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ABSTRACT: The control of infectious diseases can be improved via carefully designed
decontamination equipment and systems. Research interest in ozone (a powerful antimicrobial
agent) has significantly increased over the past decade. The COVID-19 pandemic has also instigated
the development of new ozone-based technologies for the decontamination of personal protective
equipment, surfaces, materials, and indoor environments. As this interest continues to grow, it is
necessary to consider key factors affecting the applicability of lab-based findings to large-scale
systems utilizing ozone. In this review, we present recent developments on the critical factors
affecting the successful deployments of industrial ozone technologies. Some of these include the
medium of application (air or water), material compatibility, efficient circulation and extraction,
measurement and control, automation, scalability, and process economics. We also provide a
comparative assessment of ozone relative to other decontamination methods/sterilization
technologies and further substantiate the necessity for increased developments in gaseous and
aqueous ozonation. Modeling methodologies, which can be applied for the design and
implementation of ozone contacting systems, are also presented in this review. Key knowledge gaps and open research
problems/opportunities are extensively covered including our recommendations for the development of novel solutions with
industrial importance.

1. INTRODUCTION
The critical role played by contaminated fomites in the spread
of diseases over a myriad of environments (hospitals, offices,
laboratories, and schools) necessitates the application of
surface disinfection methods for the prevention of infections.1,2

The wide variation in the scale of the disinfection procedure
(from small surfaces to huge environments) has also led to
several engineering developments for the efficient application
of numerous chemical disinfectants.3 One of such disinfectants
is ozone (a potent antimicrobial agent), which has received
tremendous research interest for decontamination, since the
advent of the COVID-19 pandemic.4−6 Its excellent oxidation
potential (2.07 V) and rapid decomposition into oxygen make
it particularly attractive and versatile for not only decontami-
nation but also bleaching and deodorization in both air and
water.7,8 This multifunctional attribute also makes it widely
applicable in different industries including pulp and paper,
textile processing, aquaculture, drinking water treatment,
animal husbandry, wastewater treatment, food, healthcare
(therapeutic applications), and medical equipment process-
ing.9−18 However, its highly unstable property implies that it
cannot be stored for subsequent applications and must be
generated on-site for immediate use. A key area requiring the
application of ozone is that of medical device sterilization.

Currently, ethylene oxide is the most commonly used
sterilization method in the US medical sector, accounting for
∼50% of all devices requiring sterilization.19 However,
ethylene oxide is carcinogenic and there are concerns regarding
the release of unsafe levels of ethylene oxide into the
environment. These issues have led to several initiatives and
innovation challenges by the US Food and Drug Admin-
istration (FDA), which are geared toward the development of
novel sterilization methods, for the replacement of ethylene
oxide.20 Ozone has considerable potential to replace this
disinfectant. Although the antimicrobial properties of ozone
have been known for decades, it has mainly been utilized for
the removal or degradation of pollutants in waste and drinking
water. Its application for the decontamination of medical and
nonmedical devices is relatively new and has not been
adequately explored. Furthermore, the cost of ozone
production has dropped significantly over the last 2 decades,
and this has paved the way for new lab-scale and industrial
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developments.21 Nonetheless, a majority of these develop-
ments have been at a small scale, and there are several
knowledge gaps surrounding the implementation of ozone
decontamination systems at a large scale.
To the best of the authors’ knowledge, many reviews on the

application of ozone are application specific, focusing on
water/wastewater treatment,22,23 aquaculture,24 food decon-
tamination,11,25−28 textile processing,29 medical device steri-
lization,30,31 pulp and paper processing,10 biomass process-
ing,32 ozone therapy,33 and SARS-CoV-2 (COVID-19)
inactivation.8,34 In this review, we present and discuss the
current state of the art on the implementation of ozone
decontamination systems, and draw applicable inferences from
lab-scale studies that aid the industrial design and installation
of ozonation systems. First, the uniqueness of ozone, and why
it is becoming the preferred decontamination method (for
surface sterilization), in comparison to others is presented;
thereafter, engineering considerations regarding material
compatibility, ozone generation and decomposition, circulation
and extraction, measurement and control, scalability and
flexibility of operation (in gaseous and aqueous forms),
automation, health and safety, and the economics of ozonation
processes are discussed. We also highlight key mathematical
models that can aid the sizing of ozone contact equipment, and
provide our recommendations on the way forward/future
directions from both academic research and industrial
application perspectives. In comparison to other reviews in
the field of ozonation, this is the first review to simultaneously
consider these key aspects of ozone systems design and
implementation. It is worth mentioning that in this review we
pay particular attention to gaseous ozone application while
providing some insights into its aqueous application. It is
hoped that this review will appeal to a broad range of scientific
communities for the continued development of ozone-related
technologies.

2. HOW OZONE COMPARES TO OTHER
STERILIZATION METHODS

Besides ozone, several studies have demonstrated the
effectiveness of a variety of sterilization methods including
cold plasma, gamma irradiation, ultraviolet irradiation (of type
C), dry and moist heat, steam, hydrogen peroxide (gas and
liquid) microwave, peracetic acid, ethanol, glutaraldehyde,

orthophthalaldehyde (OPA), ethylene oxide, benzalkonium
chloride, and hypochlorite. The performance of these methods
for diverse applications has mainly been assessed using factors
such as decontamination efficacy, cycle time, penetration
capability, substrate/material compatibility, operational safety,
cost of implementation, and environmental sustainability, with
an overwhelming majority focusing on the decontamination
efficacy. It should be highlighted that the cycle time in this
review represents the sum of the generation time (or time
required to attain the desired sterilant concentration in a
chamber/vessel), the contact time at the desired concen-
tration, and the decomposition time to concentrations below
the safety limit.
Table 1 presents a summary of some of the reported merits

and demerits of these sterilization methods. Methods that rely
on full immersion of the object/device/material to be
disinfected (e.g., glutaraldehyde) tend to be less preferred
due to the postdisinfection steps that are required before they
can be reused. Thus, the applicability of a disinfectant in the
gaseous form or via misting (e.g., ozone, hydrogen peroxide or
peracetic acid35−37) is a favorable attribute that reduces the
need for long drying procedures after the main disinfection
phase. In addition to ozone, supercritical CO2 and nonthermal
plasma are emerging methods that require further develop-
ment. Other methods that are sparingly utilized in isolation,
but not captured in Table 1, include high hydrostatic pressure,
pulsed light, ultrasound, and electrolyzed water;38 however,
these have immense antimicrobial properties, particularly
during hybrid application with other well-known/established
methods. Figure 1 demonstrates key differences in the
inactivation mechanisms of selected disinfection methods
during contact with a bacterial cell.
The direct attack on the DNA, cell wall disruption, and

subsequent oxidation, diffusion and reaction with key cell
constituents, and the creation of localized heat are key
attributes of these methods. Ethylene oxide (EtO) is one of
the most commonly applied methods for the terminal
sterilization of medical devices, and this is due to the efficient
microbial inactivation, excellent compatibility with a broad
range of materials, and the reasonable cost of implementation.
Heat-based sterilization methods are usually not compatible
with several polymeric components of medical devices that
cannot withstand high temperatures. Unlike ozone, which has

Figure 1. Comparative representation of the inactivation mechanisms of selected disinfection methods (adapted from refs 38 and 39).
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to be generated on demand, EtO is usually pressurized and
stored in liquid form for use in sterilization plants. Its
inactivation mechanism is the alkylation of the amine groups of
microbial DNA.40 For efficient EtO application, a validated
combination of humidity, gas concentration, temperature, and
exposure duration must be utilized.41 Vacuum cycles are
typically employed to increase the penetration of the gas into
the substrate to be decontaminated. After treatment (which
could last from 6 h to several days),42 EtO concentrations can
be brought below the permissible limits via vacuum purging
and aeration. While there are several similarities between EtO’s
application and that of gaseous ozone (particularly the
necessity of a humid environment for efficient inactivation),
EtO poses a severe health and safety risk (a human
carcinogen), as documented in Table 1. Its replacement with
more environmentally friendly methods such as ozone and
hydrogen peroxide has been a key subject of growing recent
interest in the last 5 years. However, it should be noted that
long-term chronic exposure to ozone can cause lung damage,
and asthma and could be fatal.43 Similarly, the inhalation of
hydrogen peroxide causes irritation to the lungs and shortness

of breath. Higher and long-term exposures may lead to the
buildup of fluids in the lungs (pulmonary edema), bronchitis,
and even mortality (resulting from oxygen embolism).44 Thus,
adequate control systems are required in facilities where these
alternative decontamination techniques are applied to prevent
uncontrolled exposure and to ensure safe working conditions.
Further details of the exposure limits of different gaseous
disinfectants are presented in Section 3.7.
Furthermore, the compatibility of key disinfection methods

with commonly applied polymers as shown in Table 2 is a key
differentiator affecting the applicability in different industries.
Table 2 also illustrates why ethylene oxide has been
predominantly applied for the sterilization of medical equip-
ment, despite its toxicity. Relative to other methods, it has the
best compatibility with a wide range of polymers. The high
reactivity of ozone, coupled with its powerful oxidizing
capabilities, makes it a suitable candidate for the rapid
sterilization of medical devices. However, a typical drawback
of EtO is the long cycle time required for sterilization. Besides
these benefits, ozone’s (gas) ability to decontaminate items
without leaving residues, coupled with its spontaneous

Table 2. Compatibility of Different Polymers with Commonly Applied Disinfection Methods25,57,79−84
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decomposition to oxygen, makes it more environmentally
friendly compared to ethylene oxide. Furthermore, since ozone
gas must be generated on demand, storage and transportation
requirements are minimal, thus reducing operational costs
compared to EtO. Although not directly applicable to gaseous
sterilization of medical devices with ozone, it is important to
highlight that the application of aqueous ozone may induce
bromate formation (a toxic disinfection byproduct) in waters
with a high bromine content during water treatment.
Furthermore, the degradation of ozone-incompatible materials
may produce other harmful compounds. Thus, it is necessary
to ensure that the devices to be sterilized are composed of
ozone-compatible materials. While a direct comparison of the
microbial inactivation efficiencies of EtO and ozone is scarce in
the literature, the best-acting sterilant will depend on a myriad
of factors and the specific application. Some of these factors
include the applied dosage (concentration × exposure time),
temperature, humidity, type of microorganisms present, and
the material properties of the substrate (porous or nonporous)
to be disinfected. A detailed description of these factors is
provided by Epelle et al.45

As indicated in Table 2, the compatibility of some polymers
with ozone is still unknown, an indication of the recency of its
application in diverse industries. The most stable materials
with excellent resistance to the disinfection methods
mentioned in Table 2 include PEEK, PTFE, PVC, and
potentially polyimides. Nonetheless, this review table has
highlighted that ozone-based disinfection methods are
relatively compatible with several popularly applied polymers.
Furthermore, hydrogen peroxide also appears to perform
better than ozone (Table 2) in terms of material compatibility.
Thus, future applications of ozone-based decontamination may
involve a hybrid process (O3 + H2O2 + UV + other
environmentally friendly gaseous disinfectants).
Depending on the mechanical properties (toughness,

ductility, hardness), the desired application, and cost, these
material may be further utilized in diverse industries where
frequent decontamination is paramount or required. Although
mainly polymers are captured in Table 2, metals such as zinc
and cast iron can be readily degraded by ozone; stainless steel
(SAE 304 and 316) possess better stability against oxidation.
The suitability of aluminum tends to depend on the

application of the oxidizing agent under wet or dry conditions;
wet conditions can potentially cause degradation.

3. ENGINEERING CONSIDERATIONS FOR
DEPLOYMENT OF OZONE TECHNOLOGIES
3.1. Generation and Decomposition. The splitting of

oxygen molecules in air to form ozone can be carried out via
ultraviolet (UV) radiation (e.g., 185 nm low-pressure mercury
lamps and 172 nm Xenon excimer vacuum UV lamps) or via a
high voltage/energy electric field (at low or high frequencies),
commonly referred to as corona discharge (CD). These
procedures are energy-intensive, and the ozone yield depends
on the composition of the feed gas. Utilizing high-purity
oxygen (e.g., medical-grade oxygen) as the feed gas can
produce 10−15 wt.% ozone concentration, which can be
double to quadruple the ozone concentration that can be
produced by air.25,85 The main disadvantages of mercury lamps
are their low UV efficiency, the low absorption coefficient of
oxygen, and the simultaneous production of UVC (254 nm),
which destroys ozone.86,87 Although vacuum-ultraviolet
(VUV) lamps principally emit the ozone-producing spectral
line, VUV light sources are scarce and tend to have a pulsed
operation profile, thus limiting the continuous production of
ozone for disinfection.87 These limitations, coupled with the
higher electrical efficiency of corona discharge methods, have
made them more attractive. 1−16 wt.% of ozone can be
produced by CD ozone generators compared to 0.001−0.1 wt.
% by UV methods; this corresponds to 10−1000-times lower
ozone concentration than CD methods.88 The specific energy
consumption per gram of ozone produced from dry air is 0.515
kWh/g ozone for the UV method (185 nm), whereas it is
0.018 kWh/g ozone for the CD method.89,90 Although CD is
usually preferred in diverse industrial applications, it has to be
fed with clean and dry air or pure oxygen to prevent the
formation of nitrogen oxides and corrosive compounds.91

During the selection of ozone generators for disinfection
applications, it is important to identify if the quoted
production rate is based on an oxygen or air feed gas, as this
could have massive impacts on the expected performance.4

Dissolving ozone gas in water requires efficient mass transfer
of the gas into the liquid phase, particularly because of the cost
involvement of gaseous ozone production (which tends to be

Figure 2. Effect of nanobubble generation over time on (a) aqueous ozone stability and (b) oxygen stability (adapted with permission from ref 92).
Nanobubbles are generally more stable than ordinary bubbles in both scenarios.
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higher when high-purity oxygen is used). Venturi injection and
bubble diffusion mechanisms have been mainly applied for this
purpose.25 The former involves the use of a venturi equipped
with multiple inlets maintained at a vacuum to facilitate the
mixing of the gas and liquid phases via the created pressure
difference upon liquid entry into the system. In the latter,
pressurized ozone expands via nano/microsized pores on a
porous stone into the liquid phase. Acoustic/ultrasound
energy, high-intensity light photons in liquids (e.g., UV), and
electrolysis are also other applied methods adopted to enhance
ozone mass transfer.92 It is worth mentioning that nano-,
micro- and macro-bubbles may be generated during these
procedures; however, it is the smaller-sized nanobubbles that
are retained much longer in solution and facilitate ozone
decontamination.93 Larger-sized bubbles tend to be largely
affected by buoyancy, leading to their collapse at the surface,
and eventual ozone escape. Figure 2a elucidates the increased
stability attainable with ozone nanobubbles compared to
ordinary bubbles of larger sizes. Furthermore, the increased
dissolved oxygen (Figure 2b) content facilitates the generation
of radicals capable of oxidizing pollutants. Rice et al.94

highlight some key methods of enhancing ozone mass transfer
for laundry applications.
Various studies have reported different half-lives of ozone in

air and water. The presence of ozone-consuming compounds
in the type of water analyzed is a key determinant of the half-
life. While ordinary tap water gave a half-life of 10 min in the
study of Epelle et al.,6 the half of bottled mineral water was 39
min. Where stable nanobubbles are efficiently produced in
ozone-demand-free water, the half-life of ozone may increase
even more significantly. Some reports have mentioned stability
for weeks of ozone nanobubbles in solution.95 The degree of
agitation also affects the stability; while this may aid
dissolution, continuous stirring must be maintained at an
optimal rate, or else increased bubble coalescence may be
induced, thus causing a concentration decline via outgassing or
ozone decomposition via OH− radical generation during
collapse at the surface. Thus, the ozone diffusion mechanism
plays a significant role in its stability and ultimate
decomposition kinetics. In air, ozone tends to remain longer
than in ordinary tap water with conventional bubbling. Half-
lives between 20 and 50 min have been typically reported by
different authors.4,96,97 The application of catalytic ozone
decomposition is commonly practised in several industries

where spontaneous ozone decomposition is insufficient to
meet the peculiar timelines of the process; activated carbon
and manganese oxide are two popularly implemented catalysts
for this purpose.98 Epelle et al. demonstrated that gaseous
ozone decomposition over an activated carbon catalyst yields a
24-times faster decomposition rate compared to spontaneous
decomposition.4 The factors affecting the stability and the
corresponding efficiency of microbial inactivation by gaseous
or aqueous ozone are numerous. They can be broadly classified
into ambient conditions or properties of the disinfection
environment, the material or substrate properties, and the
operational conditions. The ambient factors involve parameters
such as the pH, temperature, pressure, humidity, and dissolved
organics concentration; the material or substrate properties
include porosity, contact angle, and contamination level;
whereas the operational aspects consider the type of organisms,
the ozone concentration, exposure duration, ozone generation
method, penetrability, and the homogeneity of the ozone
distribution in the test chamber/facility. While the impact of
the operational factors on the inactivation efficiency can be
directly inferred (enhancing the listed factors increases the
inactivation efficiency), the influence of the ambient conditions
is not as straightforward. Table 3 provides further details on
the impact of the ambient conditions (temperature, pressure,
relative humidity, pH, conductivity, and the presence of certain
additives). The stability of ozone and its inactivation kinetics
are determined by these parameters. These parameters can be
altered in the disinfection system/environment to facilitate the
breakdown of ozone into oxygen. As indicated in Table 3,
several studies have also utilized increased temperatures to
catalyze ozone decomposition. Decomposition mechanisms of
aqueous and gaseous ozone (Table 4) are already well
established and can be found in the following studies.23,98

3.2. Disinfection Byproducts. The unintended formation
of persistent transformation products and disinfection by-
products (DBPs) particularly during aqueous ozone applica-
tion is a key environmental challenge, especially during
immersive/aqueous treatment of medical devices or during
wastewater treatment. They can be formed as a result of the
reaction of ozone with dissolved organics and some inorganic
compounds present in the utilized water and can be difficult to
eliminate.111 The type of DBP produced and its toxicity
depend on the original composition of the water. For example,
bromide-containing waters will produce bromate during

Table 4. Comparison of Practical Considerations Required for Gaseous and Aqueous Ozonationa

factor ozonation in air ozonation in water

Need for drying Substrate is usually dry, eliminating the need for further drying after treatment. Drying after treatment is required since the substrate becomes wet,
particularly if porous (e.g., textiles).

Cleaning Does not clean the substrate; only disinfects or sterilizes it. A separate cleaning
step is required and is best to carry out before ozonation.

Cleaning and disinfection may occur simultaneously. Furthermore,
the use of surfactants can promote aqueous ozone stability.6,107

Limitations to ozone
generation

Higher ozone concentrations (e.g., up to 50 ppm) can be attained rapidly; this
depends on the capacity of the generator and volume of the chamber.

Attainable ozone concentration is limited by mass transfer factors,
relative to gaseous ozonation, for the same volume and generator
capacity.

Concentration
homogenization

Efficient gas circulation systems are required for concentration homogenization. Concentration homogenization strongly depends on efficient gas
dispersion in water; this may cause high gas usage.

Penetration
efficiency

Hard-to-reach areas of the substrate can be better disinfected due to increased
penetration of gaseous ozone.

Liquid penetration efficiency may be adversely affected for certain
substrates with difficult geometries (e.g., small-diameter
endoscopes).

Parameters
influencing ozone
stability

Humidity and temperature are the key influencing factors on the stability of
ozone.

The stability of ozone during a treatment cycle is a function of
many variables (pH, conductivity, temperature, pressure, water
composition and ozone demand constraints).

Safety Ozone’s detrimental impact on human health, implies airtight ozone chambers
are required if the ozone equipment is to be located in an inhabited area.

Ozone’s impact on human health is significantly reduced when it is
dissolved in water.35

aAdapted from Epelle et al.7
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ozonation, and this is a human carcinogen. Additionally, the
myriad of DBPs that could be formed, with unknown specific
toxicities and health implications,22,112 is a prevalent source of
concern. Although the most common toxicological behavior of
DBPs is carcinogenicity, some of them could be neurotoxic,
mutagenic, cytotoxic, teratogenic, and possibly genotoxic, with
several adverse outcomes on human health.113 While harmful
DBPs are mostly described as a challenge of aqueous ozone
application, the radicals generated during gaseous ozone
generation and decomposition may also induce the formation
of partially oxidized DBPs particularly under humid environ-
ments and in the presence of UV radiation and volatile organic
compounds (VOCs);114 however, these tend to be short-lived.
The production of nitrogen oxides (NOx), another byproduct,
during the generation of ozone from air (instead of pure
oxygen)115 can be problematic at high concentrations.
Exposure to high levels of NOx can damage the respiratory
airways; the Occupational Safety and Health Administration
(OSHA) has set a permissible exposure limit (PEL) of 25 ppm
for nitric oxide and a short-term exposure limit of 1 ppm for
nitrogen dioxide. Gas-phase nitrous acid (HONO), which may
be formed under these conditions, has been identified as an
emerging pollutant.116 This species is known to be a major
photolytic source of hydroxyl radicals in air.117

The application of hybrid methods (advanced oxidation
processes) is a popularly applied route toward mitigating the
formation of DBPs.118 Thus, proper characterization of water
composition and rigorous kinetic studies are required (as part
of the design phase of treatment facilities) to predict the
potential formation of DBPs or harmful transformation
products, their concentrations, and removal methods before
and after the application of ozone for treatment.119 Addition-
ally, appropriate control of the ozone dosage (based on the
microbiological and environmental requirements) should be
carried out to avoid unnecessarily high production rates of
ozone gas. Multiple passes through effective decomposition
catalysts and constant concentration monitoring of potentially
harmful DBPs in the ozone treatment environment should be
carried out.
3.3. Scalability and Flexibility. Before large-scale

implementations of ozone disinfection systems are started,
lab-scale experimentation on the required dosage is inevitable.
Upscaling lab-scale conclusions to large systems should be
done with care, particularly when differences in material type
for chamber construction and ozone demand in the immediate
environment are expected. However, the study by Zoutman et
al.120 demonstrated the scalability of ozone disinfection
systems (obtaining similar inactivation results in a small test
chamber, 0.25 m3, and in a large room, 82 m3). Furthermore,
for certain applications where there is the inherent flexibility of
choosing the ozone disinfection medium (gaseous or
aqueous), Table 4 provides a list of factors to consider before
this choice and the corresponding investments are made.
It has been recently reported that gaseous ozonation (T = 18

°C and RH = 50%) can be more effective than aqueous
ozonation (T = 18 °C), particularly when disinfecting wet
porous substrates at the same ozone concentration and
exposure duration.7 In their study, the decontamination of S.
aureus gave the reverse observation of all organisms tested. A
similar observation was also made by Martinelli et al.121

However, Megahed et al.122 reported the superiority of
aqueous ozone treatment over gaseous treatment of nonporous
substrates contaminated with cattle manure. Similar observa-

tions are also reported by Tizaoui et al. against the SARS-CoV-
2 virus.103 In these studies, the microbes were mainly dried
onto the surfaces of the nonabsorbent materials utilized. This
indicates that the nature of the substrate (porous or nonporous
and wet or dry) and the type of microorganisms present affect
the performance of gaseous and aqueous ozonation. The
respective contributions of direct and indirect oxidation during
gaseous (humid or dry) and aqueous ozonation are also
attributable to these observations. Thus, it is important to
establish the required dosage threshold for the specific
application involved before applying each ozonation method.
3.4. Automation of Ozone Systems. The advent of the

COVID-19 pandemic led to several developments of
automated gaseous ozone disinfection systems for a variety
of materials. Typical ozone disinfection cycles comprise the
ozone generation duration, the stabilization duration or dwell
time for ozone to act at the desired concentration, and the
decomposition during which ozone is converted to oxygen
spontaneously or via a catalyst.5 The goal of automating this
process is to reduce the total cycle time attributable to the
load, disinfect, and unload process. Furthermore, automation
reduces the need for manual handling, which could cause
further contamination post treatment. Recently, Rodriguez123

developed an automatic disinfection device that comprises an
object conveyor that transports items to and from a cabin that
houses an ozone generator. They proposed the use of sash
doors to completely isolate the internal section of the cabin to
prevent ozone exposure. The cabin consists of 3 compart-
ments, where the 2 end chambers are fitted with an ozone
decomposition catalyst. Another invention by Silla et al.124 for
the disinfection of apparel using ozone gas also featured a
conveyor, with a system of automatic doors and an optional
heating system to aid ozone decomposition after the main
treatment cycle. The invention by Miller,105 particularly for
mail articles involves a similar 3-chamber plus conveyor
arrangement (with an optional single chamber scenario) and is
equipped with a vacuum pump to enable efficient penetration
of ozone gas into the contaminated articles.
A recently developed automated ozone system (patent filed)

by ACS Clothing Ltd. for garment decontamination utilizes the
slower decomposition rate of ozone in air (relative to aqueous
ozone) for continuous decontamination of clothing items and
PPE. The items are fed by a conveyor into a chamber with a
preset ozone concentration. This concentration is maintained
by a control system that regulates the ozone generators’
outputs depending on the concentration set point (as
determined by extensive experimentation). Thus, the cycle
time is cut down significantly by eliminating the need for
continuous ozone decomposition and regeneration from
scratch. An interconnected system of conveyors, multiple
chambers, and air curtains is applied to prevent the escape of
ozone from the system. By applying an ozone dose consisting
of a high exposure concentration and shorter exposure
duration, thousands of garments can be treated within an
hour. From the experience of the authors, a logistics problem
that has arisen from embedding automation is matching the
high throughput of the disinfecting chamber with other
workstations during garment processing. To resolve this, the
cycle time in the disinfection chamber was increased, and the
ozone concentration was lowered while maintaining the
required dosage. This way, the potential for a bottleneck at
the next station (usually the bagging machine) is effectively
managed. As suggested by Farooq and Tizaoui,8 lower ozone
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concentrations for longer durations, are likely to give the same
inactivation efficiency as high concentrations over shorter
durations (so far the same dose is administered). This excellent
flexibility provided by ozone, makes it very attractive,
particularly for ensuring worker safety and solving logistical
problems during industrial implementation.
There have also been several developments in the

application of ozonated water sprays for the disinfection of
different articles, employing varying degrees of automation.
One of these developments is that by Maurya et al.,125 where
an autonomous disinfection spray tunnel was applied to
disinfect external surfaces at the peak of the pandemic in India.
The interested reader is referred to the work of Mascarenhas et
al.3 which provides a detailed overview of patented inventions
on ozonated water spray devices. However, conveyor systems,
automatic doors, and automatic ozone level control systems
are all common features of these inventions. These advances

and several others35,126 will better position relevant authorities,
and organisations to prevent or effectively combat future
pandemics.
For aqueous ozone application, it is also important to

highlight the necessity of robust control systems for the ozone
concentration, as this avoids ozone overdose/oversaturation,
which is could cause loss of ozone gas to the environment
above the air−water interface. Although the oxidation−
reduction potential (ORP) has been frequently utilized127 as
the control parameter for this purpose, it is an indirect measure
(which considers multiple oxidants, including ozone), thus
making it difficult to ascertain the actual amount of ozone
required to treat the immersed object.128 However, the use of
the ORP may be attributed to the fact that the presence of
other oxidizing agents may affect the microbial inactivation
efficacy. Nonetheless, direct control of ozone concentration is
mostly desirable.

Figure 3. Application of computational fluid dynamics (CFD) to analyze the circulation of ozone gas in a room for the decontamination of surfaces
and objects. (a, b) Contours and streamlines of ozone concentration using COMSOL Multiphysics in the work of de Souza et al.;129 (c) time
variation of ozone spread in a room via contour plots on different planes using ANSYS Fluent.130
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3.5. Circulation and Extraction. Given the high relative
density of ozone gas (1.7), adequate circulation systems are
required to ensure proper contact with the objects and surfaces
of interest to be disinfected. This is particularly important for
objects of complex geometries and for large-scale applications,
where several items are to be disinfected. Computational fluid
dynamics (CFD) becomes an important tool to apply for this
purpose. As demonstrated in Figure 3a and b, de Souza et al.
applied finite element CFD simulations using COMSOL
Multiphysics to examine ozone’s spread in an office via an
ozone generator.129 The validated model enabled the authors
to identify regions of the room with low concentrations, due to
poor mixing. A similar study by Jarohmi et al.,130 shown in
Figure 3c, utilizes the scalar transport model in Ansys Fluent (a
finite volume solver) to model the dispersion of ozone gas
from a generator in a room. Excellent agreements with
experiments were observed in their work. The conditions
shown in Figure 3c represent a generation time of 3 min (at 7
g/h) followed by a 2 min dwell time. CFD studies of this kind
provide insights into the number of generators required based
on the desired concentration level desired, and the optimal
locations of the generators and circulation systems to ensure
adequate ozone interaction with the items to be decontami-
nated. CFD methods can also be applied to study ozone
fogging or ozone misting operations, using Eulerian-Eulerian or
Lagrangian-Eulerian multiphase flow models.
During emergency procedures, it may be required to rapidly

extract ozone gas from the chamber (through a catalyst) to
ensure worker safety. As an example, Figure 4 shows a
downscaled simulation of an ozone chamber, which the
authors have designed for industrial disinfection applications.
The pressure drop through the catalytic destruct units at the
fan outlets (Figure 4a), the fan static pressure drop, the
attainable air flow rate, duct size, and the pressure at sealable

inlets are key factors affecting the efficiency of ozone removal
rates from the system. Numerical simulations of an ozone
misting process for the sanitization of hospital facilities have
been performed by Schroer et al.131 Their validated CFD
model enabled an accurate distribution of the ozone mist
concentration to be obtained. Besides the application of
numerical CFD computations, other important analytical
models to bear in mind when designing ozone disinfection
systems are shown in Table 6.
3.6. Measurement of Ozone Concentration. The

measurement methods of ozone in gas and water are already
well-established in the literature.25,29,91 Fourier transform
infrared spectroscopy (FTIR) is often used for gaseous
ozone measurement; this method is however not suitable for
aqueous ozone measurements.72 UV absorption has also been
extensively used and is adaptable to both gaseous and aqueous
ozone measurements. Nonetheless, organic compounds in
culture media may limit their applicability.72,132 Pang et al.
reported that most UV-based methods for gas-phase measure-
ments require high amounts of power and sampling gas flow
rates; they also tend to be expensive.133 Sensors based on gas-
sensitive semiconducting oxide technologies are also com-
monly used.134 Electrochemical ozone sensors can produce a
voltage signature between an anode and cathode that
correspond to the amount of ozone present.25 They usually
involve the use of a porous membrane that allows ozone to
pass through into a cell containing electrodes and an
electrolyte. The contact of ozone and the electrolyte causes a
change in the electrochemical potential between the electrodes
causing a flow of electrons. This method is robust and can be
used for both gas and liquid phase measurements but may be
expensive and require frequent calibration.6

Aqueous ozone can be readily measured via colorimetric
methods such as the N,N-diethyl-p-phenylenediamine (Palin

Figure 4. Application of computational fluid dynamics (CFD) to analyze the removal rate of ozone gas from a clothing disinfection chamber using
extraction fans; (a) chamber configuration, (b) simplified 3D model (to reduce the number of meshing elements) used for the CFD simulation in
ANSYS Fluent; (c−f) time variation of ozone removal from the system.
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DPD) method and the indigo method. The oxidation of the
iodine ion in a DPD + KI buffered solution causes a pink
coloration whose relative absorbance can be measured
spectrophotometrically.29 Similarly, ozone interacts with the
carbon-double bonds of sulfonated indigo dye to decolourise
it, and the change in absorbance gives an indication of the
ozone concentration.91,135 However, these methods tend to be
affected by other oxidizing agents present in the solution (e.g.,
Cl−, Br− Mn2+, OH−).29,72 Palin DPD method implements a
correction for the presence of Cl−, Br− and in solution using
glycine tablets.136 However, this increases the difficulty of
continuous data collection, which is often required for
decomposition kinetics studies. Although these colorimetric
methods tend to be cheaper than electrochemical methods,
they are not as robust. More recently, Wright et al.72

highlighted Pittsburgh Green fluorescence probes as being
sensitive and specific to ozone. Although not commercially
available, it has considerable potential to be widely applied if
further developed. The interested reader is referred to the work
of Korlu et al., which provides a good overview of aqueous
measurement techniques not covered herein.29 In summary,
electrochemical methods, although costly, provide accurate
and robust ozone concentration measurements. Whichever
ozone-sensing method is adopted, extensive and reasonably
frequent calibration should be performed.
3.7. Material Selection, Health, and Safety. Given

ozone’s degradative properties, construction materials must be
carefully selected during the design and installation of gaseous
or aqueous ozone equipment. Cost-effective metals like
aluminum may be affected by moist conditions during ozone
treatment.137,138 It is also important to pay close attention to
the grading of steel materials to be used (stainless steel 304
and 316 are the most resistant to ozone degradation). As
shown in Table 2, several popularly applied polymers have
limited compatibility with ozone; thus, critical consideration is
required for the material selection phase of any design
endeavor involving ozone. Routine checks are also important
to ensure that installed safety systems (e.g., rubber seals) are
not compromised due to the degradation of the materials as a
result of ozone application. While we concentrate on the
resistance of several polymers (which are often degraded via
chain scission and the breakage of cross-links) in Table 2, the
ozone resistance of commonly utilized metals can be found in
ref 138.
The extent of ozone degradation of highly unsaturated

polymers tends to be higher than that of saturated polymers,
according to a study by Giurginca et al.139 Using IR spectra
and kinetic data, they established that ethylene-propylene-
diene elastomer is more susceptible to ozone attack as a result
of the presence of double bonds in the macromolecules. A
study140 on the degradation of a high-temperature epoxy
showed an ozone oxidation depth of up to 120 μm. Exposure
of the neat resin to 1% of ozone for 3 months at room
temperature showed that cross-linking dominated in the first
week, resulting in a slight stiffening of the polymer. However,
as aging continued, a chain scission mechanism became
dominant, resulting in a reduction of the load to failure. This
demonstrates the intricate relationship between ozone
degradation and the chemistry of the polymer, and thus the
increased necessity for regular inspections since ozone’s impact
on certain polymers is not always a progressive deterioration.
With ozone disinfection systems (particularly gaseous

ozonation), there is a need for continuous monitoring. It is

quite often the case that the detection limit increases with the
maximum measurable concentration of the sensor. Thus, large-
scale ozone applications that utilize high concentrations of
ozone require sensors capable of detecting ozone concen-
trations within the occupational exposure limit values. In the
UK, the short-term (usually 15 min) worker exposure level for
ozone is 0.1 ppm (Table 5). Grignani et al.141 present a

comprehensive list of the exposure levels in different countries.
Ozone causes severe irritation of the respiratory tract as well as
lung damage; coughing and chest tightness are characteristics
of uncontrolled exposure to ozone.100 There has been some
discussion throughout the COVID-19 pandemic regarding the
use of low ozone concentrations in occupied spaces to reduce
the risk of disease transmission. However, the intentional
generation of ozone in occupied spaces for this purpose is not
encouraged. Table 5 presents the exposure limits of ozone
relative to other gaseous disinfectants.
3.8. Economics of Large-Scale Disinfection Systems.

The cost of a large-scale ozone disinfection system is typically
dependent on the intended application (water treatment,
textiles disinfection, medical equipment sterilization, etc.) and
the capacity of the disinfection facility. Furthermore, the
desired ozone dose affects the runtime and capacity of the
ozone generators, which in turn affects electricity consumption
and operating costs; as previously highlighted, ozone
generation is an energy-intensive process. Data provided by
Champion Technology in 1998 suggest a capital expenditure,
(CAPEX) > $250,000, for the treatment of 1 million gallons of
wastewater per day (which had undergone pretreatment), and
an annual operating expenditure (OPEX) > $18,000.148 The
presented analysis concluded that the costs are site-specific and
depend on the plant’s effluent limitations. Rice et al.149

provided a comparative assessment of capital and operating
ozonation costs for drinking water treatment plants in Belgium,
Switzerland, France, and the US. For a 687 ML/day plant in
Belgium, a capital cost of $4,024,000 was stated, whereas the
electrical cost was ¢3.01/kWh. Similar electrical costs were

Table 5. Exposure Limits of Some Gaseous Disinfectantsa

disinfectant exposure limits ref

Ozone 0.1 ppm (OSHA-PEL-TWA) 142
0.3 ppm (Cal/OSHA-PEL-
STEL)

0.1 ppm (NIOSH-REL-C)
Glutaraldehyde (GTA) 0.05 ppm (ACGIH-TLV-TWA) 143

0.2 ppm (NIOSH-REL-C)
Peracetic acid 0.4 ppm (ACGIH-TLV-STEL) 144
Hydrogen peroxide 1 ppm (OSHA-PEL-TWA) 145
Ethylene oxide 1 ppm (Cal/OSHA-PEL-STEL) 146
Chlorine 1 ppm (OSHA-PEL-TWA) 146, 147

1 ppm (OSHA-PEL-C)
0.5 ppm (NIOSH-REL-C)

Ortho-phthalaldehyde
(OPA)

− −

aPEL: Permissible exposure limit; STEL: Short-term exposure limit
(usually 15 min); TWA: Time-weighted average over an 8-h shift;
TLV: Threshold limit value; REL: Recommended exposure limit; C:
Ceiling; OSHA: Occupational Safety and Health Administration;
ACGIH: American Conference of Governmental Industrial Hygien-
ists; NIOSH: National Institute for Occupational Safety and Health;
OPA is generally considered safer that GTA; however, exposure limit
data for this disinfectant is scarce; �: No data.
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quoted for different regions. Remondino and Valdenassi18

presented a case study of ozone’s therapeutic application in
animal husbandry (specifically, a pig farm). They reported a
€90,000 cost for purchasing the ozone plant, whereas, between
€5,000 and 6,500 is incurred per year for the plant’s
maintenance (€4,000 of which are related to electrical costs).
ACS Clothing Ltd., a clothing rental and fulfilment company in
Scotland UK, is on the verge of completing the installation of
an automated (semicontinuous) gaseous ozone disinfection
system for garments. The system, which is capable of
disinfecting 20,000 garments within an 8-h shift, involves an
approximate investment of £270,000. Ozone generators, ozone
sensors, pin and clip conveyors, disinfecting and housing
chambers, air curtains, extraction fans, circulation fans, ducting,
catalytic destruct beds, and the control system/software are the

main cost components, with the automatic conveyor systems
constituting approximately 32% of the CAPEX. A thorough
economic analysis of this system is presented in a separate
study by the authors.45

3.9. Mathematical Models. Table 6 highlights some key
equations and models to consider when determining the
optimal generation capacity for a particular system. One key
question that transcends several industrial applications
involving the utilization of gaseous ozone generation is the
length of time to operate an ozone generator of a certain
capacity to achieve a desired concentration level. Equation 4
(Table 6) provides a guide toward developing a reasonable
estimate of the operational time. Since ozone autodecomposes
to oxygen, the knowledge of the ozone generator performance
coupled with the half-life (eqs 7 and 8) of ozone in the specific

Table 6. Relevant Models and Correlations to Consider When Designing Aqueous and Gaseous Ozone Decontamination
Systems
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environment of interest can facilitate the design of an optimal
control strategy that maintains the ambient concentration at a
set value. Furthermore, the table includes the inactivation
kinetic correlations of different organisms, which allows a
design team to make recommendations on the length of the
treatment cycle for effective inactivation. The electrical energy
requirements as well as the diffusion rate and attainable
concentration during aqueous ozone application are also
presented. It is important to mention that the models in
Table 6 do not fully consider important design concepts such
as complex gas−liquid mass transfer effects and ozone gas
dispersion and penetration, the impacts of which may be
adequately studied using computational fluid dynamics (CFD),
as presented in Figures 3 and 4.

4. OPEN RESEARCH PROBLEMS, OPPORTUNITIES,
AND RECOMMENDATIONS

In this section, we highlight some of the key gaps in the
literature that warrant further development. Additionally, we
also draw inferences from our industrial experience of
implementing industrial-scale aqueous and gaseous ozone
disinfection systems in providing the following recommenda-
tions for future exploration.
Life-cycle assessments (LCA) and environmental impact

assessments are required for large-scale ozone systems to
quantify their benefits relative to other popularly applied
decontamination methods. More research efforts are also
required to demonstrate the scalability of different disinfection
methods; this can be achieved by comparing the disinfection
efficiency attainable within the lab-scale test chamber with that
in a large room under the same dosage conditions.
Automated and rapid ozone disinfection systems require

further development for throughput and safety enhancement in
industrial operations. New advancements in the design of
robust control systems for the accurate regulation of ozone
concentration levels in air and water are required. Some studies
rely on the ORP (mV), which is not a direct implication of the
disinfection ability of ozone. Comparative studies that examine
the additional compounds generated by industrial and
domestic ozone generators will help enhance personnel safety.
Furthermore, a systematic quantification of the ozone
generation efficiencies when using medicinal oxygen and
ambient air should be elucidated. A direct comparison of the
efficacies of EtO, hydrogen peroxide and ozone (at the same
set of conditions) is also required to evaluate the inactivation
kinetics and performance characteristics of these methods.
As highlighted in Table 2, the compatibility of some

materials (e.g., PET and PVA) with ozone is yet to be
determined. This demonstrates the relatively recent application
of ozone for the sterilization of devices made from these
materials. A detailed ozone-compatibility assessment of these
materials is necessary. The ozone-adsorbent capability of some
polymers (e.g., polystyrene160), and their subsequent efficient
release, enhances the biocidal properties of surfaces made from
this material. Further exploration into other polymers or
classes of materials (e.g., zeolites) with a similar potential is
required as they hold great potential for the development of
self-disinfecting surfaces. However, this seemingly advanta-
geous attribute, may also pose a health risk during ozone
disinfection of reusable medical devices (particularly respira-
tory devices), if ozone is not totally removed after treatment;
this adsorbing and subsequent release attribute deserves
further investigation for a variety of polymers. In addition,

there appears to be some conflicting information regarding the
resistance of aluminum to degradation over prolonged ozone
exposure. More clarity is required in this regard, considering
the prevalence and cost-effectiveness of this metal for
constructing large-scale chambers.
As demonstrated by Epelle et al.,4 the ozone decomposition

rate via activated carbon catalyst is approximately 24-times that
of ozone’s natural decomposition. Further improvements in
catalytic ozone decomposition will help ensure cycle time
reduction and operational safety in automated ozonation
systems. More developments are also required on the
stabilization of ozone in water via viscosity enhancement of
the solution. Although glycerol has been successfully applied,
further studies utilizing safe and environmentally friendly
polymers are needed. These may be useful as hand sanitizers, a
friendlier alternative to ethanol-based sanitizers. Alkyl poly-
glycosides for example can be investigated in this regard; the
OH groups present in their structure may also enhance the
biocidal action of ozone. For certain applications as in ozone
therapy, the release rate of ozone is key to achieving the
desired efficacy. The identification and development of
materials capable of controlled ozone release in aqueous and
dry environments is essential. Furthremore, hybrid oxidation-
based methods (e.g. O3 + H2O2) may be investigated as
potential routes to attain the high material compatibility of
EtO; thus enabling its replacement for the rapid sterilisation of
reusable medical devices.
Further analyses of ozone decontamination of textile

materials are required to demonstrate its effectiveness in
accordance with established standards such as the European
Standard BS EN16616.161 The benchmarking of ozone’s
performance against these standards (applying the recom-
mended microorganisms, and required contamination levels)
will further facilitate its large-scale adoption. The textile
industry will also benefit from the application of ozone in the
mist form (dry fogging), particularly where the textile materials
are required to be dry, post-treatment, and where material
compatibility or additional cost concerns limit the thorough
application of gaseous ozone.

5. CONCLUSIONS
This review summarizes key engineering factors to consider in
the design and implementation of ozone decontamination
systems. While several successful lab-scale demonstrations of
ozone’s effectiveness against a myriad of microorganisms exist
in the literature, details of large-scale deployments of ozone
technology are lacking. Factors such as the medium of
application (air or water), material compatibility, efficient
circulation and extraction, measurement and control, automa-
tion, scalability, and process economics must be carefully
considered in the design and implementation phases of
industrial ozone decontamination systems. Nonetheless, we
present some progress made by the authors on the application
of automation technologies to ozone systems for the
disinfection of clothing and PPE items. The compatibility of
ozone with several polymeric materials as shown in Table 2
also appears to be a key determinant of its applicability, despite
its widely acknowledged antimicrobial efficiency. The evalua-
tion of concentration thresholds over a repeated number of
cycles for a variety of popularly applied materials with limited
ozone compatibility will go a long way toward mitigating
potential degradation. The application of hybrid ozonation
methods, particularly green methods, with no toxic residues
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(e.g., UV + O3, H2O2 + O3, Peracetic-acid + O3) also holds
great potential for addressing these compatibility constraints,
without compromising the disinfection efficacy and material
compatibility. It is hoped that the insights presented in this
study will support the transition from carcinogenic ethylene
oxide to ozone- and hydrogen peroxide-based methods, for the
sterilization of medical devices and other materials�a current
and global innovation challenge.
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