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A B S T R A C T   

Background: The current global mpox virus (MPXV) outbreak has been declared a Public Health Emergency of 
International Concern by WHO, with more than 80,000 cases confirmed across multiple continents. Diagnosis is 
confirmed by PCR of viral DNA from vesicle and other swabs. 
Objective: The aim of this study was to assess commercial RT PCR assays for Orthopoxvirus (OPX) and MPXV for 
analytical sensitivity, and percent agreements and compare them to primer/probe sets employed at the Victorian 
Infectious Diseases Reference Laboratory (VIDRL), Centers for Disease Control andPrevention (CDC) and US 
Army Medical Research Institute of Infectious Diseases (USAMRIID). Limits of detection (LOD), intra-run vari
ability, cross-reactivity and performance on forty clinical samples was assessed on eleven commercial assays and 
five primer/probe combinations used at VIDRL, CDC and USAMRIID. 
Results: All assays were able to detect OPX and MPXV (LOD 57 to 14,495 copies/mL) with intra-run coefficients 
of variation between Cycle thresholds of 0.58 and 3.44, and there was no unexpected cross-reactivity. All assays 
demonstrated 100% negative percent agreement with clinical samples and all but one yielded 100% positive 
percent agreement. 
Conclusions: Variations in LOD between assays may be dependent on the platform used and sample type. Despite 
the overall comparable performance of the assays assessed, it is important that routine laboratories perform in- 
house validations before implementing RT PCR for OPX and/or MPXV as reliable and accurate laboratory 
diagnosis of MPXV and isolation is crucial to containing the spread of this current outbreak and informing public 
health interventions and response.   

1. Background 

Mpox virus (MPXV), formerly monkeypox, is a double-stranded DNA 
virus belonging to Orthopoxvirus (OPX) genus of Poxviridae and related 
to smallpox [1]. The first human case was identified in 1970 [2], and it 
has primarily been found in Africa, except when related to travel or 
imported animals [3–5]. In May 2022 multiple concurrent cases were 
identified in several non-endemic countries, including Australia [6,7]. 
This current MPXV outbreak is the largest globally and marks the first 
substantial local transmission across multiple continents [7,8]. At 16th 
November 2022, there were 80,064 confirmed MPXV cases globally [9]. 

In this current outbreak, most cases are among men who have sex 
with men [6]. Transmission occurs through respiratory droplets, 
close/direct contact with skin lesions, and possibly through contami
nated fomites [6,8]. In addition to vaccination, rapid diagnosis and 

infection control measures remain key interventions to reduce ongoing 
transmission. MPXV diagnostic testing is performed using PCR assays 
generic to OPX or specific to MPXV [10–12]. The Victorian Infectious 
Diseases Reference Laboratory (VIDRL) utilises in-house, validated as
says for OPX and MPXV [13]. Although an increasing number of 
commercially available assays are available, there are limited published 
data on their performance characteristics. 

1.1. Objectives 

In order to inform diagnostic testing algorithms for MPXV, we 
evaluated nine commercially available MPX and two OPX Real Time RT- 
PCR assays (Table S1) and compared these with five primer/probe 
combinations used in laboratories [10,14]. 
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1.2. Study design 

MPXV was cultured from a vesicle swab of a patient with MPX in 
Vero/hSLAM cells in a Physical/Biological Containment Level 3 labo
ratory. Nucleic Acid was extracted using Qiagen QIAamp Viral Mini Kit 
(Hilden, Germany) as per manufacturer’s instructions. The DNA extract 
was quantified by digital droplet PCR (Bio-Rad, CA), sequenced (Gen
Bank ON631963) and panels prepared. Limits of Detection (LOD) were 
assessed with 8 × 4-fold dilution series of extracted DNA, spanning high 
and low copy number, and tested in quadruplicate with each assay. LOD 
was defined as the lowest copy number where all four replicates were 
detected. PCR Efficiency was calculated where there were four or more 
data-points of the serial dilutions using GraphPad Prism version 9.3.1. 

A panel of non-MPXV pathogens (distractor panel), derived from 
isolates and/or clinical samples in viral transport medium (VTM), was 
employed to assess specificity. These viruses were chosen as they pose a 
differential diagnosis and/or may be found at anatomical sites associ
ated with MPXV infection. The distractor panel included high burden 
(Cycle Threshold (Ct) <23) Varicella Zoster virus (VZV), Herpes Simplex 
virus, Type 1 (HSV-1) and 2 (HSV-2), Enterovirus (EV), Vaccinia virus 
(VACV), Orf virus (Orf), Molluscum contagiosum virus (MCV), and a 
pooled NATtrol Respiratory panel with Ct’s 29 to 40 (Zeptometrix, NY). 
Intra-run variability was assessed by spiking DNA into VTM, universal 
transport medium, Liquid Amies, 0.9% w/v saline and nuclease free 
water, re-extracting and testing in quadruplicate, effectively yielding 20 
replicates, which were tested in the 16 assays. 

Extracted RNA from forty clinical samples was tested in duplicate in 
all assays after storage of aliquots at − 80 ◦C. Twenty clinical samples 
were collected in VTM, from two sites from 10 patients with MPX 
infection. These consisted of 10 genital, 6 skin and 4 oral/throat swabs 
from suspected mpox lesions. Twenty negative samples in VTM, 9 gen
ital and 11 anal swabs collected before the MPXV epidemic, were tested 
in duplicate. Samples were considered positive if they had detectable 
DNA in both duplicates. 

Supplementary Table 1 (Table S1) shows the source of the com
mercial assays assessed, which were performed as per the manufac
turer’s instructions unless specified. In-house primer/probe 
combinations assessed are shown in Table S2. All testing was performed 
on an ABI 7500 FAST Real-Time PCR System (Applied Biosystems, CA). 
Cycling conditions are shown in the Supplementary. 

This study was performed under Quality Assurance ethics, 
QA2019134. 

2. Results 

LOD for all the assays are shown in Fig. 1. Seven of 16 assays yielded 
LOD of 226 copies/mL and one (Bioneer AccuPower) had LOD of 57 
copies/mL. The SpeeDx assays yielded LOD close to 226 copies/mL with 
3 of 4 replicates yielding detectable DNA. The Roche, SeeGene and VELA 
assays had LOD between 906 and 14,495 copies/mL 

All assays were highly specific with none demonstrating cross- 
reactions with high burden VZV, HSV-1, HSV-2, EV, Orf, MCV and the 

Fig. 1. Heat map displaying Limits of Detection results for all assays. Each dilution was tested in quadruplicate in all assays and Cts were recorded. A Ct < 40 was 
considered positive. 

G. Papadakis et al.                                                                                                                                                                                                                             



Journal of Clinical Virology 161 (2023) 105424

3

respiratory panel. VACV was detected, in VIDRL, USAMRIID [10] and 
Roche OPX and VIDRL MPXV specific assays. All assays performed well 
with intra-run variation with coefficients of variation between Ct’s of 
0.58 to 3.44 (Table S3). 

Positive percent agreement (PPA) and negative percent agreement 
(NPA) of clinical sample results and PCR Efficiency are summarised in 
Table 1. All assays detected the 20 known positive clinical samples 
except for the Vela, which did not detect four samples in all duplicates. 
The negative samples were non-reactive in all assays. 

3. Discussion 

This study showed varying analytical sensitivity between eleven 
commercial assays for OPX, MPXV and five primer/probe combinations 
described by VIDRL, CDC and USAMRIID with LOD ranging from 57 to 
14,495 copies/mL, Fig. 1. Variability in performance and PCR Efficiency 
(Table 1) of commercial assays may be explained by prior primer/probe 
optimisation on proprietary PCR thermal cyclers. Lower LOD may be 
attributed to increased ratio of sample to mastermix utilised, such as the 
Bioneer AccuPower and PerkinElmer PKamp assays, See Table S1. 
Comparison of Ct values between assays was unreliable in this analysis 
as some assays, notably the Bioneer and SpeeDx assays implemented 
touchdown amplification or pre-cycling, before capturing fluorescent 
readouts, Fig. 1. 

Reassuringly, all assays performed well with minimal intra-run 
variability and no cross-reactivity with pathogens that present a 
similar clinical picture to MPXV. Interestingly, all OPX assays demon
strated reactivity to VACV except for the SpeeDx OPX assay, which was 
disappointing. The VIDRL MPXV assay demonstrated non-specific 
reactivity with VACV. Fortunately, VACV has limited utility and un
likely to pose a differential diagnosis. This cross-reactivity has been 
described by others [15]. Despite differences in LOD, the PPA of nearly 
all assays assessed was 100%, Table 1. The Vela Virokey however, 
missed detecting one nasopharyngeal, two oral and one anal swab, 
potentially due to lower viral burden. Deletions in the TNF receptor gene 
(J2R), the target site for this assay, have been reported [9,16]. 
Sequencing of 1 sample did not show deletions but a SNP (results not 
shown) was detected and may explain the failure to detect this sample. 
This finding may have clinical implications for pre-symptomatic 
screening of close contacts [17]. It was reassuring to note that all as
says yielded 100% NPA in that all samples collected before the epidemic 
were negative for MPXV. 

A limitation of this study was the small sample size and there may be 
some sites not tested. Another limitation is utility of a single extraction 
technique and RT PCR instrument for assessing intra-run variability. 
Accurate LOD was beyond the means of this study as it would require 
testing 20 replicates at the lower limit of each of the 16 assays. Indi
vidual laboratory assessment is recommended to ascertain optimal 
extraction and RT PCR platforms are utilised. It is also important to 
consider implementation of specimen adequacy controls to ensure 
appropriate sampling [18]. Only 2 of the commercial assays in this study 
incorporated a known cellularity control (Table S1). Nevertheless, it is 
encouraging that the majority of assays, described here and elsewhere 
[19], could be readily implemented for reliable and accurate MPXV 
diagnosis. 

A diversity of assays is required to provide uninterrupted, reliable 
diagnostic services. This comprehensive evaluation offers valuable in
formation on performance characteristic of a broad range of diagnostic 
MPXV and OPX assays. 
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