular development is fundamental for multicellular organisms. 
During tumor growth, tumoral cells expand rapidly and lose access to 
the bloodstream, generating a vascular homeostasis disruption, leading 
the tumor to adopt different strategies to increase the capillary density. 
Three distinct vascularization processes are recognized: (1) angiogen
esis, (2) vasculogenesis and (3) arteriogenesis. Tumors primarily depend 
on angiogenesis which is the hypoxia-driven sprouting of novel vascular 
branches from pre-existing vessels. This process is often called sprouting 
or sprouting angiogenesis. In contrast, vasculogenesis is a primarily 
growth factor-driven process, done by the new formation of a vascular 
network from aggregating precursor ECs or even adult ECs. Finally, 
arteriogenesis is the fluid shear stress-induced maturation of pre- 
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existing collateral arteries to functional conduits [28,29]. 
However, tumors also have specific non-angiogenic vascularization 

strategies which are not observed in normal tissues, like vessel co-option 
(the tumor grows exploiting pre-existing vessels), vascular mimicry (the 
cancer cells form structures, like channels, lined out by cancer cells), and 
cancer stem-like cells differentiation into ECs [2]. Some tumors are 
completely non-angiogenic. Also, non-angiogenic clusters of cells can 
transform into small angiogenic tumor islets, which progress to large 
vascularized tumors that metastasize, or even angiogenic aggressive 
tumors can switch to non-angiogenic growth in response to antitumoral 
therapy [2]. The strategy used by a tumor depends on the stage of 
development, and physiological and environmental conditions. Besides 
altering vascularization processes and vascular wall remodeling, tumors 
also induce changes in vascular reactivity to adapt to the tumor’s needs 
[1,30]. 

Sprouting angiogenesis 

Sprouting angiogenesis is the most extensively studied vasculariza
tion strategy. The angiogenic switch (quiescent vasculature is activated 
to sprout new capillaries) is triggered by changes in the relative balance 
of inducers and inhibitors of angiogenesis, while the main inducer is 
hypoxia [31]. In normoxic conditions, conserved proline residues in 
HIF-1α are continuously hydroxylated by prolyl hydroxylases, targeting 
HIF-1α for proteasomal degradation. However, hypoxia deactivates lysyl 
oxidases and HIF-1α is stabilized, translocated to the nucleus, and ac
tivates hypoxia-responsive gene transcription through binding to 
hypoxia-response elements (HRE) in their promoters. This signaling 
drives the transcription of pro-angiogenic factors such as vascular 
endothelial growth factor (VEGF), endothelial nitric oxide synthase 
(eNOS), endothelin-1 (ET-1), metalloproteinases 2 and 9 (MMP2 and 

MMP9). The VEGFA/VEGFR2 signaling stimulates PI3K signaling, 
which activates the serine/threonine kinase AKT. In turn, the AKT 
family member AKT1 activates eNOS expression to promote NO release. 
Meanwhile, ET-1 exerts sustained positive feedback on the HIF-1α 
signaling and its mitogenic and anti-apoptotic effects. The joint effect of 
these molecules is capillary sprouting through increased vessel perme
ability, EC proliferation, and migration [32]. 

In pathological conditions, local hypoxia, oxidative stress, and 
metabolic derangements drive tumor cells into a pro-angiogenic state, 
leading to the development of new tumor-penetrating vessels adapted to 
the tumor. The morphology of the resulting vessels is highly abnormal 
both structurally and functionally, disorganized, with irregular shapes 
and high tortuosity [1,33]. Also, due to the lack of pericyte support, 
tumor vessels are not able to maintain their shape and function, making 
those vessels leaky to support the exchange of gas, nutrients, and waste 
products but also to support metastasis. Paradoxically, tumors have a 
large number of microvessels, but these fail to perfuse properly because 
of diameter mismatches at vascular branch points [34]. This defective 
perfusion generates and maintains the metabolic switch, which includes 
fast energy production and increased carbohydrate fermentation. In 
consequence, the environmental pH lowers and exacerbates this defec
tive angiogenesis in a positive feedback loop that reinforces the malig
nant environment [35] Also, disturbances in hemodynamic forces (fluid 
laminar shear stress, and cyclic strain) derived from under-perfused 
tissues facilitate the tumor progression through an increase in the 
cancer-associated fibroblasts [36–38]. 

Endothelial cell patterning during angiogenesis 

During angiogenesis, ECs form transient but phenotypically 
specialized EC populations. The tip cell EC phenotype is highly motile, 

Fig. 1. Schematic overview of general PTEN signaling. PTEN is a phosphatase that antagonizes the PI3K/AKT axis, while PTEN also acts as a transcriptional co-factor 
in the nucleus. In mitochondria, PTEN influences energy metabolism. 
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non-proliferating, and polarized. This phenotype is associated with high 
levels of VEGFA/VEGFR2, which induces filopodia formation and 
extension through Cdc42 signaling (migratory phenotype), which 
guides to migration towards gradients of VEGFA [39], and helps with 
vasodilation due to an increase in eNOS expression [40]. The ECs with 
the stalk phenotype are located at the base of the sprout, proliferate, 
establish adherent/tight junctions, and form the vascular lumen. Pha
lanx cells are lumenized, non-proliferating, and immobile cells (Fig. 2). 

Besides EC participation, correct and fully functional vessel devel
opment also implies mural cell recruitment. The platelet-derived growth 
factor B (PDGF-B) is secreted by ECs as a homodimer (PDGF-BB) and 
mediates the dimerization of its receptor in mural cells. This interaction 
of PDGF-BB/PDGFR is essential to recruit mural cells such as pericytes or 
vSMC, which regulate the proper vessel organization and capillary 
network maturation [41]. Tip cells also secrete angiopoietin-2 (Ang-2) 
and exert an autocrine proliferating signaling over ECs through the 
interaction of Ang-2 with the receptor Tie2. Recruited pericytes secrete 
angiopoietin-1 (Ang-1) that outcompetes Ang-2 from their joint receptor 
Tie-2. However, Ang-1 has no signaling activity, buffering the prolifer
ation consistent with reduced VEGF-A secretion, and causing a complete 
arrest of EC proliferation. Therefore, a decrease in PDGFR signaling and 
Ang-1 expression concomitant with an increase in Ang-2/VEGF-A pre
vents the mural cell integration, supporting continued ECs proliferation 
and vessel destabilization during the tumor vascularization process 
[42]. 

Several molecules like VEGF, PDGF, and Ang-1 exert their action 
largely through a transitory PI3K/Akt and MAPK activation. A deranged 
activation of this signaling pathway triggers vascular development de
fects due to a disrupted specification and recruitment of vascular cells. 
Constitutively active PI3K/Akt expression in vivo, causes fetal vascular 
malformations and bleeding due to a failure in vascular development, 
and is associated with enhanced tumor angiogenesis, which suggests 
that the PI3K/Akt pathway is a key axis in vessel dynamics in ECs [43]. 

PTEN in vascularization process: canonical and non-canonical 
pathways 

When considering the molecular mechanisms controlling vasculari
zation through PTEN the most extensively investigated mechanism in
volves the canonical phosphatase activity of PTEN over PI3K/AKT 

signaling. PTEN deficiency in ECs causes vascular remodeling defects 
and contributes to both susceptibility to new tumorigenic mutations and 
accelerated tumor growth [43]. Ex vivo studies have shown that PTEN 
upregulation inhibits microvessel sprouting in arterial rings and 
pro-angiogenic processes in ECs including migration, tube formation, 
reduction in VEGF/ET-1 expression, and signaling. Conversely, PTEN 
silencing reverses that inhibition and triggers angiogenesis [44]. 

PTEN in endothelial patterning during angiogenesis 

The specialization in ECs during angiogenesis correlates with 
increased Delta-like 4 (Dll4) expression in tip cells, which binds to and 
activates Notch 1 in adjacent stalk cells [45]. This specialization mech
anism is transient and reversible, but indispensable for sufficient regu
lation of angiogenesis by preventing the stalk cell from becoming a new 
tip cell [46,47] (Fig. 2). In tip cells, the elevated VEGF/VEGFR2 signaling 
stimulates high Dll4 expression which blocks Notch signaling in these 
cells, increases filopodia protrusions, and arrests cell proliferation. 
Meanwhile, Notch signaling is increased in stalk cells, leading to a 
decrease in VEGF signaling, through reduced expression of VEGFR2/3 
and enhanced expression of VEGFR1 and PTEN. Additionally, the 
number of filopodia is reduced while the cell cycle is increased both in 
vitro and in vivo [46–48]. This mechanism reinforces the tip cell position 
and suppresses the tip cell phenotype in stalk cells. During this transition, 
the lagging stalk cells adopt a phalanx cell phenotype which is a quiescent 
cell type and the prelude to newly formed quiescent blood vessels 
(Fig. 2). 

It seems contradictory, that the expression of the antiproliferative 
PTEN is increased in stalk cells, because they are widely described to be 
proliferative, unlike tip cells. However, endothelial PTEN (in vitro and in 
vivo) is upregulated in stalk cells during vessel development through 
Notch signaling, by interaction with Dll4 on tip cells [48]. Why are the 
cells that have the greatest mitogenic stimulation not proliferating, and 
the ones that are proliferating express more PTEN? Tip cells express high 
VEGFR2 while producing high VEGF [49], generating a hyperactivation 
of VEGF/VEGFR2 signaling, which leads to high activation of the 
downstream MAPK pathway and ERK phosphorylation. This exacer
bated mitogenic stimulation induces tip cells to exit the cell cycle, in a 
process known as hypermitogenic arrest, contributing to the induction 
of tip cell features, which include the already mentioned 

Fig. 2. Cellular patterning during angiogenesis. Tip cells are non-proliferative cells that form the leading edge of the protruding vascular tube. Immediately, 
juxtaposed to the tip cells are the proliferative stalk cells that essentially contribute to the lengthwise extension of the vascular tubes. After proliferation, stalk cells 
reach quiescence and become mature so-called phalanx cells. 
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non-proliferation and pro-migratory phenotype [50]. 
Interestingly, overexpression of Notch signaling in stalk cells gener

ates impaired proliferation and a gradual loss of ECs during develop
ment. If Notch signaling is lost, the cells do not “win” the vascular 
growth competition. In consequence, there is a transitory increase in the 
number and density of ECs without increasing the frequency of prolif
erating cells. Most likely by an increase in the cell cycle speed followed 
by a pronounced cell cycle arrest, which in total does not increase the 
proportion of the proliferating cells and impairs the appropriate vascular 
progression [50]. Data from this research show that most of the vessels 
are formed from cells with “normal” Notch levels [50]. Therefore, the 
physiological Notch activity in stalk cells is related to a decrease in 
hypermitogenic signaling (VEGF/VEGFR1 and MAPK/ERK phosphory
lation). This allows the stalk cells both, to come out of the hyper
mitogenic arrest, and slow EC proliferation to prevent a premature 
expansion and exhaustion of cycling ECs in the angiogenic front [50]. 

Since the effect of a molecule depends on the context and the dose, 
PTEN expression in cells with a "normal" mitogenic signal decrease the 
proliferation. However, Dll4/Notch 1/PTEN signaling in cells under 
hypermitogenic arrest could help the cells to decrease the hyper
mitogenic signal and exit from the arrest to start cycling. As stalk cells 
proliferate, they escape from the influence of tip cells (Dll4 signal), 
Notch signaling wanes, and the balance is gradually tilted and PTEN 
helps transition from a proliferative to a quiescent phenotype, phalanx 
EC. If PTEN is lost, Notch signaling fails to limit stalk cell proliferation 
and results in defective sprout lengths and patterning [48]. The PTEN 
loss in ECs from zebrafish resulted in hypervascularization, ectopic 
vessel formation, and embryonic lethality [51]. Also, PTEN hap
loinsufficient zebrafish were prone to develop hemangiosarcoma at later 
life stages. All these vascular alterations were mediated by increased 
expression of VEGF-A after PTEN loss [51]. 

Most of the research focuses on tip and stalk cells, losing sight of the 
phalanx cells. Although PTEN itself is not required for Notch-dependent 
tip/stalk selection, phosphatase-dependent and -independent activities 
of PTEN are important to regulate stalk cell proliferation, vascular den
sity, and vessel growth [48]. Also, most genetic studies are done using 
models of overexpression or underexpression and assign a pro or 
anti-angiogenic function to a given genetic product or signaling 
pathway, while in physiological conditions the dosage can be determi
nant for the cell plasticity and fate. Considering the above, PTEN could 
work as a hormetic rheostat helping the cells to reduce the hyper
mitogenic signal to make them able to cycle but later controlling the 
proliferation in the molecular transition between stalk and phalanx cells 
to give stability to the vessel. 

Dual PTEN and Hippo communication in ECs: a strong feedback loop 

Hippo signaling comprises the core kinases MST1/2, SAV1, MOB1, 
and LATS1/2. MST1/2 interaction with SAV1 activates MST1/2. MST1/ 
2 phosphorylation leads to MOB1 phosphorylation, which in turn 
phosphorylates LATS1/2. The Hippo signaling is on when this cascade is 
phosphorylated and activated. Subsequently, Yes-associated protein 
(YAP)/transcription activator with PDZ binding motif (TAZ), effectors of 
the Hippo signaling, are phosphorylated, and retained in the cytoplasm 
or degraded. When the Hippo pathway is off, YAP/TAZ is not phos
phorylated or actively dephosphorylated and shuttled to the nucleus, 
where it forms a complex with DNA-binding transcription factors 
including TEAD, Smads, and TBX5. The complex induces the expression 
of a wide range of genes (e.g., cell junctions, cytoskeletal regulators, 
kinases, and secreted proteins) which are involved in proliferation, 
survival, migration, and mechanical sensing [52]. In fact, YAP and TAZ 
have been identified as key mechanotransducers that detect mechanical 
stimuli and relay signals to control transcription of downstream genes 
involved in cellular mechanoresponses. The major upstream mechano
sensors for YAP/TAZ signaling are integrins, G protein-coupled re
ceptors, enzyme-linked receptors (e.g. receptor tyrosine kinases), and 

ion (calcium) channels (e.g. Piezo). These mechanosensors are modu
lated by disturbed blood flow, stretching or loss of cell contact, changes 
in cell geometry, or ECM stiffness, whose mechanotransduction elicits 
downstream transcriptional responses after YAP/TAZ activation or 
repression. Some of the effects on endothelial cells of disturbed 
mechanosensing are increased migration and proliferation and 
increased resistance to apoptosis (reviewed in Ref. [53]) 

An interesting association between PTEN and Hippo pathway is 
described in gastric cancer [54]. PTEN inactivation promotes gastric 
cancer cell proliferation and migration in vitro. In PTEN 
dominant-negative mutant cells, decrease the expression of SAV1, 
LATS1, LATS2, MOB1, and p-YAP, also decrease the MOB1–LATS1/2 
interaction, and increase the expression of YAP/TAZ and YAP is redis
tributed to the nucleus [54]. A high expression and nuclear localization 
of YAP are associated with a more aggressive tumor phenotype and a 
shorter disease-free survival time for gastric cancer patients. In contrast, 
wild-type PTEN cells show the opposite effect over these Hippo signaling 
components [54], revealing a connection between those pathways. 

Like PTEN, Hippo signaling needs to be off in tip ECs and on in stalk 
ECs, regulating together ECs proliferation and patterning (Fig. 3) con
trolling the sprouting angiogenesis and vessel stabilization. Upon stim
ulation with VEGF, the VEGF/VEGFR2 interaction in brain ECs induce 
actin cytoskeleton changes and inhibits LATS1/2 and MTS1/2, allowing 
YAP/TAZ translocation into the nucleus [55]. This link between VEGF 
and Hippo pathway involves YAP/TAZ DNA binding complexes, con
trolling the expression of genes related to PI3K/AKT signaling, cell 
adhesion/ECM-receptor interaction (i.e., NINJ1, MFAP5), actin cyto
skeleton remodeling (i.e., MACF1, FLNB, MICAL3, CTGF), VEGF/
VEGFR2 signaling (i.e., NCK2, SHC2) and others (Fig. 2) [55]. Deletion 
of YAP/TAZ in ECs abrogates VEGF signaling; genes that are otherwise 
upregulated upon VEGF stimulation are decreased after YAP/TAZ 
depletion [55]. Also, ECs migration, filopodia/lamellipodia formation, 
and cdc42 regulation are impaired, inhibiting the normal sprouting 
process. For example, YAP/TAZ-depleted mice have defective sprouting 
and lumen formation, with extensive multifocal brain hemorrhages and 
visible leaking areas [55]. 

With an important role in tumor metastasis and drug resistance, 
tumor cells can acquire blood vessel-like structures through vascular 
mimicry. Like physiological angiogenesis, vascular mimicry is regulated 
by VEGFR. VEGFR-positive breast cancer cells form tubes when treated 
with VEGF, whereas knockdown of YAP/TAZ inhibits VEGF-induced 
tube formation. Therefore, the Hippo pathway contributes to VEGF- 
induced sprouting angiogenesis in ECs, and to vascular mimicry [56]. 

The exposure of ECs to VEGF inhibits the LATS1/2 kinase activity 
through stimulation of the VEGFR2-Src kinase complex. During the 
initiation phase of VEGF-induced endothelial sprouting Hippo kinases 
are off, in other words, expression of LATS1/2 and AMOT is reduced as 
well as their kinase activity. This causes nuclear translocation of YAP/ 
TAZ and coincides with F-actin polymerization, filopodia extension, and 
stress fiber formation as the consequence. Thereafter, Hippo kinases turn 
on and YAP/TAZ activities turn off. Phosphorylated YAP binds to the 14- 
3-3 protein and is sequestered by binding to VE-cadherin-binding 
α-catenin at adherens junctions, followed by enhanced intercellular 
junction connectivity with the contractile actomyosin network (Fig. 3). 
Overall, Hippo-YAP/TAZ reads angiogenic signals to promote vascular 
sprouting and junction maturation [57,58]. 

Based on the above, the on/off switch in tip and stalk cells works as 
follows. In a hypermitogenic arrest context, PTEN is absent (off), and 
PI3K/AKT will be active (on), switching off the Hippo signaling 
pathway, and consequently stimulating pro-migratory phenotype in tip 
cells. Conversely, if PTEN is actively expressed (on), PI3K/AKT will be 
inhibited (off), switching on the Hippo signaling pathway, and conse
quently helping the cells to come out of the hypermitogenic arrest, 
stimulating proliferation and inhibiting the pro-migratory phenotype in 
stalk cells (Box 1, Table 1, Fig. 3). 
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Other functions of PTEN in vascular cells 

Vascular homeostasis implies not only the ECs but also pericytes and 
vSMC phenotype and function. Other important downstream targets of 
the canonical PTEN pathway, are also linked with pathological vascular 

adaptations. PTEN depletion in mice induces a sustained PI3-kinase-Akt- 
mTOR signaling, leading to a decrease in vSMCs markers expression 
including αSMA and calponin. This PTEN loss concomitant with PI3- 
kinase-Akt enhancing is also linked to NFκβ activation and production 
of chemoattractant and profibrotic factors like MCP-1, IL-6, and KC/ 

Fig. 3. Molecular signaling in angiogenesis. In tip cells, VEGF/VEGFR2 signaling abrogates PTEN and activates AKT which causes nuclear localization of the YAP 
transcription factor. Nuclear YAP suppresses pro-proliferative signaling. In addition, VEGF signaling suppresses NOTCH expression while upregulating the NOTCH 
ligand Delta-like 4 (Dll4). The Dll4 activates NOTCH at the surface of stalk cells after which the NICD activates the expression of VEGFR1 while inhibiting VEGFR2 & 
3. The decoy receptor VEGFR1 scavenges VEGF which releases PTEN activity and promotes YAP degradation, but part of the YAP is incorporated in adherens 
junctions and complexed with VE-Cadherin and α-catenin. These actions render stalk cells proliferative. 

Box 1. Cytoplasmic and nuclear functions of PTEN and Hippo signaling in EC patterning. Tip and stalk specification can be impaired by persistent silencing by 
ncRNA, affecting the stability and functionality of the new blood vessel. 
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Table 1 
miRNAs targeting PTEN (Ensemble: ENST00000371953) from miRWalk3.0.  

miR Mechanism of action Cell Type 
Described 

Inside 
EVs 

Hippo 
Signaling 

Ref. 

miR-10a/b Activates pro-metastatic genes, promoting tumor cell invasion and 
metastasis. Migration. 

Ovarian cancer, bladder cancer, breast 
cancer, esophageal cancer, and gastric 
cancer cells. ECs. 

þ [164,165,166, 
167,168,169, 
170,171] 

miR-17-5p*/3p Survival, proliferation, migration, regeneration. 
EC morphogenesis and angiogenesis. Target TIMP1 Tsp1, PTEN. 

ECs, tumor cells þ ([78,88,89, 
172] 

miR-19a/b-1*/-2** Help to suppress the sensitivity to anticancer drugs, and anti- 
apoptotic. 
EC morphogenesis and tumor angiogenesis. Regeneration 
Target TIMP1 Tsp1, PTEN. 

Gastric cancer cell line, ECs, leukemia 
cells (K562). 

þ [78,88,89,140, 
143,172,173] 

miR-20a*/b-5p/ 

3p** 
EC morphogenesis and tumor angiogenesis. Regeneration 
Target TIMP1 Tsp1, PTEN. 

Breast cancer, myeloma cells, ECs. ? ([139,140]  

miR-21 Proliferation, EMT, angiogenesis. Repair spinal cord 
microvasculature. Maintaining of vSMC phenotype. 

In vitro in vivo models (several tumors, 
vascular repair, healthy). 

+ [83,86,97,134] 

miR-23a/b-3p Proliferation, tumor progression, metastasis. Prostate cancer.   [90] 
miR-25-3p*** Up-regulation of miR-25 was correlated migration and invasion. Esophageal squamous cell carcinoma.   [174]  

miR-26a-1-5p/ 
3p 

c-Myc increases miR-26a expression. miR-26a activates Akt 
signaling through direct PTEN targeting and increases VEGF, MMP2 
expression. Increases proliferation and invasiveness. 

High-grade glioma, glioblastoma 
multiforme, lung cancer cells 

þ [90,91,175, 
176]  

miR-26b Enhance growth, survival, and tube formation through PTEN 
targeting. 
Inhibit the proliferation, migration, and EMT in epithelial cells 
through prostanoid pathway inhibition. 

EC, epithelial cells [177,178,179]  

miR-29a-5p Pro-angiogenic 
YAP induces miR-29 to inhibit PTEN translation which activates 
PI3K–mTOR signaling to regulate proliferation and cell size. 

Lung cancer cells, ECs, epithelial cells, 
mice. 

þ ([138], [180] 

miR-92a-1-5p*/a- 

2** 
miR-92b-3p 

EC morphogenesis and tumor angiogenesis. Regeneration 
Target TIMP1 Tsp1, PTEN. 

ECs, leukemia cells (K562). þ [78,89,90,181, 
182,183] 

miR-93-5p*** High proliferation, anti-apoptotic, and influence tumor size. 
Cisplatin resistance, suppressing PTEN and over activating AKT 
pathway. Angiogenesis 

Osteosarcoma cells, ovarian cancer, ECs, 
mouse hearts  

þ
([135,184,185] 

miR-103a-3p Downregulation of angiogenesis inhibitors expression, like TIMP3. 
Promotes cell transformation, and disrupt the endothelium 
integrity, increasing the vascular permeability. 

Endometrial and hepatocarcinoma cells, 
ECs. 

þ [127,128,129, 
130,131,186] 

miR-105-5p Vascular permeability disruption. Downregulates ZO-1 expression, 
altering the vascular junctions. 

In vitro, ex vivo and in vivo assay in 
rodents. 

[133] 

miR-106a-5p/ 
3p**/ miR- 
106b-5p/ 
3p***      

miR-130a/b Proliferation, migration, and anti-apoptotic Glioma cell lines, squamous cell 
carcinoma.   

[187,188] 

miR-181b/c-5p      
miR-193/a-3p Cell proliferation, migration, 5-FU chemoresistance, and in vivo 

tumorigenicity through PTEN targeting. 
Contradictory, functions like tumor suppressor miRNA, inhibiting 
migration, invasion, and EMT in vitro and metastasis in vivo in lung 
cancer. 

Gastric cancer cell lines   ([189,190]  

miR-200c-5p/3p Alters wound-healing capacity and colony formation. MT1-MMP 
(Membrane type-1 matrix metalloproteinase) and PTEN expression 
are regulated. 

Pancreatic cancer cell.    

miR-205-5p Directly targets SMAD4, CYR61, CTFG, PTEN. Promotes 
proliferation, anti-apoptotic, migration, chemoresistance, and 
tumorigenesis in vivo. Regulated Erb/HER, PTEN/AKT axis. 
Biomarker for cervical cancer patients. 

Ovarian cancers (OC) with poor 
diagnostic, cervical cancer cells, breast, 
lung, and NSCLC cancers. 

[93,94,95,191, 
192,193,194] 

miR-221-3p Downregulates PTEN and activates PI3K/Akt signaling. Induce cell 
survival, proliferation, carmustine, and cisplatin resistance. 

Osteosarcoma cells, Epithelial ovarian 
cancer (EOC) cells   

[195], [196] 

miR-223 Downregulates PTEN and activates PI3K/Akt signaling. Ovarian cancer cells [124] 

miR-301a/b M2 macrophage polarization through PTEN targeting. Promote 
migration, invasion, EMT, and facilitate the lung metastasis of 
pericytes. 

Pancreatic cancer cells þ [126] 

miR-382-5p Target PTEN and consequent activation of AKT/mTOR signaling. 
Increases proliferation, migration, and apoptosis avoidance. 
Increases vascular EC proliferation, migration, and tube formation. 

Hemangioma-derived endothelial cell, 
hypoxia in human gastric cancer cells   

[92,197]  

miR-425 MALAT1 interacts with miR-425 preventing PTEN silencing. Induce 
apoptosis 

Plasma and plasma exosomes [141]  

miR-494-5p/3p Hypoxic lung cancer cells, glioblastoma 
cells, ECs.   

[198,199] 

(continued on next page) 
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CXCL1, promoting injury-induced vascular adaptation. Interestingly, 
the PTEN loss was also associated with proliferation and neointima 
formation [59], promoting a general upregulation of proinflammatory 
and profibrotic genes [60]. The chemokine stromal cell-derived 
factor-1α (SDF-1α) is a PTEN downstream mediator. PTEN loss in 
vSMCs induces SDF-1α expression, and this helps to develop an in
flammatory phenotype characterized by the recruitment of bone 
marrow-derived progenitor cells. The SDF-1α expression also induces 
vSMC hyperplasia by an autocrine growth loop through the interaction 
between SDF-1α and its receptor CXCR4. Interestingly, PTEN loss in 
vSMCs is directly associated with an increase in both HIF-1α expression 
and nuclear localization in an Akt-dependent manner irrespective of 
hypoxia [61,62]. Increased expression of PTEN confers protection 
against damage induced by angiotensin II, decreasing profibrotic and 
proinflammatory markers [63]. Derived from this, it has recently been 
identified that the use of 5-azacytidine, an inhibitor of DNMT1 (DNA 
methyltransferase-1), restores the expression of PTEN, promoting the 
maintenance of SMC differentiation and reducing pathological vascular 
remodeling [64]. All the above highlights PTEN signaling to play a 
central role in the vascular adaptation processes during development 
and tumor progression, which involve not only the ECs but all the cells 
that shape the architecture of the vascular wall. 

Non-coding RNAs 

The miRNAs and lncRNAs are in the large group of non-coding RNAs 
[65]. The miRNAs are small RNAs between 18 and 25 nucleotides in 
length and represent the most widely studied group of small ncRNAs 
[66]. miRNAs are predicted to target over 60% of all 3′ UTR mRNAs of 
human protein-coding genes [66]. They mediate their repressive effect 
through mRNA degradation or translational repression. Also, miRNAs 
may function as ligands directly binding to receptors, triggering down
stream signaling pathways, regulating a plethora of physiological cell 
processes like differentiation, proliferation, metabolism, angiogenesis, 
apoptosis, and immune response. For in-depth details on miRNA 
biogenesis and mechanisms, the reader is directed to Ref. [67]. Besides, 
lncRNAs are usually larger than 200 nucleotides, which would originate 
from <1% of the human genome [65], and can also act as 
post-transcriptional regulators, suppressing the effect of the miRNAs. 
For in-depth details in lncRNA biogenesis, the reader is directed to 
Ref. [68]. 

Like virtually all mRNAs, PTEN mRNA is a target of this miRNAs/ 
lncRNAs expression regulation. Since tumor development demands 
signaling, metabolic and microenvironmental shifts [69], a dysregula
tion of homeostatic ncRNA expression is involved in the pathophysi
ology of cancer [70,71]. The differential ncRNAs expression profiles in 
healthy and tumor tissues allow ncRNAs to be used as diagnostic and 
prognostic biomarkers, and for disease therapy design [71,72]. 

Angiogenesis and EC phenotype regulation by miRNA via PTEN 

One of the most widely investigated onco-miRNAs (miRNAs associ
ated with cancer) is miR-21, a multi-pathway regulation miRNA that 

contributes strongly to cancer pathology [73]. Different oncogenes like 
Ras trigger the expression of miR-21, stimulating proliferation and 
neoplastic transformation through the silencing of different tumor sup
pressor genes [74]. Moreover, the downregulation of tumor suppressor 
miRNAs may also stimulate tumorigenic processes due to the lack of 
inhibition of several oncogenes. The miRNA Let-7 is frequently down
regulated during the onset and progression of cancer [75]. Let-7 inhibits 
the expression of Ras and c-Myc, thus, downregulation of miR-Let7 
causes overexpression of Ras and c-Myc oncogenes [76,77]. This over
expression of Ras induces overexpression of miR-21, and c-Myc also 
stimulates a pro-tumor phenotype characterized by increased prolifer
ation, migration, invasion, apoptosis inhibition, and immune escape 
[78]. These pathological positive feedback loops orchestrate a stimula
tory symphony for tumor development such as vascular adaptation. 

PTEN targeting by miR-21 in human hepatic, lung, and cervical 
cancer cells promotes epithelial-to-mesenchymal transition (EMT), 
angiogenesis and a pro-tumor phenotype [79–82]. PTEN/PI3K/AKT, 
TGFβ1, and ERK/Bcl2 signaling are the main signaling pathways 
through which miR-21 operates in different tumor and vascular cells 
[83–85]. In addition, miR-21 also supports angiogenesis by targeting the 
angiogenesis inhibitor tissue inhibitor of metalloproteinase-3 (TIMP3) 
and stimulation of MMP2/9 expression and secretion in ECs. This 
pro-angiogenic role of miR-21 is a determining factor for the repair of 
the spinal cord microvasculature after injury [86]. Even, the deletion of 
miR-21 impairs vascularization and promotes apoptosis after ischemia, 
since it cannot suppress the activation of the PTEN/PI3K/AKT axis [87]. 

Besides, c-Myc overexpression induces the onco-miRNA miR-17/92 
cluster [78]. Most of the members of the phylogenetically conserved 
cluster miR-17/92 and its two paralogues miR-106a/363 and 
miR-106b/25, target PTEN. Overexpression of miR-17/92 cluster in 
cervical and colorectal cancers increases PI3K/AKT/mTOR signaling 
targeting PTEN expression consequently, inducing pro-tumor phenotype 
[88]. Expression of the miR-17/92 cluster augments the angiogenic 
switch mediated by growth factors in a positive feedback loop [89]. 
VEGF-induced angiogenesis increases the expression of the miR-17/92 
cluster, promoting an angiogenic phenotype through PTEN down
regulation [89], but also directly repressing the anti-angiogenic factors 
thrombospondin-1 (TSP-1) and connective tissue growth factor (CTGF), 
stimulating angiogenesis [78]. Also, miR-23b and miR-26a help to 
impair PTEN/PI3/AKT signaling, increasing prostate and lung cancer 
cell proliferation, tumor progression, and metastatic potential [90,91]. 

Under hypoxia, stabilization of HIF-1α upregulates miR-382 
expression. miR-382 targets PTEN leading to PI3K/AKT/mTOR 
signaling activation and VEGF secretion, promoting angiogenesis in ECs 
and chorioallantoic membrane [92]. PTEN is also targeted by miR-205, 
which increases PI3K/AKT/mTOR signaling pathway promoting 
migration, metastasis, and chemoresistance in lung and cervical tumor 
cells [93,94]. miR-205 directly targets PTEN, promoting endothelial 
progenitor cell (EPC) angiogenesis through an increase in MMP-2 
expression via AKT/autophagy pathway, helping to deep vein throm
bosis recanalization process [95]. 

Otherwise, nuclear functions of PTEN are necessary to maintain the 
identity of other cells in the vascular unit like vSMCs [96]. Nuclear 

Table 1 (continued ) 

miR Mechanism of action Cell Type 
Described 

Inside 
EVs 

Hippo 
Signaling 

Ref. 

Target PTEN and subsequent activation of AKT/eNOS pathway. 
Enhances proliferation, migration, invasion, and promotes 
angiogenesis. 

miR-638 Dual PTEN and p53-targeting. Cell migration, invasion, 
proliferation, and anchorage-independent growth. 

Exogenous expression model in prostate 
cancer cells   

[163] 

miR-939    ? ([132]  

* miR-17/92 cluster: located in chromosome 13, encodes miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1 and miR-92a-1, lso known as oncomiR-1. 

** miR-106a/363 cluster: located on chromosome X, encodes miR-106a, miR-18b, miR-19b-2, miR-20b, miR-92a-2, and miR-363. 

*** miR-106b/25 cluster: located in chromosome 7, encodes miR-106b, miR-93, and miR-25. 
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localization and interaction of PTEN with the transcription factor Serum 
Response Factor (SRF) is essential for SRF binding to vSMC promoters to 
maintain the vSMC differentiation program. SRF negatively regulates 
the expression of the transcription factor Fos-related antigen 1 (FRA-1) 
through an increase in the expression of miR-143, which targets FRA-1. 
FRA-1 in turn mediates the negative regulation of miR-21 promoter 
activity and this repression of miR-21 promoter activity avoids the 
translational repression of PTEN [97]. Silencing of SRF also inhibits 
PTEN expression through a miRNA-dependent mechanism. Loss of the 
SRF/PTEN axis promotes the vSMCs reprogramming, decreasing the 
expression of contractile genes and mediating a proliferative and in
flammatory vSMC phenotype [96,97]. All the above makes PTEN an 
essential regulator to maintain the vSMC contractile gene expression. 
The loss of PTEN in intimal vSMCs is associated with the stabilization of 
atherosclerotic lesions and restenosis [60]. Thus, hinting at vSMC PTEN 
participation in the stabilization of a neo-vasculature in ischemic tissue 
injury and tumor progression. In this regard, the PTEN targeting by 
several miRNAs impacts vascular cells and EC phenotype during both 
development and malignant phenotype promotion. Given all the above, 
what is the PTEN right dose for proper vascularization? Not too much, 
nor too little. This will depend on the context: development, therapeutic 
or pathological. 

Exosomal biogenesis and biological role in cell-to-cell 
communication 

First described by Harding and co-workers [98] and Pan and John
stone [99], exosomes are EVs produced through the secretory pathway 
and released by exocytosis by many cells. Exosomes comprise mem
branous nanoparticles that range between 30 and 150 nm in diameter. 
These can carry a repertoire of bioactive molecules such as proteins, 
lipids, carbohydrates, and nucleic acids i.e., coding- and non-coding 
RNAs [100]. 

Inside the cells, early endosomes fuse with endocytic vesicles to 
incorporate their content and be sorted for recycling, degradation, or 
exocytosis. During maturation, the transition from early to late endo
somes, these vesicles undergo membrane invagination and fission 
events, generating multivesicular bodies (MVBs) [100]. These MVBs 
comprise numerous membrane-limited intraluminal vesicles (ILVs). Late 
endosomes are targeted to either fuse with lysosomes for cargo degra
dation or fuse with the plasma membrane to release the ILVs to the 
extracellular environment, after release ILVs are called exosomes [101]. 
The components of the endosomal sorting complex required for trans
port (ESCRT) and several Rab proteins (Rab3, − 4, − 5, − 11, and Rab27) 
are required for MVB and ILV biogenesis. ESCRTs are assembled into 
four complexes (resp. ESCRT-0, -I, -II, and -III) with associated proteins 
(VPS4, VTA1, ALIX), which recognize and sequester proteins to the 
endosomal membrane [102], participate in membrane deformation into 
buds with sequestered cargo (I, II), and drive vesicle scission, which 
requires TSG101 and ALIX [103]. CD63 and ALIX have a pivotal role in 
vesicle sorting [104]. Finally, the dissociation and recycling of the 
ESCRT machinery requires the AAA-ATPase Vps4 [105]. The biogenesis 
processes of the extracellular vesicles are reviewed in detail elsewhere 
[106]. 

The exosome composition is also influenced by specific biogenesis 
pathways stimulation, which differs between normal cells and their 
tumorigenic derivatives [102]. The cells can have ESCRT-dependent and 
-independent exocytosis. Rab27a is linked to both ESCRT-dependent 
exocytosis and highly tumorigenic and metastatic exosome production 
[107]. The miRNAs and proteins inside these exosomes help to coordi
nate the metastatic cascade [108,109]. Therefore, exosomes facilitate 
the crosstalk between cells, mediating the reprogramming, trans
formation, and/or recruitment of several cells such as adipose-derived 
stem cells to tumor sites [110,111], changing the tumor microenviron
ment to promote angiogenesis [112], and metastasis [113]. 

The tumor microenvironment also influences the molecular exosome 

profile. Stressors like hypoxia, pro-inflammatory and metabolic chal
lenges, activate transcription factors that change the cell expression 
profile and in consequence the exosomal content [109]. Exosomes from 
glioblastoma multiforme (GBM) patients and hypoxic GBM cells accu
mulate high concentrations of pro-angiogenic mediators like MMP9, 
pentraxin 3, IL8, PDGF-AB/AA, CD26 (aka dipeptidyl-peptidase-4), and 
plasminogen activator inhibitor 1 (PAI-1), stimulating proliferation, 
migration, and angiogenesis in ECs, mouse aorta rings and human GBM 
xenografts [114]. Interestingly, tumor cells exert an effect on sur
rounding ECs, while ECs also influence tumor cells through EV 
communication. Hence, constant crosstalk among cells persists. Cad
herins mediate isotypic cell homophilic interactions, ECs express 
VE-cadherin, and epithelial breast cancer cells can be positive or nega
tive for E-cadherin depending on the malignity. However, VE-cadherin 
expression is induced in breast cancer cells when they are 
co-cultivated with ECs [115]. As a “trojan horse”, the tumor cells can 
move through the endothelium having an EV-inducible homophilic 
interaction, maintaining the integrity of the endothelial monolayer, 
helping to both process tumor invasion and vascular mimicry [115]. 

Like other molecules, PTEN can also be regulated through exosomal 
communication [113]. Mouse embryonic fibroblasts secrete PTEN in 
exosomes into the extracellular environment conserving their phos
phatase activity in the recipient cells having effects on the AKT pathway 
and decreasing cell proliferation [116]. All of the above reinforces the 
exosomes as potent mediators of intercellular communication, actively 
participatory in the preparation of the extracellular microenvironment 
supporting pivotal processes during cell specification, development, 
repair, and disease. 

Exosomal PTEN-targeting miRNAs in endothelial phenotype and tumor 
angiogenesis 

The exchange of vesicle-loaded ncRNAs redirects the cell phenotype 
but also the neighboring cellular environment. Several cell types ranging 
from MSCs (therapeutic context) to tumor cells (pathological context) 
influence angiogenesis-PTEN-related mechanisms in paracrine ways. 
That paracrine intercellular communication is modulated through 
exosomes-derived ncRNAs, including miRNAs and lncRNAs, helping to 
redirect the target cell functions alike a cuckoo laying its eggs in the nest 
of a host bird. Table 1 lists the main miRNA whose target is PTEN in 
several tissues. The regulation by miRNAs is highly versatile, not only do 
specific mRNAs harbor binding sites for multiple miRNAs but a single 
miRNA generally binds to multiple target mRNAs transcribed from 
genes that often reside in the same signaling pathway. Thus, one miRNA 
might hit an entire pathway. 

miR-21, miR-205-5p, miR-223 and miR-301 
miRNAs play key roles in vascular and tumor development, targeting 

molecules like VEGF/VEGFR family members and PTEN signaling. In 
prostate tumor cells, miR-21-5p targets PTEN which activates HIF-1α. 
This upregulates VEGF expression and secretion which promotes tumor 
angiogenesis [83]. The exosomal miR-21 leads to STAT3 activation, 
which increases VEGF levels in recipient cells, leading to angiogenesis 
and malignant transformation of human bronchial epithelial cells [117]. 
Exosomal miR-21 from hepatocellular carcinoma cells targets PTEN 
mRNA in proximal hepatic stellate cells (HSC), activating and trans
forming these HSCs into cancer-associated fibroblasts (CAFs). CAFs 
secrete pro-angiogenic factors such as VEGF promoting tumor vascu
larization and remodeling the ECM to generate a pro-tumorigenic 
microenvironment [118]. miR-21 secreted on exosomes from colo
rectal cancer cells also promotes angiogenesis and vascular permeability 
[119]. miR-205-5p influences development and cancer by regulating 
cell proliferation, migration, tissue polarity, and morphogenesis [120]. 
Like a double-edged sword, pathological loss of miR-205 creates dis
continuities in the basal membrane of prostate glands by an expression 
reduction in both laminin-332 and the cellular matrix receptor integrin 
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α6β4, which favors malignant transformation [121]. Also, a pathological 
increase of miR-205-5p in different cancer cells and tumor-derived 
exosomes inhibit the PTEN expression causing the upregulation of 
PI3K/AKT signaling, promoting proliferation, and angiogenesis [95]. 

In a multi-pathway communication mechanism, the local hypoxia, 
the metabolic switch induction, and in consequence the low pH, change 
the cellular miRNA expression profile in tumor cells and ECs alike [122]. 
This altered expression profile confers to the cells the ability to modify 
the microenvironment through different mechanisms including exoso
mal communication. Altered exosomal lipid/protein/miRNAs expres
sion profiles influence both exosome release and uptake, increasing the 
exosome fusion with cell membranes [123]. Hypoxic epithelial ovarian 
cancer cells recruit macrophages and stimulate these to produce exo
somes enriched in miR-223, which target the PTEN-PI3K/AKT pathway, 
helping the cancer cells to proliferate and evade chemotherapy [124]. 
M2-type macrophages are anti-inflammatory and immunosuppressive 
and secrete IL-10, TGFβ, and VEGF, leading to proliferation, tissue 
repair, and angiogenesis [125]. Exosomes from hypoxic pancreatic 
cancer cells harbor miR-301a-3p that induces M2 polarization through 
PTEN expression inhibition, and consequently activation of 
PI3K/AKT/mTOR signaling. This promotes migration, invasion, and 
EMT, facilitating lung metastases [126]. 

miR-103, miR-105, and miR-939 
Several miRNAs described to target PTEN also target adherens and 

tight junction proteins in ECs, like VE-cadherin and zonula occludens 1 
(ZO-1), respectively. The loss of these junction proteins constitutes a 
determinant step in vasculogenesis during development, but also in 
physiological and pathological sprouting angiogenesis. miR-103 targets 
PTEN, with a context-dependent outcome. miR-103 targets PTEN [127] 
and TIMP-3 [128] in endometrial cancer cells, stimulating growth, in
vasion, and apoptosis decrease. Upregulation of miR-103 was observed 
in oxidized-LDL-treated human ECs, a model for atherosclerosis. Direct 
PTEN targeting by miR-103 allows MAPK signaling activation to pro
mote the expression of inflammatory cytokines (MMP-9, MMP-1, IL-6, 
IL-1β) and endoplasmic reticulum stress markers (GRP78, CHOP, XBP-1, 
and GRP94); and miR-103 inhibition attenuates these markers through 
PTEN expression recovery [129]. Additionally, EVs derived from hyp
oxic lung cancer cells decreased macrophage PTEN levels caused by 
EV-miR-103a transfer, increasing the activation of AKT and STAT3 as 
well as the expression of several immunosuppressive and pro-angiogenic 
genes related to M2 phenotype [130]. Interestingly, xenografts of 
miR-103 overexpressing-hepatocellular carcinoma cells (HCCs) in mice, 
help tumor metastasis and alter the EC phenotype via exosomal 
communication. The exosomal miR-103-HCC xenograft derived, de
stroys the ECs adherent junctions integrity by direct targeting of 
VE-cadherin, p120-catenin, and ZO-1. This facilitates the trans
endothelial invasion of tumor cells, increasing the vascular perme
ability, the number of tumor cells in blood circulation, and the hepatic 
and pulmonary metastases, compared to control mice [131]. miR-939 is 
upregulated in human breast cancer cells, particularly in the most 
aggressive subtypes. Indeed, lymph node-positive tumors over
expressing miR-939 have an increased risk of relapse as compared with 
those with lower levels of miR-939 and lacking lymph node involve
ment. miR-939 is expressed and released in exosomes of triple-negative 
breast cancer cell lines and its uptake in HUVECs downregulates the 
junctional protein VE-cadherin [132]. Exosomal transference of 
miR-105 downregulates the tight junction protein ZO-1 in ECs [133]. 
Together, miR-939 and miR-105 increase vascular permeability and 
destroy EC integrity, leading to enhanced metastasis. 

Exosomal YAP/TAZ-targeting miRNAs in endothelial phenotype and 
tumor angiogenesis 

As discussed above, a strong feedback loop between PTEN and Hippo 
signaling pathway drives vascular adaptations in ECs during 

development and disease (Fig. 3). This signaling network may seem to 
act as an on/off switch, counteracting the balance of signaling in tip and 
stalk. This allows for angiogenic stimulation and warrants the proper 
maturation of the newly sprouted vessels to render these to function as 
microvessels. Any perturbance of this communication i.e., disturbance 
of the balance in tip and stalk cells, has effects on regeneration and re
covery of tissues after damage. Moreover, it may cause the formation of 
non-functional vessels. 

Interestingly multiple endogenous miRNAs redundantly converge on 
PTEN and Hippo signaling pathways to activate robust and sustained 
proliferation and EC patterning (Table 1). For example, the miR-17/92 
cluster, which targets PTEN, also induces cardiomyocyte proliferation 
and regeneration through modulation of Hippo signaling through LATS2 
targeting, thus increasing YAP nuclear translocation and transcriptional 
activity (Table 1). Also, miR-21 induce proliferation and angiogenesis 
through Hippo interference in cancer cells [134]. In ECs and ischemic 
hearts, overexpression of miR-93 was directly associated with a decrease 
in LATS2 expression and an increase in nuclear YAP, in other words, 
inactivation of the Hippo pathway. This protective response prevented 
ischemia/reperfusion damage to the endothelium by promoting angio
genesis (cardiac and in vitro), increasing microvascular density in the 
infarcted myocardium, and decreasing endothelial activation (ICAM-1 
and VCAM-1 staining) [135]. 

Exosomal lncRNA in endothelial phenotype and tumor angiogenesis via 
PTEN 

Like miRNAs, lncRNAs are post-transcriptional regulators. One 
particularly interesting way of lncRNA functioning is the endogenous 
sponge function, in which the lncRNA binds a target molecule e.g. a 
miRNA, and thereby prevents this molecule from binding to its original 
target [136]. In this way, the lncRNA abolishes the potentially inhibitory 
effect of its targeted miRNA on specific mRNAs. Such lncRNAs that 
regulate the expression of other transcripts by competing for miRNAs 
are referred to as competing endogenous RNAs (ceRNAs) [137]. In this 
last chapter, we focus on lncRNAs that regulate PTEN signaling. 

Growth arrest-specific 5 (GAS5) is a lncRNA that functions as a 
ceRNA for the PTEN target miR-29-3p. Lung cancer-derived exosome 
profiles showed reduced expression of GAS5 compared to the exosomes 
of healthy lung cells. Low GAS5 levels promoted tumor angiogenesis, 
while high levels of GAS5 resulted in inhibited proliferation and tube 
formation, and increased apoptosis [138]. Interestingly, the tumor in
creases angiogenesis by suppressing the amount of GAS5 in its exo
somes. This suggests that there is an important role for healthy lung cells 
in maintaining homeostasis in the lung through the exosomal delivery of 
GAS5 to suppress pro-carcinogenic processes. These results show that 
lung cancer cells regulate tumor angiogenesis via PTEN by controlling 
GAS5 levels in their exosomes (Table 2). 

PTEN pseudogene 1 (PTENP1) is a lncRNA, a member of the 
PTENP1/miR-20a/PTEN axis. This axis is involved in the progression of 
breast cancer by mediating cell proliferation, metastasis, and apoptosis 
[139]. MiR-20a is known as a suppressor of apoptosis and as a promoter 
of cell proliferation due to binding and thereby suppressing PTEN. 
PTENP1 is called a pseudogene because it is, just like PTEN, a target for 
miR-20a. This ceRNA function of PTENP1 promotes PTEN signaling by 
decreasing miR-20a activity. Consequently, low PTENP1 expression 
promoted the malignant behavior of breast cells, while overexpression 
of PTENP1 suppressed breast cancer progression [140]. Furthermore, 
PTENP1 is also reported as a member of the PTENP1/miR-17/PTEN axis. 
PTENP1 was demonstrated to be transported from normal cells to 
bladder cancer cells by exosomes, where it induced a tumor-suppressing 
effect. In contrast, low levels of PTENP1 showed a malignant effect in 
these cells [141]. Again, this seems a way in which an exosomal lncRNA 
is involved in an effort of the body to defend itself against cancer 
(Table 2). 

H19 is a lncRNA that was upregulated in cancer stem cell CD90+
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liver cancer cell-derived exosomes, but not in normal liver cancer cell- 
derived exosomes. These exosomes induced the promotion of angio
genesis in ECs, by increasing VEGF and VEGFR. Besides, H19 over
expression in ECs displayed the same effect [142]. Although 
H19-mediated interaction with PTEN-targeting miRNAs, such as 
miR-19a-3p [143] and miR-675 [144], has been documented in previous 
years, the precise pathways in which cancer cell-derived exosomal H19 
induces angiogenesis remains to be elucidated. Another lncRNA, 
metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), acts 
as an angiogenesis promoter after exosomal delivery to ECs, suppressing 
miR-92a. Being also a predictor of poor prognosis for epithelial ovarian 
cancer patients [145,146]. POU3F3 lncRNA also promotes angiogenesis 
after their transference to ECs by cancer-derived exosomes [147,148] 
(Table 2). Angiogenesis stimulation via downregulation of PTEN after 
cancer-derived exosomal delivery of H19 and MALAT1 has not yet been 
reported. However, available literature suggests that these lncRNAs 
interact in multiple ways with this process, which renders these inter
esting for future research. 

LncRNA-APC1, named after its activator, is a lncRNA active in the 
APC/PPARα/lncRNA-APC1/Rab5b axis. In colorectal cancer cells, 
lncRNA-APC1 binds to Rab5b mRNA, leading to reduced stability of this 
mRNA and decreased RAB5B protein levels. This led to decreased exo
some production, inhibition of the overreaction of the MAPK pathway, 
and suppression of angiogenesis. Low levels of lncRNA-APC1 are asso
ciated with metastasis and poor prognosis in colorectal cancer patients 
[149] (Table 2). Besides the lncRNAs transported in the exosomes, it is 
important to evaluate other effects of lncRNAs on exosome delivery. 
Effects of lncRNAs on exosome production, release, and uptake can also 
contribute to the effect that a parent cell establishes in a recipient cell 
due to the delivery of its exosomes. 

LncRNAs are a relatively novel field in biomedicine that warrants 
more thorough exploration. Revealing how lncRNAs manipulate 
signaling pathways can provide a new important element in the un
derstanding of cellular functioning. Especially the interaction with 
lncRNAs and miRNAs seems to add an extra layer to the interplay of 
molecules involved in post-transcriptional signaling. In addition to the 
oncogenic and tumor suppressor miRNAs, mapping of pro-angiogenic 
and anti-angiogenic lncRNAs can serve as important new information 
to get a more complete view of the functioning of both PTEN-dependent 
and PTEN-independent intracellular signaling pathways. 

Although not the focus of this review, ncRNAs comprise a class of 
degradation-resistant RNA, so-called circular RNAs (circRNAs), which 
have an average half-life of approximately five times longer than mRNAs 

[150]. Indeed, EVs also carry circRNAs [151]. Whereby, it has been 
suggested to use circRNA as biomarkers of progression and severity in 
different diseases, including colorectal cancer [152,153]. In 2017 
exoRBase was created, which is a repository of exosome-derived long 
RNAs (exLRs) derived from RNA-seq data analyses in different human 
body fluids. The exLRs contain mRNA, lncRNA, and circRNA [154]. 
Several circRNAs participate in the regulation of PTEN and Hippo 
signaling, such as circPTEN1 and circ-PPP1R12A, respectively [153, 
155]. However, the role of cirRNAs in vascular plasticity regulation, 
beyond tumor angiogenesis models [156], should be the subject of 
future study. 

Concluding remarks and perspectives: vascular adaptation 
lessons from cancer cells 

A strong feedback loop between PTEN and Hippo signaling pathway 
seems to rule vascular adaptations (angiogenesis, vascular reactivity, 
and remodeling of the vessel wall) during development and disease. 
PTEN has a pivotal role in vascular homeostasis, and its influence lies 
not only over PI3K signaling pathway. PTEN signaling regulation is a 
fertile area, as more than 2000 miRNAs are predicted to target PTEN 
[157]. Although several miRNAs targeting PTEN have been described, 
there is still a huge gap between the predicted and biologically validated 
ncRNAs, and a large percentage of validated ncRNAs has been described 
only in a single context. Some of the ncRNAs that have been validated in 
different biological models show a context-dependent outcome, which 
increases the complexity when drawing conclusions with these mole
cules (Tables 1 and 2). 

As a further point of consideration, the miRNA signatures of 2D 
cultured human ECs massively differ from 3D cultured ECs [158]. 
miRNA profiling comparing freshly isolated and cultured ECs, revealed 
major alterations in miRNA signatures between tissue-derived, cultured 
and aging ECs, differing around 30–40% in miRNA expression in 
cultured ECs compared to the fresh ECs [158]. Also, the stiffness of the 
substrates where the cells are planted has an impact on the EC miRNA 
expression profile and cell fate [159], as mentioned in the part 4.2 of the 
present review. This research reveals the existence of a mechanosensi
tive miRNA-based program conformed by 122 microRNA families that 
target 73 mRNAs encoding cytoskeletal, contractile, adhesive, and ECM, 
being YAP/TAZ signaling one of the main regulatory targets [159]. 
Although PTEN is not widely mentioned in that research, this is of 
special relevance since many of the miRNAs described to regulate this 
mechanosensitive program can also target PTEN. This indicates that the 

Table 2 
lncRNAs targeting PTEN.  

LncRNA Endogenous 
Sponge 

Main function Cell Type Role exosomes Interaction PTEN Effect on 
angiogenesis 

Refs. 

PTENP1 Yes Binding miR-20a and thereby 
promoting PTEN 

Cancer cell ? Promoting Suppressed 
malignant 
behaviors like 
metastasis 

[139,141] 

APC-1 No Disrupting mRNA Rab5b stability and 
thereby reducing exosome production/ 
release 

Cancer cell APC-1 affects the 
production/ 
release? 

No direct effect, possibly 
indirect by affecting 
exosome production 

Suppressing [149] 

GAS5 Yes Binding miR-20a-3p and thereby 
promoting PTEN 

Endothelial 
cell 

Transport GAS5 
from the cancer 
cells into the ECs 

Promoting Suppressing [138] 

H19 Yes Promotes angiogenesis in the tumor 
microenvironments and related with 
vascular repair 

Endothelial 
cell 

Transport H19 from 
the cancer cells into 
the ECs 

Downregulation Promoting [142–144, 
200] 

POU3F3 No? Promotes angiogenesis after the 
exosomal transfer from the glioma cell 
into the endothelial cell. Downregulate 
GAS5 

Endothelial 
cell 

Transport POU3F3 
from the cancer 
cells into the ECs 

? Promoting [147,201] 

MALAT1 Yes Therapeutic angiogenesis and 
metastasis 

Coronary 
vessels 

Transport MALAT1 
which sponges miR- 
92a 

? Promoting [145,146, 
202]  
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miRNA profile is highly adaptable and influenceable by the culture 
conditions, and cultured cells may not always represent the best model 
system for studying miRNA function, proper in vivo validation will 
remain as the gold standard. 

Some of the studies cited here, described endogenous down
regulation of PTEN expression by miRNAs. However, we do not know if 
they also influence exogenous expression. This allows us to determine if 
the predicted miRNA response elements (MREs) in PTEN are bona fide 
MREs and if the observed miRNA effect on endogenous PTEN is not 
indirect. Similarly, abundant literature describes the biological phe
nomena in which a miRNA interferes, but there is a gap in the descrip
tion of the molecular mechanisms through which they execute its action. 

The role of exosomes in pathophysiology as well as in normal 
physiology is investigated comprehensively during the last decades, 
with exponential growth in the number of publications associated with 
exosomes and ncRNAs, especially miRNA. Is well-recognized that 
ncRNAs packaged in exosomes alter physiological and pathological 
vascularization, reprogram the recipient cells, and thus change the 
cellular microenvironment, being PTEN one of the targets. Conversely, 
the cells’ microenvironment continuously demands the adaptation of 
the biological cargo in exosomes. Nevertheless, exosomes not only 
transport miRNAs but a wide variety of molecules with biological ac
tivity as lncRNAs. The stoichiometry of exosomal-miRNA transference 
(relation between copies number of miRNA/exosome/cell) describes 
that there is no more than one copy of each miRNA per exosome, 
delineating functional boundaries of exosome-mediated communica
tion, their mechanism, and physiologic relevance over gene expression 
in a biological context [160,161]. Therefore, trying to explain the effect 
of exosomes from a single molecule is a reductionistic act. In the future, 
it will be necessary to integrate expression profiles of the total content of 
the vesicle, to understand cellular communication in detail, and the 
entire message. 

As Calabrese and Mattson say: “the hormesis is not only constrained 
by plasticity but also describes the key characteristics of biological 
plasticity” [162]. Understanding the importance of the dose-response, 
makes us think about the molecules not only as on/off switches but 
rather as a hormetic rheostat. Transformed cancer cells are character
ized by many chromosomal alterations, which include copy number 
amplifications and loss of heterozygosity in several loci. These genetic 
alterations imply drastic increases or decreases in the genic product 
expression (mRNAs/ncRNAs) encoded in these areas [163], changing 
the proper gene dose expression. In angiogenic tumors, the angiogenic 
switch must be induced frequently. However, the vascularization of the 
tumor is highly disordered. Therefore, the analysis of angiogenic factors 
regulated by tumors is relevant in the mapping of the effector’s hierar
chy, as well as their implied pathways. Since it is currently easier to 
inhibit angiogenesis than to induce the formation of functional vessels, 
this information is important not only to learn how to suppress such 
angiogenic flux in growing tumors but also to make a bridge to define 
optimal therapeutic miRNA doses to improve regenerative processes. 
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