Skip to main content
. 2023 Mar 3;13:1103521. doi: 10.3389/fonc.2023.1103521

Table 5.

Performance comparison among different data augmentation strategies for contrastive learning.

Pathway Model AUC (%) Acc (%) Sen (%) Spec (%) Mcc
PD-1 Original_aug 80.06 76.04 96.43 67.65 0.585
Patch shuffle 72.06 73.96 78.57 72.06 0.482
CLNet (ours) 86.56 84.38 92.86 80.88 0.688
PD-L1 Original_aug 78.57 77.08 77.50 76.79 0.554
Patch shuffle 71.25 72.92 75.00 71.43 0.506
CLNet (ours) 83.93 83.33 85.00 82.14 0.671

Original aug denotes the regulate data augmentation strategies used in contrastive learning.

The highest value is in bold.