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Abstract

Governments around the world have implemented non-pharmaceutical interventions to limit

the transmission of COVID-19. Here we assess if increasing NPI stringency was associated

with a reduction in COVID-19 cases in Ghana. While lockdowns and physical distancing

have proven effective for reducing COVID-19 transmission, there is still limited understand-

ing of how NPI measures are reflected in indicators of human mobility. Further, there is a

lack of understanding about how findings from high-income settings correspond to low and

middle-income contexts. In this study, we assess the relationship between indicators of

human mobility, NPIs, and estimates of Rt, a real-time measure of the intensity of COVID-19

transmission. We construct a multilevel generalised linear mixed model, combining local dis-

ease surveillance data from subnational districts of Ghana with the timing of NPIs and indi-

cators of human mobility from Google and Vodafone Ghana. We observe a relationship

between reductions in human mobility and decreases in Rt during the early stages of the

COVID-19 epidemic in Ghana. We find that the strength of this relationship varies through

time, decreasing after the most stringent period of interventions in the early epidemic. Our

findings demonstrate how the association of NPI and mobility indicators with COVID-19

transmission may vary through time. Further, we demonstrate the utility of combining local

disease surveillance data with large scale human mobility data to augment existing surveil-

lance capacity to monitor the impact of NPI policies.

PLOS GLOBAL PUBLIC HEALTH

PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0000502 September 13, 2022 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Gibbs H, Liu Y, Abbott S, Baffoe-Nyarko I,

Laryea DO, Akyereko E, et al. (2022) Association

between mobility, non-pharmaceutical

interventions, and COVID-19 transmission in

Ghana: A modelling study using mobile phone

data. PLOS Glob Public Health 2(9): e0000502.

https://doi.org/10.1371/journal.pgph.0000502

Editor: Kate Zinszer, Universite de Montreal,

CANADA

Received: December 15, 2021

Accepted: July 22, 2022

Published: September 13, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pgph.0000502

Copyright: © 2022 Gibbs et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data used in this

study included individual Line List data shared with

authors by the Ghana Health Service. Use of this

https://orcid.org/0000-0003-4413-453X
https://orcid.org/0000-0002-7585-4743
https://orcid.org/0000-0002-0362-6717
https://doi.org/10.1371/journal.pgph.0000502
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgph.0000502&domain=pdf&date_stamp=2022-09-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgph.0000502&domain=pdf&date_stamp=2022-09-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgph.0000502&domain=pdf&date_stamp=2022-09-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgph.0000502&domain=pdf&date_stamp=2022-09-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgph.0000502&domain=pdf&date_stamp=2022-09-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgph.0000502&domain=pdf&date_stamp=2022-09-13
https://doi.org/10.1371/journal.pgph.0000502
https://doi.org/10.1371/journal.pgph.0000502
http://creativecommons.org/licenses/by/4.0/


Introduction

Nations around the world introduced a range of non-pharmaceutical interventions (NPIs) to

limit the spread of COVID-19 in the early phases of the epidemic [1]. In Ghana, NPIs have

been diverse, and have included the use of personal protective measures, environmental mea-

sures, physical distancing, restricting movement, and limiting the gathering of people. NPIs

have been implemented at different times in relation to the progression of local and national

disease outbreaks, with some put in place before transmission was established, and others reac-

tive to rises in cases. NPI measures have also overlapped one another in the timing of their

application [1, 2]. Previous research has attempted to quantify the relative effectiveness on

COVID-19 transmission of different NPIs [3–6], but modelling the impact of different inter-

vention strategies includes uncertainty about how different strategies are implemented in prac-

tice. Additionally, statistical approaches for estimating the impact of individual interventions

can be confounded by the overlapping nature of NPI policies and the different mechanisms

that interventions use to reduce disease transmission. There remain significant open questions

about methods for reliably isolating and quantifying the individual effect of each intervention

[7].

One approach used by researchers and policymakers to measure the impact of NPIs during

the COVID-19 pandemic has been to observe changes in measurements of human behaviour

under individual interventions or under a combination of interventions [8–12]. Perhaps the

most common way to quantify varying patterns of human behaviour is the use of human

mobility datasets, which measure the locations of individuals using GPS or Call Detail Records

(CDRs) [13, 14]. These mobility datasets have been made available by a variety of network ser-

vice and mobile application providers [15–17]. Mobility data has been used widely during the

COVID-19 pandemic to predict the introduction of COVID-19 cases, and to monitor and esti-

mate adherence to NPIs including travel restrictions [9, 18–20], but questions remain about

how patterns of mobility and NPI stringency relate to transmission in LMIC settings.

Previous research has been conducted in Africa on the implications of mobility patterns for

transmission of infections other than COVID-19 [21, 22] and during the COVID-19 epidemic,

analysis of movement patterns in Ghana has been conducted to inform policy makers about

the volume of reductions coinciding with lockdown interventions in Accra and Kumasi [23].

These indicators may be used as a proxy for social contact [13] and therefore, for potential

COVID-19 transmission, although the “link” between movement and disease transmission

may decrease due to greater adherence to social distancing or personal protective equipment

guidelines [24]. There remain questions about how mobility indicators can be used to estimate

COVID-19 transmission and how these indicators reflect behavioural responses to NPI mea-

sures, particularly in an LMIC context. Here we estimate the relationship between the trans-

mission of COVID-19 in Ghana and the changing NPIs introduced to mitigate the epidemic.

We also estimate the effect of NPIs on transmission using human mobility data, which is a

measurable proxy for responses to NPIs.

Methods

Study setting

The first cases of COVID-19 in Ghana were reported on 12th March 2020 [25]. These cases

were detected in Accra, the capital city of Ghana and were imported via international travel

[25]. Following the announcement of the first COVID-19 cases, the Ghanaian government

announced the suspension of international travel and the closure of land borders to reduce the

risk of further introduction [26]. Domestic case numbers grew in March and April 2020,
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leading to the closure of universities and high schools and the announcement of a partial lock-

down in the Ashanti and Greater Accra regions, the two most populous regions of Ghana [26].

This lockdown introduced a stay at home order except for essential travel including shopping,

healthcare, and use of public toilets. Almost all COVID-19 NPI restrictions were lifted by July,

although restrictions on international travel and mandated use of facemasks remained in place

until September 2020.

COVID-19 surveillance data

We used line list surveillance data recording lab-confirmed COVID-19 cases in a sample of 27

districts collected by the Ghana Health Service on PCR confirmed COVID-19 patients at the

district level (administrative level 2, 261 total districts) in 11 of the 16 regions of Ghana

between March and September 2020 These data were collected in 11 of the 16 regions in

Ghana (administrative level 1: excluding “Ahafo”, “Bono”, “Upper West”, “Volta”, and “West-

ern North” districts due to limited detail of data in these districts). Patient-level records were

referenced to a standard spatial reference provided by the Ghana Statistical Service using

patients’ reported district of residence. Using the date of case confirmation and the district of

residence, we aggregated individual records into daily case counts of confirmed COVID-19

cases per district (Figure A in S1 Text). Through visual inspection, we replaced three outliers

in reporting in two districts with a linear interpolation between the preceding and following

records. For these outliers, the number of cases reported in a district clearly exceeded the over-

all trend of case reporting (reported cases greater than 5x higher than all previous reports)

(Table A in S1 Text). We assumed that these records reflected “late reporting” with samples

collected on multiple days reported on the same date. This assumption potentially underesti-

mates the total number of COVID-19 cases in these two districts, but it is not possible to

approximate when the cases reported in these intervals may have been originally tested.

Defining stringency indices for NPIs

Data on the dates of NPIs implemented in Ghana were provided by Ghana Health Service

detailing the starting dates of public health interventions. We used this to define the start dates

of interventions and augmented it with available news sources and government press releases

to create a dataset of the start and end dates of nine intervention measures. Using these inter-

vention data, we constructed a stringency index to measure the stringency of COVID-19 inter-

ventions through time, defined daily as the number of active interventions divided by the total

number of interventions. This stringency index assigns a uniform level of stringency to each

intervention measure and records the length of time that the measure was implemented. We

also used the OxCGRT stringency index, calculated from a global database of NPIs, which is

used to construct a stringency index based on a taxonomy of government interventions [1]

(Figure B in S1 Text). We used the most recent version of the stringency index (as of June

2021), rather than the OxCGRT “legacy stringency index.” OxCGRT data also records nine

interventions resulting in a change in the stringency index in the study period. We extracted

the date of maximal intervention from both indices to compare both stringency indicators,

defined as the first date with the highest stringency for each index. Although both sources of

intervention data reported interventions at a national level, intervention measures were intro-

duced at different spatial scales in Ghana. School closures (including different educational

tracks) and mask mandates, for example, were implemented nationally, while partial lockdown

measures were introduced only in Ashanti and Greater Accra regions.
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Rt estimation

Rt is a time-varying parameter describing the average number of infections derived from a sin-

gle infection and indicates whether an epidemic is growing (Rt> 1) or decreasing (Rt< 1).

COVID-19 testing was not equally available in all parts of Ghana during the COVID-19 epi-

demic and line list data includes many districts without complete time series in the early epi-

demic. Any testing arriving into a community after the introduction of COVID-19 may be

biased by reporting both existing and newly acquired infections. To ensure the quality of data

during the early stages of the COVID-19 outbreak in Ghana, we limited Rt estimation to 27

districts with reported cases before March 30th, 2020 (the beginning of the partial lockdown in

Ashanti and Greater Accra), and at least 100 reported cases during the entire study period

(12th March to 1st September 2020). We chose this threshold to select districts with surveil-

lance resources capable of detecting cases in the early epidemic, due to uncertainty about

whether case reporting followed the path of the epidemic or the availability of testing in dis-

tricts with irregular case reporting.

Rt estimates were calculated at the district level using the EpiNow2 R package (1.3.2) using

MCMC, as implemented in Stan [27, 28], based on weekly reported cases [29]. Expected daily

cases were estimated using the renewal equation to weight prior expected cases multiplied by

the estimated Rt. Variation in Rt over time was modelled using a mean intercept and an

approximate Gaussian process with a 3/2 matern kernel on the log scale [30, 31]. Unlike in

Abbott et al. [30] we modelled Rt explicitly with the gaussian process and not as a first order

difference. This has little impact on retrospective Rt estimates and substantially reduces the

computational overhead. We used a generation time modelled as a gamma distribution with

mean: 3.6 (standard deviation of mean: 0.7), standard deviation 3.1 (standard deviation of

standard deviation: 0.76) and maximum: 15 [5, 32]. We assumed a negative binomial observa-

tion model for reported cases with a day of the week effect modelled as a simplex allowing us

to model weekly reported cases without manual specification. Rt estimates did not include an

estimate of reporting delays as lags were estimated in subsequent analyses. Therefore, estimates

of Rt on a given date vary as a result of the reported cases on that date. Inference was per-

formed across 4 chains for 2000 samples with a burn-in period of 250 samples. Convergence

was diagnosed using the R hat diagnostic [28].

Defining a mobility indicator from Vodafone data

We used Vodafone Ghana Call Detail Records (CDRs) aggregated by the Flowminder Founda-

tion prior to data sharing [33]. CDRs record mobile phone connections to the cellular towers

routing a call or SMS. CDRs are used by mobile network providers for billing purposes. CDRs

provide the location of the mobile phone and SIM card based on the location of the cellular

tower routing the signal, most often the nearest one. The precision of estimated mobile phone

locations depends on the density of cellular towers in an area and signal coverage. It can reach

up to 3 km in average coverage conditions and up to 8 km in good coverage conditions. Indi-

vidual mobility can be estimated by recording a series of mobile phone connections to cellular

towers over time. We used CDR data aggregated into an origin-destination matrix, based on

the locations recorded within 24 hours for individual mobile phones. The data were censored

to remove daily counts of 10 or fewer subscribers recorded for an origin-destination pair, in

order to reduce the risk of statistical disclosure of personally identifiable information.

We generated a normalised index of movement outside of individual districts relative to

baseline values from the origin-destination matrix. We used two metrics to calculate this nor-

malised measure of mobility: (1) trips between districts: the daily number of subscribers travel-

ling between pairs of districts, and (2) total subscribers per district: the total number of unique
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mobile phone subscribers recorded in a district on each day. Because of inconsistencies

between the spatial references used for the mobility data and the case data, we aggregated

mobility indicators for Accra, Tema, and Kumasi Metropolitan Areas by removing trips

between aggregated districts and calculating the sum of subscribers for these districts. The

mobility data also contained 10 missing dates (4.1%) and we performed linear interpolation

for each district for both metrics (trips and subscriber counts) on these dates (Figure C in S1

Text).

To construct the normalised movement index we summed the total number of outgoing

trips for individual districts on each day. These values were then normalised by the total num-

ber of daily subscribers in individual districts to remove bias introduced solely because of vary-

ing numbers of subscribers. For each district i and each day t, the normalised number of

outgoing trips was defined as:

trips out normi;t ¼
trips outi;t

total subscribersi;t

The movement index measures the change in outbound trips from individual districts rela-

tive to baseline values using September to December 2019 as the baseline period. We chose

this baseline as it includes the earliest period for which mobility data was available, but this

baseline may not account for seasonal variations in movement patterns during a year.

Baseline values were then calculated per week day during the baseline period as the median

of outgoing trips (normalised by the number of subscribers, as above) for each district i and

each day of the week, j:

baselinei;j ¼ medianðtrips out normi;jÞ

Using the baseline values, we calculated the deviation from baseline in the study period as a

percentage for each district i on each day t given the day of week j of t:

percent changei;t ¼
ðobservedi;t � baselinei;jÞ

baselinei;j
� 100

This resulted in a normalised mobility indicator (Figure D in S1 Text).

Google mobility indicator

We used mobility data from Google as a second measure of human movement [16]. This data

records the GPS location of individuals actively using Google services who have chosen to

share their location data with Google. The data is provided as a measure of changes in activity

relative to a baseline in different settings (Residential, Grocery & Pharmacy, Retail & Recrea-

tion, Transit Stations, Workplaces). The dataset documentation recommends consideration of

the specifics of mobility in different settings. We chose to use only the mobility indicator from

the “Residential” setting because we considered this setting to be the most clearly defined set-

ting in the context of Ghana, and because of the relatively lower variance of this indicator

(Figure E in S1 Text). We calculated the inverse of the percent change in residential mobility.

This percentage is relative to a baseline period between 3rd January and 6th February, 2020

which is defined by Google prior to data sharing.

Google mobility data is not referenced to known administrative areas but rather to custom

boundary polygons, which do not closely align with administrative districts in Ghana. To com-

bine this mobility data with the other data sources used in this study, we manually digitized

(traced) these features to create a spatial representation of the coverage area of each metric. To
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align Google mobility data with our spatial reference, we assigned Google mobility data to

those districts with greater than 50% overlap with the administrative areas defined by Google

for Accra and Kumasi. This restricted the coverage of Google mobility data to central districts

in the Accra and Kumasi Metropolitan Areas (Figure F in S1 Text).

Statistical analysis

We assessed the association between NPIs, mobility and median Rt while adjusting for public

holidays using a two-level multilevel generalised linear mixed model (using a Gaussian obser-

vation model), with random intercepts for individual districts to account for local variation.

We used data from 12th March 2020 to 1st September 2020, during the period of interventions

in Ghana, and before the detection of the Alpha or Beta variants [34].

Level 1 of the multi-level model included the relationship between mobility indicators and

the inverse NPI stringency with district-level random effects, x to account for correlation

between mobility and NPI stringency:

Level 1: Mobilitya ~ xa + NPI stringency

Where a indicates individual districts.

Level 2 modelled the relationship between Rt, NPI stringency, residuals from Level 1, and

district-level random effects:

Level 2: Rta ~ xa + NPI Stringency, i -j + residuals(Level 1a, i -j) + Holidays, i -j

Where x is a random effect, a indicates individual districts, j is a lag between 1 and 30 days,

and i is the original date of data collection. We trained models for each time period and lag val-

ues to determine the optimal lag between Rt and mobility. We assessed the different models by

comparing the marginal R2, which represents the contribution of fixed effects only, for differ-

ent lag values and time periods. We also calculated the Median Absolute Error of each model:

MAE ¼ medianðjpredictedi � observedijÞ

For i in 1. . .N values (either predicted or observed) where N is the total number of

observations.

Coefficients of the Level 2 model estimate Rt given inverse NPI stringency, holiday events,

and the residuals of the Level 1 model (which can be interpreted as “mobility not explained by

NPI stringency”). The use of inverse NPI stringency means that positive coefficients can be

interpreted similarly for NPI stringency and residuals of the Level 1 model. For example, a pos-

itive coefficient indicates that Rt will increase as NPI stringency decreases. Independent vari-

ables were centred and scaled for all models to allow for comparison between model

coefficients.

Holiday periods included Easter, Eid al-Fitr, Eid al-Adha, and National holidays. We used

the custom NPI stringency index and performed a sensitivity analysis using the OxCGRT

index (Section 2 in S1 Text). We used the Vodafone mobility index in the main model since it

is available in more districts, and performed a sensitivity analysis using the Google mobility

index (Section 3 in S1 Text).

To determine if the association between mobility, NPIs, and Rt at different points of the

epidemic is time-varying, we repeated model training for varying-length periods from 12th

March to t for t in 19th March to 1st September (7–137 days). To understand the influence of

varying time periods on model training, we also conducted a sensitivity analysis training the

model in rolling fixed-length periods of 30, 60, and 90 days (Section 4 in S1 Text).

We quantified the uncertainty of model parameters using bootstrap resampling by creating

500 resampled datasets and retraining our model for each period and each resampled dataset.
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We then constructed 95% and 50% bootstrap confidence intervals of model parameters by

aggregating model parameter estimates for all resampled datasets trained for each period.

Results

COVID-19 epidemic in Ghana

Broadly, the first wave of the national COVID-19 epidemic in Ghana was characterised by an

early increase in cases in March and April 2020, followed by a decline in cases over the summer

and a resurgence in June and July 2020 (Fig 1). Using aggregated surveillance data for 27 dis-

tricts included in the estimation of Rt, we observed variations in the progression of local epi-

demics in individual districts (Figure A in S1 Text). Patterns in each district varied, with case

reports ranging from 1 to 250 cases per day, with districts reporting cases on average in 89 of

173 days. Ghana introduced a series of NPIs in response to the growing number of COVID-19

cases in March 2020 (Fig 1). On 1st April 2020, a partial lockdown was introduced in the

Ashanti and Greater Accra regions requiring individuals to remain at home except for essen-

tial errands (shopping, healthcare, use of public toilets). The restrictions also prohibited inter-

city travel except for essential services. Lockdown restrictions remained in place until 28th

April 2020.

Both the custom and OxCGRT stringency indices reflect similar patterns in Ghana: a peak

stringency coinciding with the introduction of the partial lockdown in Ashanti and Greater

Accra regions, and a following reduction beginning in July 2020 (Figure B in S1 Text). Both

stringency indices also identified similar dates of maximal intervention (OxCGRT: 30th

March 2020, Custom: 1st April 2020).

Changes in mobility indicators

Both Google and Vodafone mobility indicators show similar patterns in Accra and Kumasi

metropolitan assemblies (the two areas for which both indicators are available), showing

approximately baseline values of movement preceding the identification of the first COVID-

Fig 1. Confirmed COVID-19 cases and non-pharmaceutical interventions. The total number of confirmed cases of COVID-19 in districts included in this

study. The timeline of different non-pharmaceutical interventions are indicated with dashed lines.

https://doi.org/10.1371/journal.pgph.0000502.g001

PLOS GLOBAL PUBLIC HEALTH Association between mobility, non-pharmaceutical interventions, and COVID-19 in Ghana

PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0000502 September 13, 2022 7 / 14

https://doi.org/10.1371/journal.pgph.0000502.g001
https://doi.org/10.1371/journal.pgph.0000502


19 cases. Both datasets show abrupt changes coinciding with the introduction of the partial

lockdown, followed by a more gradual recovery (Fig 2A). Comparing the week before 30th

March 2020 to the following week, mobility decreased by 24% (Vodafone) and 17% (Google)

in Accra, and in Kumasi by 23% (Vodafone) and 20% (Google). We compared mobility indica-

tors for both districts, finding strong evidence of association between Vodafone and Google

mobility indicators in Accra (R2 = 0.92) and Kumasi (R2 = 0.89), measured between 12th

March and 1st September 2020 (Fig 2B, Figure G in S1 Text).

District-level estimates of Rt

After the first detection of cases on March 12th, reported cases and the number of districts

reporting cases grew until the announcement of the partial lockdown (Fig 3A–3C). We found

Rt above 1 (indicating a growing epidemic) after the first reported COVID-19 cases in individ-

ual districts and a subsequent decline coinciding with the period of maximal interventions

(Fig 3B and 3C). This was followed by an increase in Rt during the summer of 2020. While dis-

trict-specific epidemics followed a broad trend, transmission in individual districts was charac-

terised by varying patterns of epidemic progression (Figure H in S1 Text). We compared Rt

estimates one week before and after the announcement of a partial lockdown in Ashanti and

Greater Accra regions (the date of maximum intervention), finding that between 25th March

and 8th April, Rt decreased in 16 of the 27 districts (7 missing).

Association between NPI stringency, mobility, and Rt

We found an optimal lag of mobility, NPI stringency, and holiday dates of 22 days associated

with Rt, measured by the maximum marginal R2 of the multilevel model training across all

periods. Because Rt estimates did not include estimated delays from infection to reporting, this

Fig 2. Mobility indicators in Accra and Kumasi metropolitan areas. a) A comparison of the Vodafone and Google mobility indicators in Accra and Kumasi

Metropolitan Areas. b) The correlation between Vodafone and (inverse) Google mobility indicators. Blue dashed line indicates the best fit line. This shows a

strong correlation between both mobility indicators across the study period. Note that these data are collected from two different sources (Google: GPS,

Vodafone: CDRs) and describe different aspects of mobility (Google: activity in “residential” areas, Vodafone: travel between administrative districts).

https://doi.org/10.1371/journal.pgph.0000502.g002
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lag reflects the delay between mobility and NPI, infection, case detection and reporting. Sensi-

tivity analysis using OxCGRT stringency index and Vodafone mobility indicator, as well as

Google mobility indicator and Custom stringency index identified optimal lags of 21 and 19

days, respectively.

We identified correlation between mobility and inverse NPI stringency using the Level 1

model (Table B in S1 Text). We found that the Level 2 model explained a greater amount of

variance in Rt and that the strength of association between Rt and NPI stringency was highest

during the early epidemic (Fig 4A, Figure I in S1 Text). Across all training periods (173) and

lag values (0–30), the maximum marginal R2 was 0.51 (conditional R2: 0.64) using data

between March 12th and May 12th (Fig 4C). We observed higher absolute error in the begin-

ning of case reporting in specific districts (Figure J in S1 Text). The model identified strong

evidence of a positive association between Rt and both NPIs and Residual Mobility (Table 1).

Positive coefficients indicate an association between NPI stringency and Residual Mobility

where Rt increases as NPI stringency decreases and mobility increases. Note that a positive

coefficient for NPI stringency results from the use of inverse stringency in the model.

Throughout the study period, we observed higher uncertainty around the association between

Rt and NPIs compared to the association between Rt and mobility (Fig 4B). We did not find

evidence of association between Rt and holidays (Table 1). For this model, we found 15 dis-

trict-specific random effects distinguishable from 0 (55.6%) (Figure K in S1 Text).

The performance of the model declined through time from June to September, measured

by decreasing marginal R2 and increased Median Absolute Error. This reflects a period when

mobility in most districts was recovering while overall, epidemics decreased. The change in

model performance through time may reflect a “decoupling” of transmission from mobility

and NPI stringency.

Fig 3. Estimates of Rt in individual districts. (a) The number of reported cases in individual districts. (b) Estimates of Rt for individual districts (median

shown). (c) A map of districts included the analysis. Colors indicate individual districts. Basemap from the Humanitarian Data Exchange with Creative

Commons Attribution for Intergovernmental Organisations Licence [35].

https://doi.org/10.1371/journal.pgph.0000502.g003
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Sensitivity analyses using fixed-length periods of 30, 60, and 90 days identified a similar pat-

tern of model performance during the early epidemic and an increase in model performance

in the later epidemic, relative to models trained on varying-length periods (Section 4 in

S1 Text).

Discussion

We found that Rt was associated with human mobility and NPI stringency in the early stages

of the COVID-19 pandemic in Ghana and that this association decreased through time. We

also identified a positive association between residual mobility (mobility not explained by

NPIs) and Rt. In our sensitivity analyses, we found similar optimal lags for both the Custom

and OxCGRT stringency indices. These lags were greater than those reported in other studies,

(Badr et al. for example, identified an optimal lag of 14 days between mobility and COVID-19

transmission in the USA). In sensitivity analyses included in Section 2 in S1 Text, using Voda-

fone and OxCGRT data, we found that the OxCGRT stringency index explained a greater

amount of variance in Rt in the end of the study period, which may be due to higher stringency

value of the OxCGRT index in this period. We also performed sensitivity analyses using mobil-

ity indicators from two providers, Google and Vodafone Ghana, and detected similar results.

Table 1. Regression coefficients for the multilevel model. Regression coefficients for the multilevel model trained

between 12th March and 12th May, 2020. Table shows coefficients, 95% bootstrap confidence intervals, and p values

for each predictor.

Predictors Estimates CI

NPI 0.238 0.153–0.348

Mobility Residuals 0.035 -0.001–0.075

Holidays -0.018 -0.07–0.016

https://doi.org/10.1371/journal.pgph.0000502.t001

Fig 4. Statistical analysis of Rt. a) The marginal R2, Conditional R2, and median absolute error of the multilevel model trained on varying-length periods

through time. b) Parameter estimates of association of Rt with NPI and Mobility. Estimates shown with 50% and 95% bootstrap confidence intervals. c)

Observed vs Predicted Rt for the model trained between 12th March and 12th May, 2020. Diagonal where x = y shown as blue dashed line.

https://doi.org/10.1371/journal.pgph.0000502.g004
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Between the introduction of COVID-19 in Ghana and the end of the partial lockdown, we

observed a relationship between mobility indicators, NPI stringency and Rt (at the maximum,

our model explained approximately 64% of variation in Rt). The strength of this relationship

decreased in June and July, and especially after August, when Ghana experienced stability in

the number of reported cases and approximately constant levels of NPI stringency and Mobil-

ity. The declining relationship may indicate a disconnection between mobility and Rt as the

effect of mobility was mediated by other behavioural changes. It is also notable that we did not

observe a decrease in mobility preceding the end of the second wave of the pandemic in July.

This may indicate that mobility data is most useful in the beginning of the pandemic, when

mobility patterns reflect behavioural changes relevant to disease transmission.

These findings are in line with those from high-income countries which find associations

between decreases in human movement and a reduction in Rt [12, 20, 36, 37] and provide evi-

dence of the utility of mobility measures for understanding transmission in African countries.

In particular, we show how human mobility and NPI stringency related to Rt during the early

stages of the Ghanaian COVID-19 epidemic and provide a novel analysis of subnational

human mobility indicators and local disease surveillance data in a lower-middle income set-

ting. This analysis improves our understanding of the relationship between NPIs, Mobility and

the progression of COVID-19 in Ghana, and how this relationship varied through time. Future

research should focus further on how human mobility indicators can be used as a proxy for

social contact (and thereby transmission) and how this link changes through time. Increasing

the spatial extent of case reporting data in Ghana could allow for more detailed research in dis-

tricts outside of major urban areas.

We used an Rt estimation method that supports uncertain generation times via a Bayesian

prior with mean 3.6 days (standard deviation of mean 0.7 days) for calculating Rt. The use of

longer generation times will lead to greater variance in estimates of Rt. This could translate

into larger effect sizes (positive or negative) in the statistical model.

Analysing only districts with case counts which were available early in the COVID-19 epi-

demic in Ghana may bias our estimates towards urban populations or populations with greater

disease surveillance resources. It is also not possible to determine whether the timing of the

first reported cases of COVID-19 in individual districts is related to the progression of local

epidemics or to the first availability of PCR testing resources in each district. The mobility

indicators used in this study rely on the aggregated locations of subscribers to mobile networks

(Vodafone) and users of internet services (Google). The volume and reporting of these loca-

tions may be influenced by varying patterns of mobile device usage. The demographics of

users of either service may also be different from the demographic of the population of Ghana,

particularly for Google data which relies on data collected from internet-connected smart-

phones [38]. Additionally, we used national, not district-specific indices of NPI stringency.

Neither index includes intervention measures which may have been implemented in local dis-

tricts but which are not recorded at a national level.

In this study, we identified evidence of positive associations between mobility, NPI strin-

gency, and Rt and show how the strength of this relationship changed through time. We found

that mobility and NPI stringency was able to explain variance in Rt during the early epidemic

but this pattern declined as the epidemic progressed. This decline may reflect a disconnection

between disease transmission and behavioural changes measured by mobility and NPI indica-

tors. For policymakers and public health decision makers responding to the COVID-19 pan-

demic, our findings demonstrate that mobility and NPIs were effective for estimating disease

transmission during the early epidemic, but that subsequent outbreaks may be more related to

factors that are not captured in these data.
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