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Treatment of non-small cell lung cancer is increasingly biomarker driven with multiple genomic 
alterations, including those in the epidermal growth factor receptor (EGFR) gene, that benefit from 
targeted therapies. We developed a set of algorithms to assess EGFR status and morphology using a 
real-world advanced lung adenocarcinoma cohort of 2099 patients with hematoxylin and eosin (H&E) 
images exhibiting high morphological diversity and low tumor content relative to public datasets. The 
best performing EGFR algorithm was attention-based and achieved an area under the curve (AUC) 
of 0.870, a negative predictive value (NPV) of 0.954 and a positive predictive value (PPV) of 0.410 in 
a validation cohort reflecting the 15% prevalence of EGFR mutations in lung adenocarcinoma. The 
attention model outperformed a heuristic-based model focused exclusively on tumor regions, and 
we show that although the attention model also extracts signal primarily from tumor morphology, it 
extracts additional signal from non-tumor tissue regions. Further analysis of high-attention regions 
by pathologists showed associations of predicted EGFR negativity with solid growth patterns and 
higher peritumoral immune presence. This algorithm highlights the potential of deep learning tools to 
provide instantaneous rule-out screening for biomarker alterations and may help prioritize the use of 
scarce tissue for biomarker testing.

Genomic-guided therapeutic choices are increasingly used in the management of advanced non-small cell 
lung cancer (NSCLC)1. Therapies requiring diagnostic testing include single-agent immunotherapy and kinase 
inhibitors targeting EGFR and ALK in the first-line and KRAS G12C, MET, and NTRK targeted therapies in 
the second-line2. Although multiplex diagnostic approaches such as next-generation sequencing are becoming 
more common, many labs perform testing for relevant biomarkers separately. As tissue acquired for testing is 
often limited and the number of diagnostics increases, care should be taken to prevent tissue exhaustion so that 
all appropriate clinical options may be determined3. One potential opportunity to mitigate this challenge is by 
leveraging machine learning with digital pathology.

Machine learning, and in particular deep learning, has recently gained broad traction across an expanse of 
medical domains, with its use showing promise in aiding diagnostics and biomarker discovery in applications 
relating to ophthalmology, heart disease, cancer care and more4–11. There is especially impactful opportunity 
within cancer care to leverage the immense data generated through clinical practice, including omics from 
sequencing technologies and gigapixel digital pathology scans. One such opportunity lays with the emerging sub-
field of digital pathology, which investigates the rich trove of information present within high resolution scans of 
hematoxylin and eosin (H&E) stains alongside other stains such as immunohistochemistry stains. H&E stains are 
inexpensive and ubiquitous tissue specimen stains used during the pathology workflow that allow pathologists 
to better examine tumor morphologies and determine the diagnosis of the tumor12. Machine learning and deep 
learning models applied to digital scans of H&E-stained tissue slides have shown significant promise in enhanc-
ing a variety of aspects in cancer-care, including aiding in cancer diagnoses, improving operational efficiencies, 
and directly providing molecular insights.

In 2016, Wang et al. showed that deep learning could detect metastatic breast cancer in lymph node biopsies 
with high performance, and suggested value in computer-aided approaches augmenting the pathology workflow, 
with pathologist-computer combined methods achieving 0.995 AUC on the cancer detection task13. Following 
soon afterwards, Coudray et al. showed that deep learning could classify cancer subtypes effectively and, even 
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more promisingly, could also predict gene alterations directly from lung adenocarcinoma H&E images, achieving 
0.733 to 0.856 AUC for mutations in STK11, EGFR, FAT1, SETBP1, KRAS and TP5314. In 2018, Ilse et al. proposed 
that histopathology problems could be effectively formulated as multiple-instance problems, which many studies 
have applied to address a range of histopathology problems15. Campanella et al. showed that multiple-instance 
approaches could achieve clinical-level performance on predicting prostate and other cancers and, from a bio-
marker perspective, Naik et al. showed that such approaches could predict estrogen receptor status from breast 
cancers with high performance (0.92 AUC)16,17.

Despite these advances, clinical adoption of machine learning in digital pathology has been slow. This may 
be partially due to a lack of clinically relevant datasets for research, with many research models trained on 
homogenous datasets with high tumor purity14,18. For example, The Cancer Genome Atlas’s requirement of 
60% tumor purity in most diseases is in stark contrast to more real-world settings where tumor purities of 20% 
are common19. Further limiting clinical use is the challenge of interpreting predictions made by deep learning 
models, making it difficult to ensure that given models are relevant and accurate for specific clinical samples.

Here we demonstrate that attention-based multiple-instance learning can predict EGFR mutational status in 
advanced metastatic lung adenocarcinoma samples directly from H&E images with state-of-the-art performance 
on real-world datasets, where many samples have less than 50% tumor content. Through a combination of tissue 
morphology classification models and pathologist review we show that although tumor regions contain the most 
signal for EGFR, the attention-based model also considers relevant outlier instances from other tissue types such 
as immune or stromal features when predicting EGFR mutational status. With additional analysis via association 
rules mining, we demonstrate a process wherein morphology models and pathologist expertise can be leveraged 
to biologically verify end-to-end biomarker predictions by evaluating associated feature combinations, allowing 
for better model interpretation when supporting clinical decisions.

Results
We investigated the ability of different modeling approaches to predict EGFR mutational status in lung adenocar-
cinoma resections (see “Methods” for details). First, to set a modeling baseline, we trained a weakly-supervised 
model that predicts EGFR mutational status using all tissue patches from a slide, irrespective of morphology, and 
aggregates those patch predictions to generate a slide-level output. Second, we trained a two-stage model. Stage 
one was a convolutional neural network, which classified patch morphology into categories of tumor, immune 
foci, stroma, necrosis, or normal tissue (Fig. 1a). Stage two models use only tissue patches classified from a single 
group (Fig. 1b). Last, we trained a multiple-instance learning model that achieves state-of-the-art performance 
for predicting EGFR mutational status in lung adenocarcinoma resections and investigated the features learned 
by the model (Fig. 1c).

Real‑world lung adenocarcinoma samples exhibit high morphological diversity.  Our experi-
mental dataset was comprised of 2099 lung adenocarcinoma resections from advanced or metastatic cancer 
patients whose specimens were submitted to Foundation Medicine for genomic profiling. Of the 2099 resections, 
716 (34%) were EGFR mutated (see “Methods”). The remainder of the dataset consisted of non-EGFR driver 
mutated specimens (e.g. KRAS or ALK) or driver wild-type specimens.

To evaluate the extent of morphological diversity within the samples comprising our dataset, we used patholo-
gist annotations of tissue types to train a deep learning model that classifies tissue patches (512 × 512 pixels at 
20 × magnification, resized to 448 × 448 pixels) into one of five tissue morphology groups: tumor, immune foci, 
stroma, necrosis, and normal. These predictions capture the predominant tissue type within a patch, but multiple 
cell types are likely present. The model effectively discriminated tumor patches from other tissue types, achieving 
a validation f1-score of 0.961 (4504/4658). Performance across all groups was high as shown by the f1-scores for 
stroma (0.943; 2106/2233), immune (0.897; 262/292), and necrotic tissue (0.986; 1276/1294) (Fig. 1d). Normal 
tissue had the lowest f1-score of 0.727 (570/784) with 0.093 (35/376) of normal patches predicted as stroma and 
0.138 (52/376) predicted as tumor.

By applying this tissue morphology classification model to all tissue slides, we determined that most slides 
have a high fractional area of non-tumor tissue types (Fig. 1e). Across the dataset, the median tumor fraction 
by patch area was 0.364 with an interquartile range of 0.290. Notably, the patch area of normal tissue had a 
median fraction of 0.394 with an interquartile range of 0.307, higher than that of the tumor group. There was 
an appreciable presence of stroma, with a median fraction of 0.133 and an interquartile range of 0.141. Immune 
and necrosis patches were present with median fractions of 0.025 and 0.002 and interquartile ranges of 0.042 
and 0.011, respectively. Thus, relative to many research datasets like The Cancer Genome Atlas, our tissue slides 
exhibit high morphological diversity and low tumor content.

Human‑intuition models help isolate predictive signal when modeling morphologically‑diverse 
real‑world data.  To provide a baseline model for predicting EGFR mutational status from our dataset, we 
trained a weakly-supervised patch-level classification model using ResNet50 as a backbone with five-fold cross-
validation. The weakly-supervised models obtained an AUC of 0.792 ± 0.029 when aggregating patch predictions 
by the slide average and an AUC of 0.784 ± 0.026 when aggregating using the median.

Since EGFR is a tumor cell-intrinsic driver alteration, we hypothesized that tumor regions would contain 
most of the classification signal. We tested this hypothesis by developing a two-stage approach, first separating 
patches into the five tissue morphology types and then training separate deep learning classifiers to predict EGFR 
status using only patches from one of the morphology types. Each of these five morphology-selective models 
were trained with five-fold cross-validation.
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The tumor patch-based models achieved an AUC of 0.831 ± 0.011 when aggregating using average patch 
prediction and an AUC of 0.828 ± 0.009 when aggregating using median patch prediction, which was better than 
the weakly-supervised models (Fig. 2a,b; p = 0.033).

In comparison, the cross-validated AUCs by mean aggregation for the immune (0.712 ± 0.039), stroma 
(0.673 ± 0.005), normal (0.666 ± 0.022), and necrosis (0.544 ± 0.034) based models were significantly worse 
than the tumor-based models and the weakly-supervised models (Fig. 2a; p = 0.012, p = 4.62e−5, p = 1.30e−4, 
p = 4.083e−6). We conclude that when training patch-based models, tumor regions contain the highest signal 
for EGFR classification and that excluding non-tumor regions from consideration reduces noise and increases 
performance.

Multiple‑instance learning model using attention mechanism improves EGFR predictive abil‑
ity.  We next assessed an attention-based multiple-instance learning (MIL) model to determine whether EGFR 
prediction performance could be further improved using machine-intuition alone. Bags of patches were ran-
domly sampled from each slide during training and the entire bag was given the specimen-level EGFR status as 
the label. Through the attention mechanism, the model learned without human guidance how to weigh different 
patches within each bag when predicting for specimen-level mutational status. The AUC achieved by the MIL 
models with five-fold cross-validation was 0.870 ± 0.014, which was significantly higher than the tumor-only 

Figure 1.   Various models to characterize and predict EGFR mutational status from specimens with highly 
diverse tissue morphologies. (a) A deep learning tissue morphology model that produces broad patch-level 
classifications for all patches from a slide. (b) A deep learning modeling approach to predict EGFR mutational 
status at a slide-level by utilizing patches belonging to a specific predicted tissue group only and aggregating 
patch predictions for the final output. (c) A multiple-instance learning approach that utilizes an attention 
mechanism, allowing for machine-intuition to automatically weigh patches of interest when directly predicting 
EGFR mutational status for the slide using a bag of patches. (d) Confusion matrix for the patch-level tissue 
morphology classifier that categorizes each patch given its predominant tissue morphology. (e) The distribution 
of tissue morphologies exhibited across the real-world lung adenocarcinoma cohort (n = 2099) as classified by 
the tissue morphology model.
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models (Fig. 2a,c; p = 0.002). The models also achieved an NPV of 0.954 ± 0.024 and a PPV of 0.41 ± 0.081 at a 
binary classification threshold of 0.5. If only slides with high-confidence predictions (defined as < 0.25 for wild-
type call and > 0.75 for mutant call) were considered, the NPV was 0.970 ± 0.017 and the PPV was 0.527 ± 0.088. 
Thus, attention-based models outperformed the human-guided tumor-only models.

We next investigated regions with high attention scores from the MIL models to better understand what 
features the MIL models learned. We sampled 100 patches per bag for 100 validation slides and assessed model 
attention by tissue morphology (Fig. 3a–c). We found that the median attention score was highest for tumor 
patches at 0.013 with a maximum score of 0.038. Tumor patches received the highest attention when assessing all 
patches, median per slide, or maximum per slide attention. As a group, the immune patches were second with a 
median attention score of 0.009 and a maximum of 0.035. The median attention given to normal patches, stroma 
patches, and necrosis patches were 0.007, 0.006, and 0.002 with corresponding maximum attention scores of 
0.033, 0.031, and 0.022, respectively. The tissue morphology classification of patches also allowed pathologists 
to quickly assess high-attention outlier patches for noteworthy visual features (Fig. 3d,e). In Fig. 3d, an EGFR 
true positive exemplar is presented. High attention was given to tumor and stroma patches. Patches I-V had a 
predominant acinar pattern and hobnail cytology, with low peritumoral and intratumoral immune fractions, 
ranging from 0.1 to 0.2. Patch IV had a low presence of necrotic tissue and patch VI was predicted as stroma 
by the tissue-morphology model, and pathologists confirmed this patch was fibrosis. In Fig. 3e, an EGFR true 

Figure 2.   Performance for deep learning models to predict tissue morphology and EGFR mutational status. (a) 
Comparison of all deep learning models for predicting EGFR status from H&E images. (b,c) Cross-validated 
receiver operator characteristic curve for each cross-fold of (b) the tumor-only two-stage EGFR model and (c) 
the MIL model.
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Figure 3.   Bags from slides with high-confidence predictions assessed by the MIL model, with attention 
weights extracted for each patch within the bags. (a) All patch, (b) median per slide, and (c) maximum per slide 
attention weights for EGFR prediction as separated by predicted tissue morphology from (left column) 50 EGFR 
mutant slides, (center column) 50 EGFR wild-type slides, and (right column) 100 slides combined. (d) EGFR TP 
exemplar with attention weights from bag of 250 patches. The six highest attention patches are shown (I-VI). (e) 
EGFR TN exemplar with attention weights from bag of 250 patches. The six highest attention patches are shown 
(I-VI).
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negative exemplar is presented. High attention was given to tumor patches and some immune patches. Patches 
I–II showed an acinar/lepidic pattern with hobnail cytology and intratumoral lymphoid aggregates. Patches 
III–VI were predicted to be tumor or immune foci by the tissue-morphology model. Pathologists confirmed 
high peritumoral and intratumoral immune fraction, ranging from 0.2 to 0.7, for these patches. Inflammation 
was noticeably present as well in patch IV. From these data we conclude that the MIL models learned to give high 
attention to tumor regions but likely boosted performance by also giving high attention to additional patterns 
that aid in classification such as immune infiltrates in EGFR negative samples.

Pathologists also reviewed the top-25 highest attention patches in each of 49 randomly sampled bags for which 
the MIL models produced high confidence predictions. Bags predicted to be EGFR mutant had a lower standard 
deviation of tumor nuclei fraction across the highest-attention patches (Supplementary Table 1; p = 0.028, Pear-
son’s r: − 0.317). Bags predicted to be EGFR mutant also had higher minimum tumor nuclei fraction (p = 0.037, 
Pearson’s r: 0.301) and lower maximum peritumoral immune fraction (p = 0.041, Pearson’s r: − 0.297). Patholo-
gists also assigned tumor architectural patterns to high attention patches. The overall mode of predominant 
tumor architectural patterns exhibited a statistically significant difference between EGFR mutant and wild-type 
slides (Fig. 4a; p = 0.035; Chi-squared test). More bags were predicted to be wild-type than EGFR mutant when 
the predominant architectural pattern was solid (Fig. 4a; p = 0.013).

There were also several trends in the data that are suggestive of known associations with EGFR mutational 
status that did not reach statistical significance. When considering overall architecture, bags that were predomi-
nantly lepidic or papillary were predicted as EGFR mutant five times more often than EGFR wild-type (Fig. 4a). 
In contrast, bags that predominantly possessed the solid architecture were predicted as EGFR wild-type seven 
times more often than mutant. When the predominant architecture was mucinous, it was twice as likely that the 
bag would be predicted as EGFR wild-type. There was no strong enrichment (ratio < 2.0) in prediction status of 
either type for predominantly acinar bags. All bags with any micropapillary content (predominant or minor) 
were predicted as EGFR mutant specimens (Fig. 4a,b). The directionality of preference for predicted status when 
considering acinar, lepidic, papillary, mucinous for the minor architectures were similar to the preference in the 
predominant architecture, but the solid minor architectural pattern did not see the same strength of preference 
for EGFR mutant predictions compared to instances where the solid architecture was the predominant pattern. 

Figure 3.   (continued)



7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:4404  | https://doi.org/10.1038/s41598-023-31284-6

www.nature.com/scientificreports/

From a cytology perspective, bags with columnar or hobnail as the most common cell type across the high-
attention patches were more likely (> 1.5) to be predicted as mutant (Fig. 4c). Mucinous and sarcomatoid cytolo-
gies were more likely to be predicted as wild-type. From an overall tumor-feature perspective, our MIL models 
tended to predict lepidic and papillary patterns as EGFR mutant and any mucinous characteristic (architecture 
and cytology) as EGFR wild-type (Fig. 4c). For non-neoplastic qualities, slides with inflammation were more 
frequently predicted as EGFR wild-type (Fig. 4d). Generally, there were no categorical characteristics (aside from 
the micropapillary pattern) that perfectly separated specimens by predicted status, possibly suggesting that the 
models consider the various characteristics within each bag in combination.

To examine the relevance of the patch characterization in a combinatorial manner, we performed association 
rules mining21 to determine item-sets of interest using the categorical variables (Supplementary Table 2). Each 
bag’s overall characterization was determined via the category mode for the reviewed patches in the bag. The 
highest-lift item-sets for predicted wild-type status as a consequent included: {inflammation, hobnail cytology, 
solid minor architectural pattern}, {inflammation, acinar predominant architectural pattern, hobnail cytology}, 
{acinar predominant architectural pattern, hobnail cytology, solid minor architectural pattern} and {acinar pre-
dominant architectural pattern, inflammation, hobnail cytology, solid minor architectural pattern}, each with a 
lift of 2.097. In contrast, the highest-lift item-sets for predicted EGFR mutated status included: {fibrosis, lepidic 
minor architectural pattern, hobnail cytology} and {fibrosis, acinar predominant architectural pattern, hobnail 
cytology}, both with a lift of 1.92. In total, the EGFR prediction algorithm recapitulated several known morpho-
logical and cytological associations with EGFR status and these features can be tested on a per sample basis by 
analyzing highly attended regions manually or via tissue morphology/cytology classification algorithms.

chi-square for
predominant architecture
*p=0.032

acinar lepidic micro-
papillary

mucinous papillary solidacinar lepidic micro-
papillary

mucinous papillary solid

fibrosis inflammation otheranaplastic columnar hobnail mucinous other sarcomatoid

minor architectural pattern

cytology non-neoplastic quality

predominant architectural pattern

* p=0.032
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Figure 4.   Overall bag characteristics of high-attention patches for categorical variables for 49 pathologist 
reviewed bags. (a) Predominant architectural pattern of high-attention patches, determined by patch mode, by 
predicted status. p-value from a Chi-squared test of the overall distribution. (b) Minor architectural pattern of 
high-attention patches. (c) Cytology for high-attention patches, determined by patch mode. (d) Non-neoplastic 
qualities present in high-attention patches, as determined by patch mode.
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Discussion
As barriers to clinical adoption of digital tools are reduced, the development of machine learning models to aug-
ment and support established processes is highly desirable. However, models trained on research datasets that 
are dissimilar to real-world data may have difficulty generalizing in a clinical setting, where the incoming sample 
distribution may not align well with the training data. With this in mind, we developed machine learning models 
that predict EGFR mutational status on real-world H&E lung adenocarcinoma images with high morphological 
diversity and show the potential for use as screening algorithms with high NPV. We demonstrate that state-of-
the-art performance for predicting EGFR can be achieved by using attention-based models that evaluate a full 
range of tissue morphologies, outperforming our tumor-only models as well as those shown in prior literature 
(0.825–0.831 AUC)14. Additionally, attention-based models do not require expensive manual annotation or guid-
ance to train. Finally, we show that biological verification of attention-based end-to-end models can be performed 
by combining assessment approaches such as morphological profiling, item-set analysis, and pathology review, 
potentially increasing accuracy in a clinical setting.

The ability to directly assess the attention distribution of MIL models also allows an opportunity to investi-
gate learned patterns regarding tumor biology and the tumor microenvironment (TME) when predicting EGFR 
mutational status. Various studies have shown that certain tumor architectural patterns and cytological features 
are correlated with EGFR mutated tumors in lung adenocarcinoma. For example, Sun et al. showed that acinar 
and lepidic architectural patterns, sometimes in mixed combination, are associated with EGFR mutations in 
NSCLC22. Other studies show that micropapillary or papillary patterns, with any presence of the lepidic pattern, 
are good indicators of EGFR mutation23,24. Associations of hobnail cytology with EGFR mutated samples have 
also been observed25. In line with these findings, our MIL models differentiate mutational status using the pre-
dominant architectural pattern (Fig. 4a), and appear to capture a relationship between EGFR mutations and the 
lepidic pattern coupled with hobnail cytology (Supplementary Table 2). It should be mentioned that the hobnail 
cytology is also present within high-lift wild-type prediction sets; however, the lepidic pattern is present only 
within high-lift predicted mutant sets while the solid and mucinous patterns are present only in the high-lift 
predicted wild-type sets. It is noteworthy that our models do not learn a sole architectural pattern, cytology, or 
non-neoplastic quality as the lone discriminator for predicting EGFR status.

The attention distribution of MIL algorithms also has the potential to allow for quality control tests in a clini-
cal setting. One quality control method would be to simply have pathologists review highly attended patches 
and ensure they had characteristics of the EGFR mutant or wild-type call. A more automated approach would 
be to use trained morphology, growth pattern, and cytology algorithms to analyze highly attended patches. For 
example, an EGFR mutated prediction in a sample with predominantly solid architecture could be flagged and 
reviewed manually. If a pathologist then confirms that an EGFR mutation is unlikely given the specimen mor-
phology, the specimen can be prioritized for genomic testing. Furthermore, utilizing multiple observations (or 
algorithms) to assess whether a particular diagnostic result is consistent with all the available evidence is similar 
to how pathologists assess cases in practice.

Beyond tumor-associated features, it has also been suggested that immune response and non-neoplastic 
components within the TME may be relevant when examining the effect of mutations upon linked biological 
pathways. Dong et al. showed that EGFR mutated NSCLC specimens possess significantly less T cell infiltration 
and lower immunogenicity than wild-type specimens26. In another study, Lin et al. suggest that TME immune 
response may be influenced by the EGFR mutation via manipulation of complex signaling pathways, leading to a 
reduction in the expression of the major histocompatibility complex and consequently lowered activation levels 
of CD8 + T cells27. Our MIL models appear to learn this trend of lowered immune response within the TME of 
EGFR mutated specimens, in part indicated by the significantly higher maximum peritumoral immune fraction 
(Supplementary Fig. 1c; p = 0.041) across high-attention patches for specimens strongly predicted to be wild-type. 
Additionally, inflammation is present within three out of four of the highest-lift item-sets for EGFR wild-type 
predictions, while it is absent from the highest-lift item-sets for EGFR mutant predictions.

Finally, the ability to examine the attention given by MIL models may allow exploration of other less obvious 
elements within the TME that could help elucidate the biological understanding of EGFR mutations. In two of the 
highest-lift item-sets for predicted EGFR mutant status, fibrosis is present alongside the tumor-related features. 
This inclusion of fibrosis is less expected than the inclusion of tumor features but may also suggest interesting 
interactions within the TME. Many studies now suggest that stroma and stromal elements may play far more 
than a passive role within TMEs and may have direct effects on tumorigenesis. For example, cancer-associated 
fibroblasts within desmoplastic stroma may help promote tumor invasion and metastasis, oncogenic angiogen-
esis, and immune evasion28. One change within the TME possibly affected by activated fibroblasts is the assisted 
generation and structuring of the extracellular matrix, which may influence tumor growth and cell motility29,30. 
Additionally, stroma may play a role in immune evasion by acting as a physical barrier to T cell infiltration31. 
The inclusion of fibrosis as a relevant feature may indicate the ability of machine learning models to recognize, 
without human guidance, patterns involving tissue regions that may be orthogonal to tumor-specific features.

Our experiments show that machine learning models enabled with self-directed intuition such as attention-
based MIL models can predict EGFR mutational status, and potentially other biomarkers, from morphologically-
diverse real-world tissue specimens without human intervention. The ability to rely upon machine-intuition to 
extract meaningful features could enable low-effort signal-searching experiments at scale, as well as provide a 
means to investigate machine-discovered patterns within the phenotype that may be biologically informative. 
It is encouraging from an interpretability standpoint that models intended to assist in clinical decision-making 
recapitulate expected results, such as finding tumor regions most predictive for genomic alteration signal, but 
also that such models may be capable of determining patterns and interactions within phenotypic features in 
ways that elevate performance beyond methods relying solely upon human intuition. In a clinical setting, these 
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screening algorithms could provide rapid genomic insights regarding a patient specimen, which can then be 
checked by a combination of more interpretable models as well as pathologist visual examination. Any low-
confidence predictions or samples flagged by pathologists could then be selected for further genomic testing.

We do note that the samples used within this study were limited to lung adenocarcinoma resections that were 
extracted from lung tissue sites only. Oftentimes in clinical practice, a majority of specimens are acquired as 
needle core biopsies from a variety of tissues outside of and including the lungs. To increase the clinical utility of 
pre-screening algorithms such as those described in our study, approaches should be developed to integrate both 
resection samples and needle core biopsy samples to enable optimal coverage of the clinical patient population. 
Since needle core biopsies offer much less tissue than resections for analysis, thoughtful modeling approaches 
to reconcile this difference will be needed. In the future, we hope to expand model performance to cover needle 
core samples across a variety of tissue extraction sites and to evaluate model transferability on additional external 
clinical datasets.

Conclusions
We developed a multiple-instance model to predict EGFR mutational status in lung adenocarcinoma samples 
with diverse tissue morphologies, achieving an AUC of 0.870 with an NPV of 0.954 and a PPV of 0.410. By 
using a combination of tissue morphology classification models and expert pathologist review of high-attention 
patches to assess signal distribution, we found that our model learns to consider both tumor morphology as well 
as non-tumor morphologies when predicting EGFR mutational status. Our model’s performance as evaluated on 
validation sets reflecting the real-world prevalence of EGFR mutations in lung adenocarcinoma suggests utility 
as a rule-out screening tool that could provide rapid genomic insights regarding a patient specimen.

Methods
Dataset.  The dataset used in this study consists of lung adenocarcinoma resection H&E whole slide image 
scans acquired from specimens submitted to Foundation Medicine for genomic profiling. All data was de-iden-
tified following a de-identification protocol that was externally approved according to the Health Insurance 
Portability and Accountability Act Expert Determination Process. All images within this dataset were scanned at 
20 × magnification. This image dataset was generated from 2099 tissue specimens from 2099 individual patients. 
716 of the specimens were determined by genomic sequencing to be EGFR short-variant mutant specimens. Of 
the remaining specimens, 85 were ALK mutated, 93 BRAF mutated, 81 ERBB2 mutated, 606 KRAS mutated, 76 
MET mutated, 35 RET mutated, 18 ROS1 mutated, and 389 were lung driver wild-type.

Five-fold cross-validation was performed to evaluate model performance and consistency. For ground-truth, 
all slides used the specimen-level mutational statuses as determined by FMI’s next-generation sequencing tests. 
The training/validation split for all experiments was 0.8/0.2 for EGFR mutant slides. The real-world prevalence 
of EGFR short variant mutations is approximately 15% in NSCLC, and thus represents a minority class for which 
class-imbalanced modeling was a consideration. As the data available at FMI contained a relatively large number 
of EGFR mutated lung adenocarcinoma specimens, we chose to forgo any minority class balancing techniques 
such as minority over-sampling or minority class weight penalization and instead chose to perform majority 
under-sampling, randomly selecting an equal number of slides that were not EGFR mutated to balance the EGFR 
mutated slides in the training set. For the validation sets, we selected enough slides that were not EGFR mutated 
so that the percentage of EGFR mutated slides in the validation was 15%, reflecting the real-world prevalence. 
By doing so, we aimed to simplify the training process while still allowing for an evaluation of the model against 
a validation dataset that more closely represented a real-world setting. As a result, each training set had 1146 
slides and each validation set had 953 slides.

Model architecture.  The tissue morphology classifier was structured primarily using a trainable feature 
extractor (ResNet5032 without the top-layer). The feature extractor was followed by a global average pooling 
layer, which is then connected to a 5-dimensional fully-connected layer with softmax activation to predict the 
tissue type classification.

The weakly-supervised EGFR prediction model consisted of a trainable feature extractor, followed by a global 
average pooling layer, a dropout layer of 0.3, and a final 1-dimensional output layer with a sigmoid activation to 
predicted EGFR status at patch-level. The specimen-level prediction was made by aggregating patch-level predic-
tions from the given slide. Each morphology-restricted patch-level EGFR classifier used the same architecture as 
the weakly-supervised model. The feature extractor backbone for all models was ResNet50.

The attention-based multiple-instance learning model was built using ResNet50 without the top-layer and 
with an added global average pooling layer to serve as a trainable feature extractor. Following the feature extractor 
was an attention-mechanism consisting of two fully-connected layers (512-dimensional, 256-dimensional) to 
reduce the embedding dimensionality. The reduced embeddings were then passed to a 256-dimensional fully-
connected layer followed by another 1-dimensional fully-connected layer. The output is then transposed and all 
patches within a multiple-instance bag are passed through a softmax activation which fractionally weighs the 
attention for each patch within the bag. The reduced embeddings are then weighed using the softmax attention 
weights to generate the slide-level weighted embedding. A final fully-connected layer processes the slide-level 
weighted embedding and uses the sigmoid activation to predict the specimen-level EGFR status.

Tissue morphology annotation procedure.  In order to train a model to profile tissue types within the 
lung adenocarcinoma specimen set, pathologists performed non-exhaustive region annotations on a selection of 
lung adenocarcinoma slides for the tissue morphologies: tumor, normal lung tissue, stroma, immune foci, and 
necrosis. These annotations were performed to capture large representative regions for each of the groups, but 
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since the tumor microenvironment is highly complex there are likely elements belonging to other groups within 
patches extracted from a particular morphology annotation.

The tissue morphology classifier was then trained to predict the tissue morphology for patches extracted 
from the region annotations. These annotations were deliberately chosen to maximize the variety within the 
morphological groups. For example, when annotating tumor regions, an effort was made to find and annotate 
the different lung adenocarcinoma histological subtype groups (lepidic, acinar, micropapillary, papillary, muci-
nous, and solid). Similarly, the scope for normal lung tissue annotations was also broad and included different 
sections of alveolar tissue and cartilage.

Training procedure.  To train the tissue morphology model, we generated a patch dataset by extracting 
non-overlapping patches directly from the pathologist-annotated regions-of-interest for the five chosen mor-
phological classes (tumor, immune, normal, stroma, necrosis). The selection criteria for a morphology patch to 
be extracted was that each patch needed a pixel fraction of at least 0.75 to be from within an annotated region. 
We chose to extract these patches at 512 × 512 pixels at 20 × magnification, as this was determined via patholo-
gist guidance to be adequate in receptive field for capturing the signal for the tissue morphology prediction task. 
We did not extract patches at a larger receptive field for this task in order to maximize the number of patches 
we could generate from the limited annotations we possessed. For training the tissue morphology model we 
resized the 512 × 512 patches to 448 × 448 patches before inputting into the model. We found that this resizing 
step allowed for larger batches during training and reduced the overall training time by 25% while maintaining a 
validation concordance greater than 95% between a morphology classifier using 448 × 448 inputs and a classifier 
using 512 × 512 inputs.

The patch morphology classification task was structured as a multi-class classification task. For simplicity, 
assume a single input instead of a batch. The morphology patch classifier takes a tissue patch as its input and 
classifies it into one of K categories. The final output layer for the morphology classifier is a fully connected layer 
of K dimensions and the activation function is the softmax function:

where

and where x is the input to the fully-connected output layer, w is the weight matrix of the output layer, and b is 
the bias term for the output layer. The loss that we optimize for is the categorical cross-entropy loss:

where ŷj is the target value of the j-th class for the sample. The morphology model was trained for 15 epochs 
and the model weights corresponding to the highest validation accuracy were used to morphologically profile 
the full resection set (n = 2099) at a patch level.

To train the EGFR mutation prediction models, we generated a patch dataset by exhaustively extracting non-
overlapping tissue patches from all resection slides. We first performed tissue masking on down-sampled images 
for every slide in the resection cohort. The masking was performed on down-sampled images in the interest of 
computational efficiency. The tissue masking approach consisted of a colorspace transformation of RGB to HSV 
to allow for color separation of tissue from background and artifacts. Processing of the mask to remove small 
holes and objects was then performed. Following this, we iterated through the coordinates of the tissue mask to 
extract patches for the mutation classification dataset. Patches for use in the mutation classification task were 
kept if the tissue pixel fraction, as determined by the masked pixels, was at least 0.2 for a given patch. No further 
patch selection criteria was applied. For the EGFR mutation prediction task, we extracted patches at 1024 × 1024 
pixels at 20 × magnification because we anticipated that the mutation classification task would require a broader 
view of the tumor microenvironment.

In order to perform tissue morphological profiling on the full mutation prediction patch dataset, we needed 
to reconcile the difference in extraction size of these patches (1024 × 1024) with the input size for the tissue 
morphology classification model (512 × 512 resized to 448 × 448). We did so by center-cropping each 1024 × 1024 
patch to 512 × 512, resizing to 448 × 448, performing the morphology classification and then applying that clas-
sification of the center crop to the entire patch (Supplementary Fig. 2a). The tissue morphology classifications 
of these 1024 × 1024 patches were then used to select the appropriate patches for the two-stage models and to 
help analyze the MIL model’s learned attention after training.

For the training inputs of the EGFR mutation prediction models, we resized the raw 1024 × 1024 pixel patches 
to 224 × 224 pixel patches to allow each bag in the MIL formulation to include more patches, as limited by GPU 
memory, so that the MIL model would be allowed a more holistic view of each slide. To maintain consistency 
for the EGFR mutation classification task, we used 224 × 224 patch inputs (downsized from 1024 × 1024) for all 
EGFR mutation prediction models, including the weakly-supervised model, all two-stage models, and the MIL 
model (Supplementary Fig. 2b).

The EGFR mutation prediction task is a binary classification task where either given a single patch (in a setup 
where each patch has a label, such as in the mutation classification portion of the 2-stage models) or given a 
bag of patches (in the MIL formulation, where the bag as a whole has a label but patches individually do not) 
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we predict from an H&E whether a gene mutation is present within a specimen. The final layer for each model 
is a fully-connected with a one-dimensional output and the activation function used is the sigmoid function:

where again

The loss that we optimize for is the binary cross-entropy loss:

where ŷ is the target value for the input sample. The batch loss is aggregated across each input sample within 
the batch by either summing or averaging the losses, and gradient descent is performed to update the model 
parameters. The weakly-supervised model and the two-stage models were trained for a maximum of 200 epochs 
with early-stopping conditioned on validation AUC. The MIL models were trained for 200 epochs with 40 patches 
per bag during each training pass. All models in the study were trained using the TensorFlow33 framework. The 
Adam34 optimizer was used with a learning rate of 1e−5.

Additionally, when running inference on the validation slides, we found that performance was notably better 
if batch normalization layers used batch statistics for normalization instead of using the exponentially decaying 
running mean and variance tracked during training. As each training step involved processing bags from at most 
one or two slides due to GPU memory constraints, we found that generalizability to the validation set suffered if 
using the standard momentum-based training statistics for batch normalization, as each batch processed would 
not be a sampling from the overall cohort population but rather from a very limited number of slides. If each 
slide during validation is processed individually, then the patch instances within each batch are drawn from the 
same slide and thus the instance interdependence in the batch formulation is non-arbitrary. This is analogous 
to vision applications extracting multiple regions-of-interest from a single image and composing those regions-
of-interest into a batch to utilize batch statistics for inference35.

Pathologist review of high‑attention patches from high‑confidence bags.  To examine the atten-
tion learned by our MIL models and to better understand what features were relevant for predicting EGFR 
mutant versus wild-type specimens, expert pathologists evaluated high-attention patches for bags confidently 
predicted to be mutant or wild-type. For 49 validation slides, we sampled 250 patches per bag and passed each 
bag through the trained MIL models. The patches within each bag were then ordered by descending attention 
weight. The top-25 highest-attention patches for each of the 49 bags were provided to pathologists for analysis, 
resulting in a total of 1225 patches being reviewed.

Pathologists scored each patch for a set of numerical variables and then further reviewed each patch for 
categorical characteristics. The numerical variables were tumor nuclei fraction, necrosis fraction, peritumoral 
immune fraction, and intratumoral immune fraction. Tumor nuclei fraction was determined as the fraction of 
tumor nuclei relative to all nuclei present within a patch. Necrosis fraction was determined as the fraction of 
the patch area containing necrotic tissue. The peritumoral immune fraction was determined as the fraction of 
tumor edges that had noticeable immune cell response, such as lymphocytes aggregating at or within the tumor 
boundary. The intratumoral immune fraction was determined as the fraction of tumor tissue within a patch that 
had noticeable immune infiltration, such as lymphocytes dispersed throughout a tumor mass or nest.

For the review of categorical variables, pathologists examined each patch for the tumor’s predominant archi-
tectural pattern, minor architectural pattern, cytology, and any notable non-neoplastic quality. The possible 
predominant and minor architectural patterns were acinar, lepidic, papillary, micropapillary, mucinous, and 
solid. The possible cytology types were hobnail, columnar, mucinous, sarcomatoid, anaplastic, large cell, small 
cell, or other. Non-neoplastic qualities included fibrosis, pneumonia, inflammation, or other.

In order to evaluate overall bag characteristics relative to the model’s mutant predictions versus wild-type 
predictions, we generated summary statistics and overall characteristics from the pathologist review of the 
high-attention patches. To determine each bag’s overall numerical statistics, we calculated the mean, standard 
deviation, minimum, and maximum of the numerical scores provided by pathologists across the top-25 high 
attention patches from that bag. To determine the bag’s overall categorical characteristics, we aggregated the patch 
reviews across the top-attention patches by taking the mode. Thus, for each bag we had an overall summary of 
patch scores and categorical labels for the high-attention patches, which we could then compare based on the 
model’s predicted EGFR mutation status.

Significance between the predicted mutant and predicted wild-type slides with respect to the numerical vari-
ables was tested using the two-way T-test. False discovery rate correction was additionally applied to generate 
q-values from T-test p-values. No comparisons were significant after false discovery rate correction. Categorical 
comparisons were completed using the Chi-square test, at an overall bag level. Finally, association rules mining21 
was performed by treating each overall categorical value determined for the bags as items, with predicted EGFR 
status as the consequent item-set.

Ethics approval and consent to participate.  Approval for this study, including a waiver of informed 
consent and a Health Insurance Portability and Accountability Act waiver of authorization, was obtained from 
the Western Institutional Review Board (Protocol No. 20152817).
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Data availability
The datasets generated and/or analyzed during the current study are available by contacting the corresponding 
author. Data requestors and their institution will be required to sign a data transfer agreement. Data are not 
available in a public repository because they are derived from testing performed during routine patient care 
where rare genomic events or histology images may identify patients.
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