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Abstract

Timely birth dose vaccination is key for achieving elimination of hepatitis B, however, pro-

grammatic requirements for delivering current vaccine presentations to births outside of

health facilities inhibits coverage within many low-and middle-income countries (LMICs).

Vaccine technologies in development such as microarray patches (MAPs) could assist in

overcoming these barriers, but procurement could incur higher per-dose commodity costs

than current ten-dose (US$0.34) and single-dose (US$0.62) vial presentations, necessitat-

ing an evaluation of the economic value proposition for MAPs. Within 80 LMICs offering uni-

versal hepatitis B birth dose vaccination, the cost-effectiveness of using MAPs to expand

coverage was evaluated using a mathematical model. We considered three potential per

dose MAP prices (US$1.65, US$3.30, and US$5.00), and two potential MAP use-cases: (1)

MAPs are used by lay-health workers to expand birth dose coverage outside of health facil-

ity settings, and (2) MAPs are also preferred by qualified health workers, replacing a propor-

tion of existing coverage from vaccine vials. Analysis took the health system perspective,

was costed in 2020 US$, and discounted at 3% annually. Across minimal (1% additional

coverage) and maximal (10% additional and 10% replacement coverage) MAP usage sce-

narios, between 2.5 (interquartile range [IQR]: 1.9, 3.1) and 38 (IQR: 28,44) thousand

DALYs were averted over the estimated 2020 birth cohort lifetime in 80 LMICs. Efficiency of

MAPs was greatest when used to provide additional coverage (scenario 1), on average

saving US$88.65 ($15.44, $171.22) per DALY averted at a price of US$5.00 per MAP. Effi-

ciency was reduced when used to replace existing coverage (scenario 2); however, at prices

up to US$5.00 per MAP, we estimate this use-case could remain cost-effective in at least 73

(91%) modelled LMICs. Our findings suggest even at higher procurement costs, MAPs are
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likely to represent a highly cost-effective or cost-saving mechanism to expand reach of birth

dose vaccination in LMICs.

Introduction

Timely birth dose vaccination is a key intervention for redressing ongoing global hepatitis B

burden. Transmission of hepatitis B from mother-to-child at birth carries an up to 90% risk of

progressing to chronic hepatitis B, the highest risk of any life point, and may be associated

with higher rates of severe hepatic morbidity [1, 2]. Monovalent hepatitis B vaccination within

the first 24-hours of life (timely birth dose) has been universally recommended for all new-

borns by the World Health Organisation (WHO) since 2009, as it provides highly efficacious

prophylaxis against perinatal infection [3, 4]. Currently, this is provided in 80 low-and middle-

income countries (LMICs) [5]; however, timely coverage of births outside of health facilities

can remain a challenge due to programmatic requirements associated with current vaccine

presentations [6, 7].

Delivery of a hepatitis B birth dose vaccine currently requires storage of vaccine vials in the

standard cold chain (2–8˚C) to the point of vaccine administration, leading to several potential

coverage barriers. First, despite availability of a more suitable single-dose vial (SDV) paediatric

monovalent hepatitis B vaccine; multi-dose vials (MDVs) are more frequently procured by

LMICs due to lower per dose costs [8, 9]. A fear of vaccine wastage has been associated with

health workers not opening MDVs, meaning missed vaccination opportunities [10], and

although open MDVs can be stored for 28-days in a cold chain according to WHO policy [11],

this duration may remain insufficient in some settings with low birth rates. Second, vaccines

in vials require a needle and syringe for administration, and injectable formulations often

require delivery by qualified health workers (e.g., a doctor, nurse, or midwife). For births out-

side of a health facility in LMICs, attendance of a qualified health worker is often delayed or

absent [12], restricting timeliness and coverage of the birth dose. Lastly, within many LMICs,

cold chain capacity for maintenance storage up to the point of birth is heavily constrained;

with up to an estimated 75% of vaccination centres lacking adequate or sufficient cold chain

capabilities [13].

Several innovations have previously been explored to overcome barriers to expanding birth

dose coverage in LMICs, including a controlled temperature chain (CTC) approach and the

use of compact prefilled auto-disable devices (CPADs) [14, 15]. A CTC approach leverages

vaccine thermostability, facilitating storage of vaccines at temperatures beyond the standard

cold chain. While no commercially available hepatitis B vaccines are licenced for the CTC

approach, evidence supports storage of currently available vaccines at 37˚C for up to four

weeks with no loss of effectiveness [16]. While considered a priority vaccine for the CTC

approach [17], and interest exists towards availability by national stakeholders [10, 18], sus-

tained scalability of this approach is yet to be demonstrated within an immunisation program

for other CTC vaccines. CPADs have been demonstrated as a feasible and acceptable means to

increase timely HepB-BD coverage for births outside of health facilities [19–21]. However,

despite licensure for over two decades, CPAD availability is constrained, and the evidence of

integration into birth dose vaccination programs is limited to two countries (Indonesia and

Timor-Leste) [22]. Further, CPADs require greater per-dose cold chain volumes compared to

MDV presentations [23], potentially straining vaccine supply chains.

Although not yet commercially available, hepatitis B microarray patches (MAPs) are cur-

rently in clinical development with successful trials recently completed in human subjects

(unpublished data, personal communication). This vaccine presentation could assist in
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overcoming barriers to increasing timely hepatitis B birth dose coverage in LMICs. MAPs

eliminate the need for a needle and syringe to deliver a vaccine [24, 25]; instead, dry antigen is

released from micron-scale projections which only penetrate the outermost layer of skin (stra-

tum corneum) [26], and could facilitate vaccination of newborns by individuals with no or

minimal prior training [27]. Acceptability of lay-health workers (such as trained community

members) to deliver vaccines to infants has previously been established for CPADs [28], and

evidence for MAPs indicates use in this capacity may also be considered acceptable [29–31].

Further, evidence on hepatitis B vaccine MAPs to date suggest they are likely to have a more

robust thermostability profile than liquid equivalents, remaining potent after six-months expo-

sure to 45˚C [32], and eliciting similar or superior immune responses [32–35]. While more

evidence is needed, this could enable MAPs to be used under a CTC or potentially entirely

bypass the standard cold chain.

Despite MAPs favourable product profile for facilitating expanded hepatitis B birth dose

coverage in LMICs, it is likely procurement costs will be higher than currently available liquid

(vial) vaccines. Therefore, an economic evaluation prior to their commercial availability is

needed to inform decision makers of their costs and benefits relative to alternate vaccine pre-

sentations. Previous evaluations for MAPs have shown use could provide a cost-effective means

to improve both seasonal influenza and measles-rubella coverage [36–38]; but evidence is

required for expanding hepatitis B birth dose coverage to currently unreached births in LMICs.

Using a mathematical model of hepatitis B transmission and progression, we aimed to

investigate potential health and cost outcomes when MAPs are used to expand timely hepatitis

B birth dose coverage in LMICs already providing a universal birth dose. Analysis focused

on the incremental benefits MAPs could provide beyond existing vaccine administration

approaches. Across a range of LMICs and global settings, we evaluate outcomes for several

potential MAP introductory price points and assessed determinants of cost-effectiveness when

compared to current vial presentations.

Methods

Model description

Mother-to-child hepatitis B transmission and subsequent disease progression were modelled

using a previously validated mathematical model (Fig A in S1 Text) [14, 15]. Code and data to

reproduce all reported analyses are available at https://github.com/ChrisSeaman-Burnet/

HepB-BD-MAPs-Model.

A decision tree model was used to simulate mother-to-child transmission in a 2020 birth

cohort for each modelled LMIC and WHO global region. Births could occur in either a facility

(e.g., hospital, birthing clinic) or the community (e.g., home), with mother-to-child transmis-

sion risk a function of hepatitis B surface antigen (HBsAg) prevalence, maternal envelope

antigen (HBeAg) prevalence and birth dose vaccination coverage. Effectiveness of birth dose

vaccination decreased as time from birth increased (Table 1), with vaccines administered in

one of four postpartum time-strata (day 1, day 2, days 3–7, days 8–41) [4, 15]. Hepatitis B prev-

alence was assumed constant for facility and community births; however, timeliness and cov-

erage of existing birth dose coverage varied (Appendix 2 in S1 Text). We assumed facility

births to have both a higher probability of vaccination, and more timely coverage, compared

to community births [14, 39].

Subsequent progression of vertically acquired hepatitis B was simulated using a Markov

model. All infections were assumed latent for a period of three weeks, prior to becoming

acute. Acute infections lasted an average six-months, before approximately 90% progressed to

chronic hepatitis B [1]. Within the model, chronic infections could: advance to compensated
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cirrhosis, decompensated cirrhosis, or hepatocellular carcinoma; persist, or spontaneously

clear. Outcomes of infection were simulated over a lifetime horizon, with age-specific, all-

cause mortality occurring in all model compartments and hepatitis B attributable mortality

in acute, decompensated cirrhosis and hepatocellular carcinoma compartments.

Table 1. Global model inputs.

Hepatitis B birth dose vaccine effectiveness

(%) [4, 15]

Values (Uncertainty) Notes

Timely administration (� 24-hours

postpartum; Day 1)

95.3 (95% CI: 93.5,

96.7)

Uncertainty estimated using exact binomial methods from point estimate provided in source

document, assuming α = 0.05

Day 2 88.9 (95% CI: 83.0,

92.8)

Days 3–7 82.5 (95% CI: 70.7,

90.2)

Days 8–41 52.3 (95% CI: 22.3,

80.7)

Hepatitis B disease progression (annual

probability; %) [1, 40, 41]

Acute to Chronic^ 88.5 (Range: 84.0,

93.0)

Only applied within first six-months of life; time-dependent after this point

Chronic to Immune 1.1 (Range: 0.1, 2.2)

Chronic to Compensated Cirrhosis 1.9 (Range: 1.0, 2.4)

Chronic to Hepatocellular Carcinoma 0.6 (Range: 0.3, 1.0)

Compensated Cirrhosis to Decompensated

Cirrhosis

3.9 (Range: 3.2, 4.6)

Compensated Cirrhosis to Hepatocellular

Carcinoma

4.8 (Range: 3.0, 6.6)

Decompensated Cirrhosis to Hepatocellular

Carcinoma

7.1 (Range: 4.8, 10.0) Uncertainty estimated using exact binomial methods from point estimate provided in source

document, assuming α = 0.05

Hepatitis B attributable mortality (annual

probability; %) [42]

Acute 0.07 Only point estimate available, ±5% error used for modelling uncertainty; estimated as mortality

from fulminant hepatitis caused by perinatal transmission [43].

Decompensated Cirrhosis 16.2 (Range: 9.9,

20.0)

Hepatocellular Carcinoma 54.5 (Range: 8.1,

60.5)

Disability weights associated with each

disease state (annual) [42]

Chronic 0.011 (95% CI: 0.005,

0.021)

Proxied as “Abdominopelvic problem: mild”“ [44, 45]

Compensated Cirrhosis 0.123 (95% CI: 0.070,

0.176)

Drawn from lower bound of “Decompensated cirrhosis of the liver (without anaemia)” [45, 46]

Decompensated Cirrhosis 0.178 (95% CI: 0.123,

0.250)

“Decompensated cirrhosis of the liver (without anaemia)”

Hepatocellular Carcinoma 0.288 (95% CI: 0.193,

0.399)

“Diagnosis and primary therapy phase of liver cancer due to hepatitis B”

Baseline Vaccine Commodity Costs (2020

US$) [8, 47]

Ten-/multidose vial (MDV) 0.34 (Range: 0.31,

0.41)

Includes cost of 0.5mL autodisable syringe, wastage, and disposal

Single dose vial (SDV) 0.62 (Range: 0.54,

0.71)

Includes cost of 0.5mL autodisable syringe, wastage, and disposal

MDV: SDV procurement ratio 3:1

95%CI: 95% confidence interval, Range: Minimum value to maximum value

https://doi.org/10.1371/journal.pgph.0000394.t001
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Inputs: Demography and epidemiology

HBsAg prevalence was taken from the WHO hepatitis B dashboard, reflective of population

prevalence in 2019 [48]. HBeAg prevalence among HBsAg positive pregnant women was

taken from a global review by Ott and colleagues, available in sex-specific ten-year age bands

for Global Burden of Disease (GBD) regions [49]. For each modelled LMIC, prevalence esti-

mates in relevant GBD regions (Table A in S1 Text) were weighted by the age distribution of

new mothers between 2015–2020 [50], and uncertainty took the minimum and maximum val-

ues across the entire 15–49-year-old female age-range (reproductive age females). Presence

of HBeAg increased risk of mother-to-child transmission from 17.5% to 80% for all LMICs,

except those in sub-Saharan Africa where evidence suggests a reduced risk of vertical hepatitis

B transmission [51, 52].

To ensure we only evaluated the impact of using MAPs to expand the reach of an existing

hepatitis B birth dose program beyond traditional vaccine administration approaches using

vials, the analysis was constrained to LMICs already offering a universal birth dose. WHO-U-

NICEF Estimates of National Immunization Coverage (WUENIC) data indicated 80 LMICs

were providing the birth dose in 2019–2020, ranging between 21–99% coverage rate across

countries (Table 2) [5]. Each LMIC also had a corresponding coverage rate estimate of the

three dose infant series.

Annual probabilities of hepatitis B progression and non-acute hepatitis B mortality were

taken from reviews and assumed as average across the lifetime [40, 41]. Acute mortality from

vertical transmission was approximated as the rate of fulminant mortality, conditional upon

perinatal transmission [43]. Age-specific all-cause mortality rates were calculated from life

tables in the 2019 UN Population Prospects, and reflected expected mortality trends among a

2015–2020 birth cohort [50].

Analysis for the six WHO regions and an aggregate of all 80 LMICs (shown in tables as “all

LMICs”) used parameter averages, population weighted by 2020 births, across relevant subsets

of LMICs providing universal HepB-BD vaccinations and excluded those with missing data.

For analysis across the 80 individual LMICs, missing data were imputed using WHO regional

averages. Parameter values for each LMIC are available within a (S1 File).

Inputs: Cost and health utilities

Presented costs are in 2020 United States Dollars (US$), adjusted using the consumer price

index method, with resources valued at economic costs. Analysis took the health-system per-

spective, and future outcomes (health and economic) were discounted at 3% per annum.

Vaccine modalities

Within the model, vaccine costing accounted for combinations of birth location (facility or

community), vaccine presentation (vial or MAP) and health worker cadre (qualified health

worker or lay health worker). For the baseline scenario, we assumed all existing birth dose vac-

cination coverage was from vaccine vials (combination of MDV and SDV) stored in the cold

chain and administered by qualified health workers. Within evaluated scenarios, MAPs could

be used by both qualified health workers and lay health workers. Expansion of coverage (i.e.,

reaching previously unvaccinated births) in the community was assumed to be delivered by

lay health workers who reside in those communities; consistent with MAP product targets

which specify use should require minimal or no prior training [27]. However, any use of

MAPs by a qualified health worker was assumed to be attributable to a worker preference (e.g.,

motivated by enhanced simplicity and availability)–consistent with occurrences in trials

employing CPADs to allow lay health workers to administer vaccinations [21]- and would
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only serve to replace existing coverage in both facility and community settings. MAPs were

assumed to generate a non-inferior immune response compared to the vial presentation.

Vaccination costs

For each vaccine modality, component and total costs in each WHO region can be seen in Fig

1, and further details provided in the supplement (Appendix 3 in S1 Text). Briefly, each vac-

cine modality was made up of four component costs. First, a supply chain component aimed

to capture costs of vaccine transportation and storage to and within a health facility. Estimates

were taken from a review by Portnoy and colleagues, with costs assumed equal for all modelled

vaccination modalities [56]. Second, a commodity component aimed to capture costs of base-

line vaccination coverage using vaccine vials (MDV and SDV), assuming a 3 MDV: 1 SDV

Table 2. Regional level model inputs.

AFR AMR EMR EUR SEAR WPR All LMICs

LMICs included (n =) 8 20 9 17 8 18 80

Demographics [50, 53]

Births (2020) 3,810,658 9,497,473 7,974,585 4,333,347 31,960,247 22,563,760 80,140,071

Life Expectancy, years (Range across included

LMICs)

66.0 (57.2,

76.6)

75.4 (69.7,

80.0)

71.9 (64.3,

78.8)

73.9 (68.0,

78.4)

69.7 (66.8,

78.5)

75.6 (64.2,

76.6)

72.3 (57.2,

80.0)

Births in facilities, % (Range across included

LMICs)

83.8 (69.8,

96.8)

95.8 (65.0,

99.9)

84.3 (56.3,

99.9)

97.6 (88.2,

99.9)

78.2 (37.1,

98.6)

96.1 (57.4,

99.9)

87.3 (37.1,

99.9)

Epidemiology [48, 49, 51, 52]

2019 HBsAg prevalence, % (95% CI) 6.5 (5.8, 7.4) 0.8 (0.6, 1.2) 1.5 (1.2, 1.9) 3.5 (2.8, 4.9) 2.7 (2.3, 3.4) 6.0 (5.4, 6.6) 3.5 (3.1, 4.2)

HBeAg prevalence amongst HBsAg positive

pregnant women, % (Range)

27.7 (15.4,

39.8)

31.2 (16.7,

43.3)

26.3 (15.0,

37.6)

28.8 (15.9,

41.3)

28.2 (15.6,

38.5)

33.3 (18.3,

48.8)

29.8 (16.4,

42.1)

HBeAg+ transmission risk, % (Range) 50.2 (24.9,

78.8)

80.0 (70.0,

90.0)

79.9 (69.8,

90.0)

80.0 (70.0,

90.0)

80.0 (70.0,

90.0)

80.0 (70.0,

90.0)

78.6 (67.8,

89.5)

HBeAg- transmission risk, % (Range) 8.4 (1.5, 18.0) 17.5 (5.0, 30.0) 17.5 (5.0, 30.0) 17.5 (5.0, 30.0) 17.5 (5.0, 30.0) 17.5 (5.0, 30.0) 17.1 (4.8, 29.4)

Vaccination Coverage [5]

Hepatitis B birth dose coverage (HepB-BD), %

(Range across included LMICs)

77.6 (21, 99) 63.5 (48, 99) 72.2 (38, 99) 94.8 (69, 99) 57.6 (21, 99) 88.9 (24, 99) 71.5 (21, 99)

Hepatitis B infant series coverage (HBV3), %

(Range across included LMICs)

84.9 (72, 95) 77.4 (51, 99) 88.3 (70, 99) 92.5 (79, 99) 84.1 (77, 99) 94.9 (39, 99) 87.3 (39, 99)

Annual Disease Management Costs, 2020

US$ (95% CI) [44, 54, 55]

Diagnosis� 4.60 (0.94,

10.85)

11.56 (2.12,

28.38)

6.66 (1.30,

16.12)

10.44 (1.94,

25.57)

4.19 (0.87,

9.97)

7.48 (1.47,

17.98)

6.56 (1.29,

15.82)

Chronic 26.93 (8.00,

119.83)

33.88 (9.18,

137.37)

28.99 (8.36,

125.10)

32.77 (9.00,

134.55)

26.52 (7.93,

118.95)

29.80 (8.53,

126.97)

28.88 (8.35,

124.80)

Compensated Cirrhosis 62.78 (39.59,

161.42)

95.36 (50.33,

226.04)

74.09 (43.30,

183.33)

93.24 (49.47,

221.69)

60.98 (39.17,

162.33)

75.42 (43.90,

184.47)

72.04 (42.74,

178.99)

Decompensated Cirrhosis 66.23 (40.82,

167.86)

112.15 (56.54,

256.98)

82.36 (46.26,

198.42)

109.51 (55.33,

251.84)

63.71 (40.22,

162.33)

83.96 (47.10,

199.19)

79.29 (45.44,

191.98)

Hepatocellular Carcinoma 64.65 (40.25,

164.90)

104.44 (53.69,

242.77)

78.56 (44.91,

191.49)

102.04 (52.64,

237.99)

62.46 (39.74,

160.11)

80.04 (45.62,

192.43)

75.96 (44.20,

186.02)

95%CI = 95% confidence interval, Range = Minimum value to maximum value.

�Diagnosis included as a one-time cost, incurred for each chronic hepatitis B infection resultant from mother-to-child transmission within the model.

Abbreviations: AFR: African WHO Region, AMR: American WHO Region, EMR: Eastern Mediterranean WHO Region, EUR: European WHO Region, HBsAg:

Hepatitis B surface antigen, HBeAg: Hepatitis B envelope antigen, LMIC: Low-and middle-income country, SEAR: Southeast Asian WHO Region, WHO: World Health

Organization, WPR: Western Pacific WHO Region

Data for individual LMICs available in the S1 File.

https://doi.org/10.1371/journal.pgph.0000394.t002
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procurement ratio at baseline. Price data were obtained from UNICEF-Supply Division (SD)

data and included vaccines (MDV, US$0.25/dose; SDV, $0.55/dose), 0.5 mL autodisable syrin-

ges, disposal boxes, and wastage [9, 47, 57]. Although CPADs were excluded for this evalua-

tion, their current UNICEF-SD price per dose ($1.65 for Uniject CPAD) was used to

benchmark MAP price points for the analysis: $1.65 (equal to the price of a hepatitis B vaccine

CPAD [58]), $3.30 (doubled CPAD price) and $5.00 as an upper limit. While true MAP price

points are unclear due to no available commercial product, the upper threshold of US$5.00

represents a price approximately 10-fold that of an SDV, and procurement at higher costs in

LMICs was deemed unfeasible. Third, a human resource component aimed to capture the

worker time associated with vaccine administration: calculation of time needed to administer

a vaccine was taken from a PATH time-and-motion study and then valued using methods

described by Serje and colleagues [59, 60]. Fourth, an outreach component aimed to capture

the additional costs of time and travel associated with vaccinating a birth in the community

and were guided by costs from a modelling study by Nayagam and colleagues [61].

Fig 1. Component breakdown of modelled per-dose vaccination cost estimates for each WHO region. Note: Error bars represent uncertainty range

used in analysis. MAP costs exclude commodity components. Abbreviations: AFR, African WHO Region AMR, American WHO Region; EMR,

Eastern Mediterranean WHO Region; EUR, European WHO Region; LHW, lay health worker; LMICs, low- and middle-income countries; MAP,

microarray patch; QHW, qualified health worker; SEAR, Southeast Asian WHO Region; US$, United States Dollar; WHO, World Health Organization;

WPR, Western Pacific WHO Region.

https://doi.org/10.1371/journal.pgph.0000394.g001
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Disease management costs and health utilities

Disease management costs included a one-off chronic hepatitis B diagnosis cost, plus recurrent

(annual) costs of disease management. Costs were estimated for each LMIC, informed by the

costing methodology used by Tordrup and colleagues [44]. For each stage of chronic disease,

costs aimed to capture the regulatory testing, health resource utilization [54, 55], and antiviral

therapy (tenofovir) where recommended [62].

DALYs were calculated as the sum of years life lost (YLL) and years lost to disability (YLD).

YLDs were calculated as person time spent in each disease compartment, multiplied by the

corresponding disability weight (Table 1) [42]. YLL were calculated relative to life expectancy

at birth within each modelled setting and assumed as zero once surpassed [50].

Model scenarios

An initial model baseline was run, using estimates of current HepB-BD coverage in each set-

ting based on a vial presentation stored in the cold chain. Two potential MAP implementation

scenarios are as follows:

1. Additional coverage from MAPs: MAPs facilitate a 1%, 5%, or 10% improvement in timely

birth dose coverage, with vaccines administered to births previously not receiving any birth

dose; additional coverage is delivered only by lay health workers to infants born in the

community.

2. Additional and replacement coverage from MAPs: In addition to the above, MAPs also

replace a proportion of existing birth dose coverage. Qualified health workers are assumed

to use MAPs to replace some needle-and-syringe birth dose coverage due to the improved

acceptability and increased ease of use of the MAP device. Replacement coverage could

occur for births in both facility and community settings, with cost-effectiveness evaluated

for MAPs that are used to replace 1%, 5%, and 10% of existing non-timely cold chain cover-

age. Use of MAPs to replace cold chain coverage was assumed to improve timeliness, mod-

elled as a left shift to the next most prompt vaccine timing strata (i.e., from days 8–41 to

days 3–7, from days 3–7 to day 2, and from day 2 to day 1).

Model outcomes

Primary model outcomes were total lifetime costs (including vaccination costs and disease

management costs) and total lifetime hepatitis B-related DALYs. For the three potential MAP

price points evaluated ($1.65, $3.30, $5.00), incremental cost-effectiveness ratios (ICERs), or

US$ per DALY averted, were calculated for implementation scenarios respective to the status

quo baseline. For 51 (64%) LMICs with an available estimate, we evaluated cost-effectiveness

against econometrically derived country-specific thresholds of willingness to pay per DALY

averted [63]. Values reflected the opportunity costs of existing health expenditure within

LMICs and were estimated using country-specific disease epidemiology, mortality, and

demography. For all analyzed LMICs, cost-effectiveness was measured against proportional

(0.5, 1.0, and 3.0 times) per capita GDP thresholds.

Uncertainty analysis was conducted using 1,000 Monte Carlo simulations for each model

application, with outcome uncertainty presented as interquartile range (IQR). Where data was

available with 95% confidence intervals (disease prevalence, costs, vaccine effectiveness, dis-

ability weights; Tables 1 and 2); uncertainty was drawn from triangular distributions to repli-

cate the normal distribution. Uniform distributions were used for data available with a range
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(disease mortality, disease progression), or by applying ±5% error bounds for point estimates

(vaccine coverage, all-cause mortality, facility births).

Sensitivity analysis

Determinants of cost-effectiveness and impacts of MAP product profile assumptions were

evaluated in a one-way sensitivity analysis, with MAP procurement price fixed at $1.65 per

dose. Under a scenario where MAP price is fixed, despite being theoretical; the impact of other

HepB-BD MAP unknowns such as the product size, cold chain requirements, and patch appli-

cation times can be evaluated.

Within the vaccine supply chain, a worst-case scenario (MAPs are a higher unit size and

require cold chain storage) and best-case scenario (MAPs completely bypass the cold chain)

were approximated by respective doubling and halving of supply chain costs. Use of MAPs

under a CTC approach could eliminate the need for peripheral cold chain and allow storage of

vaccines closer to births in the community. As modelled outreach costs included a cold chain

component, they were assumed the upper-bound estimate. We approximated savings from a

CTC approach for MAPs as a 20% discount to the outreach cost component of community

births attended by a qualified health worker (removal of preparation and carriage of a mobile

cold chain device) and 50% discount for those attended by lay health workers (vaccines stored

within the community, reducing transportation and travel time costs to and from health facili-

ties). Some evidence suggests MAPs may need to adhere to the skin for as long as 120 seconds

to administer a full vaccine dose; this is used as an upper-bound estimate for human resource

costs within the sensitivity analysis.

For brevity, we present results from the aggregate (all LMICs) within the article; however,

analysis was completed for all modelled settings (80 LMICs and six WHO regions; S1 File).

Ethics approval

As this was a modelling study which used openly available data, ethics approval was not

required.

Results

Across the 80 LMICs currently providing universal hepatitis B birth dose vaccination, we esti-

mate over the 2020 birth cohort lifetime mother-to-child hepatitis B transmission causes the

loss of 1.5 (IQR: 1.2, 1.9) million DALYs (Table 3). Across this cohort, we estimate $164 (IQR:

137, 203) million was spent on vaccines delivered from vials stored in the cold chain and deliv-

ered by qualified health workers, while a discounted $400 (IQR: 287, 542) million would be

spent on mother-to-child transmission attributable hepatitis B disease management over the

lifetime.

We estimate that MAPs could be used to administer between 49 (IQR: 43, 55) thousand

and 1.9 (IQR: 1.8, 2.0) million hepatitis B birth dose vaccinations across the 80 modelled

LMICs, averting between 2.5 (IQR: 1.9, 3.1) thousand and 38 (IQR: 28, 44) thousand DALYs

over the cohort lifetime (Table 2 and Table G in S1 Text). Expanding coverage to previously

unvaccinated births in the community (scenario 1) was the most efficient use of MAPs, with

incremental cost-effectiveness unaltered by the level of coverage provided (i.e., ICERs

remained constant; Table G in S1 Text). In comparison, the efficiency of MAPs generally

decreased as more were used to replace existing hepatitis B birth dose coverage (Fig 2;

Table 3). However, a trade-off was observed between increasing new coverage and increasing

replacement coverage; whereby efficiency of replacement coverage was greater when paired

with higher incremental coverage expansions (Fig C and Table G in S1 Text). Thus, we
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Table 3. Regional model outputs.

MAPs

Administered

DALYs Averted

(for MAPs

additional

DALYs averted

vs baseline)

Disease

Management

Costs (in

thousand US$)

Vaccination Costs

(excluding MAP

commodity costs;

in thousand US$)

ICER, US$ per

DALY averted

(MAP procurement

price = US$1.65 per

dose)

ICER, US$ per

DALY averted

(MAP procurement

price = US$3.30 per

dose)

ICER, US$ per

DALY averted

(MAP procurement

price = US$5.00 per

dose)

All LMICs (80

countries, 80.1

million births)

Baseline (MDV

+SDV)

- - 1,538,536

(1,224,957;

1,868,764)

399,541 (287,497;

541,512)

163,807 (136,555;

203,261)

- - - - - -

+1% additional

coverage with

MAPs

49,162 (43,425;

55,272)

2,468 (1,936:

3,116)

398,795 (287,021;

540,606)

163,955 (136,714;

203,425)

-154.44 (-242.33;

-86.88)

-119.64 (-204.17;

-52.48)

-88.65 (-171.22;

-15.44)

+1% additional

and 1%

replacement

coverage with

MAPs

194,369

(184,273;

204,183)

3,476 (2,785:

4,398)

398,507 (286,803;

540,317)

163,966 (136,808;

203,421)

-132.86 (-222.07;

-59.75)

-41.04 (-126.66;

40.51)

54.40 (-34.88;

152.73)

+1% additional

and 5%

replacement

coverage with

MAPs

773,426

(746,364;

799,418)

7,552 (5,952:

9,643)

397,357 (286,139;

539,162)

163,647 (136,855;

202,958)

-101.92 (-205.27;

-9.78)

64.17 (-41.07;

179.19)

233.64 (115.71;

386.49)

+1% additional

and 10%

replacement

coverage with

MAPs

1,498,144

(1,446,550;

1,546,363)

12,640 (9,818:

16,240)

395,919 (285,373;

537,718)

163,427 (136,590;

202,456)

-92.77 (-205.03;

11.27)

98.03 (-16.26;

233.87)

296.78 (161.09;

478.89)

AFR (8

countries, 3.8

million births)

Baseline (MDV

+SDV)

- - 56,064 (42,854;

72,258)

15,481 (10,792;

22,087)

10,476 (9,155;

12,243)

- - - - - -

+1% additional

coverage with

MAPs

2,225 (1,986;

2,496)

101 (75: 133) 15,453 (10,773;

22,053)

10,494 (9,171;

12,257)

-92.16 (-201.47;

-13.73)

-55.50 (-166.86;

30.24)

-21.66 (-130.07;

69.32)

+1% additional

and 1%

replacement

coverage with

MAPs

10,113 (9,640;

10,613)

153 (114: 199) 15,438 (10,767;

22,030)

10,487 (9,175;

12,249)

-80.72 (-191.15; 0.08) 22.29 (-87.26;

130.40)

133.02 (20.54;

272.46)

+1% additional

and 5%

replacement

coverage with

MAPs

41,561 (40,107;

43,061)

353 (257: 459) 15,378 (10,736;

21,937)

10,479 (9,162;

12,227)

-76.88 (-197.17;

42.21)

122.57 (-15.35;

288.8)

321.83 (155.66;

560.81)

+1% additional

and 10%

replacement

coverage with

MAPs

80,966 (78,115;

83,722)

604 (431: 782) 15,330 (10,687;

21,821)

10,483 (9,155;

12,201)

-70.32 (-200.06;

59.17)

154.30 (0.56; 341.24) 382.78 (191.32;

660.72)

AMR (20

countries, 9.5

million births)

Baseline (MDV

+SDV)

- - 55,751 (44,875;

70,713)

16,497 (11,809;

22,240)

22,192 (17,804;

27,614)

- - - - - -

(Continued)
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Table 3. (Continued)

MAPs

Administered

DALYs Averted

(for MAPs

additional

DALYs averted

vs baseline)

Disease

Management

Costs (in

thousand US$)

Vaccination Costs

(excluding MAP

commodity costs;

in thousand US$)

ICER, US$ per

DALY averted

(MAP procurement

price = US$1.65 per

dose)

ICER, US$ per

DALY averted

(MAP procurement

price = US$3.30 per

dose)

ICER, US$ per

DALY averted

(MAP procurement

price = US$5.00 per

dose)

+1% additional

coverage with

MAPs

3,147 (2,184;

4,035)

40 (27: 57) 16,487 (11,798;

22,220)

22,196 (17,819;

27,629)

93.85 (-25.57;

194.95)

222.93 (91.97;

344.21)

346.32 (205.57;

502.34)

+1% additional

and 1%

replacement

coverage with

MAPs

16,271 (14,997;

17,658)

65 (49: 87) 16,481 (11,791;

22,210)

22,202 (17,808;

27,609)

196.69 (-34.35;

447.40)

608.14 (351.50;

933.75)

1055.11 (722.42;

1475.02)

+1% additional

and 5%

replacement

coverage with

MAPs

68,722 (66,041;

71,660)

165 (128: 220) 16,456 (11,771;

22,161)

22,204 (17,793;

27,586)

314.96 (-101.21;

767.71)

993.27 (530.40;

1583.73)

1706.78 (1169.13;

2466.75)

+1% additional

and 10%

replacement

coverage with

MAPs

134,390

(129,618;

139,527)

290 (221: 385) 16,424 (11,749;

22,105)

22,169 (17,809;

27,482)

346.49 (-132.48;

847.81)

1095.57 (576.46;

1787.89)

1898.83 (1286.29;

2783.89)

EMR (9

countries, 8.0

million births)

Baseline (MDV

+SDV)

- - 60,047 (49,532;

73,416)

16,658 (11,939;

22,503)

19,030 (16,129;

22,450)

- - - - - -

+1% additional

coverage with

MAPs

5,461 (4,814;

6,057)

110 (88: 139) 16,626 (11,916;

22,458)

19,047 (16,149;

22,469)

-24.53 (-121.47;

64.16)

55.96 (-37.94;

150.66)

140.42 (41.43;

246.41)

+1% additional

and 1%

replacement

coverage with

MAPs

20,532 (19,501;

21,624)

155 (124: 193) 16,610 (11,909;

22,438)

19,052 (16,144;

22,457)

26.43 (-81.50;

156.53)

247.93 (136.74;

408.11)

478.51 (333.37;

674.99)

+1% additional

and 5%

replacement

coverage with

MAPs

80,819 (77,872;

83,878)

328 (258: 419) 16,563 (11,877;

22,359)

19,044 (16,107;

22,421)

113.17 (-62.67;

325.57)

515.96 (320.31;

813.31)

947.82 (686.60;

1345.57)

+1% additional

and 10%

replacement

coverage with

MAPs

156,143

(150,592;

161,987)

542 (417: 702) 16,511 (11,832;

22,277)

19,067 (16,130;

22,391)

139.50 (-65.10;

396.23)

616.13 (376.28;

977.36)

1122.17 (810.35;

1594.06)

EUR (17

countries, 4.3

million births)

Baseline (MDV

+SDV)

- - 39,047 (30,369;

48,171)

10,976 (7,741;

15,549)

20,043 (16,270;

24,527)

- - - - - -

+1% additional

coverage with

MAPs

176 (103; 262) 10 (6: 15) 10,971 (7,738;

15,543)

20,044 (16,272;

24,528)

-117.37 (-222.77;

-39.29)

-86.94 (-190.94;

-9.02)

-55.03 (-158.45;

26.80)

+1% additional

and 1%

replacement

coverage with

MAPs

9,112 (8,689;

9,476)

82 (62: 106) 10,955 (7,724;

15,518)

20,041 (16,283;

24,528)

-139.88 (-296.74;

31.38)

50.19 (-109.37;

234.74)

244.49 (68.00;

464.31)

(Continued)
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Table 3. (Continued)

MAPs

Administered

DALYs Averted

(for MAPs

additional

DALYs averted

vs baseline)

Disease

Management

Costs (in

thousand US$)

Vaccination Costs

(excluding MAP

commodity costs;

in thousand US$)

ICER, US$ per

DALY averted

(MAP procurement

price = US$1.65 per

dose)

ICER, US$ per

DALY averted

(MAP procurement

price = US$3.30 per

dose)

ICER, US$ per

DALY averted

(MAP procurement

price = US$5.00 per

dose)

+1% additional

and 5%

replacement

coverage with

MAPs

44,682 (42,947;

46,292)

362 (282: 477) 10,871 7,668;

15,415)

20,051 (16,355;

24,458)

-137.89 (-307.21;

43.56)

63.41 (-102.56;

262.89)

277.65 (85.67;

527.47)

+1% additional

and 10%

replacement

coverage with

MAPs

89,172 (85,774;

92,350)

716 (555: 943) 10,762 (7,592;

15,273)

20,090 (16,340;

24,362)

-137.67 (-308.18;

47.74)

65.94 (-102.28;

266.47)

283.02 (88.47;

533.51)

SEAR (8

countries, 32.0

million births)

Baseline (MDV

+SDV)

- - 593,396 (482,632;

710,357)

151,496 (111,808;

164,622)

38,584 (32,995;

46,052)

- - - - - -

+1% additional

coverage with

MAPs

44,990 (41,208;

48,437)

1,637 (1,313:

2,026)

151,135 (111,511;

164,544)

38,756 (33,144;

46,224)

-118.41 (-214.19;

-52.10)

-73.21 (-164.25;

-3.40)

-26.26 (-115.66;

44.98)

+1% additional

and 1%

replacement

coverage with

MAPs

94,104 (89,158;

98,851)

1,870 (1,529:

2,305)

151,088 (111,459;

164,243)

38,756 (33,128;

46,191)

-99.13 (-194.04;

-32.52)

-13.67 (-106.97;

54.72)

69.39 (-21.79;

148.59)

+1% additional

and 5%

replacement

coverage with

MAPs

290,264

(279,364;

300,658)

2,859 (2,322:

3,587)

150,899 (111,252;

163,298)

38,703 (33,076;

46,092)

-55.98 (-158.18;

17.41)

108.76 (5.68; 210.32) 281.17 (161.13;

410.26)

+1% additional

and 10%

replacement

coverage with

MAPs

534,737

(516,682;

553,714)

4,103 (3,230:

5,207)

150,663 (110,993;

162,011)

38,611 (33,033;

45,936)

-36.38 (-140.73;

49.63)

181.71 (57.77;

308.33)

412.14 (257.81;

578.75)

WPR (18

countries, 22.6

million births)

Baseline (MDV

+SDV)

- - 464,860 (368,293;

569,978)

119,310 (87,269;

164,622)

61,059 (48,822;

76,622)

- - - - - -

+1% additional

coverage with

MAPs

2,288 (1,760;

3,022)

229 (166: 312) 119,260 (87,226;

164,544)

61,062 (48,829;

76,635)

-210.88 (-312.10;

-138.05)

-192.44 (-293.77;

-121.80)

-174.36 (-274.86;

-104.83)

+1% additional

and 1%

replacement

coverage with

MAPs

48,072 (46,177;

50,051)

889 (699: 1,119) 119,101 (87,115;

164,243)

61,041 (48,849;

76,579)

-179.82 (-280.96;

-99.09)

-89.17 (-185.74;

-0.15)

1.48 (-92.79; 96.61)

+1% additional

and 5%

replacement

coverage with

MAPs

230,093

(222,998;

238,518)

3,455 (2,734:

4,444)

118,464 (86,582;

163,298)

60,950 (48,914;

76,433)

-174.85 (-277.08;

-82.50)

-67.69 (-162.62;

39.86)

49.94 (-56.02;

167.89)

(Continued)
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conservatively present results where MAPs only provide a 1% gain in additional coverage. If

MAPs were used to provide more than 1% additional coverage, model scenario 2 would be

even more cost-effective or cost-saving than presented (S1 File).

While at a price of $1.65 per unit MAPs are more expensive per dose than comparator vial

vaccines, when used to expand hepatitis B birth dose coverage in the community (scenario 1),

averted disease and associated management costs generated overall cost-savings in 5 (83%)

WHO regions and 50 (63%) LMICs. At a procurement price of $3.30 per MAP, cost savings

Table 3. (Continued)

MAPs

Administered

DALYs Averted

(for MAPs

additional

DALYs averted

vs baseline)

Disease

Management

Costs (in

thousand US$)

Vaccination Costs

(excluding MAP

commodity costs;

in thousand US$)

ICER, US$ per

DALY averted

(MAP procurement

price = US$1.65 per

dose)

ICER, US$ per

DALY averted

(MAP procurement

price = US$3.30 per

dose)

ICER, US$ per

DALY averted

(MAP procurement

price = US$5.00 per

dose)

+1% additional

and 10%

replacement

coverage with

MAPs

457,631

(443,864;

474,500)

6,660 (5,232:

8,549)

117,542 (85,850;

162,011)

60,845 (49,108;

76,315)

-173.83 (-278.00;

-78.72)

-63.58 (-158.48;

45.77)

59.05 (-49.61;

180.21)

Negative ICERs indicate cost-savings over the cohort lifetime. Parenthesised uncertainty the Interquartile Range (IQR) of 1000 model simulations. All costs presented in

2020 US$.

Abbreviations: AFR: African WHO Region, AMR: American WHO Region, DALY: Disability Adjusted Life Year, EMR: Eastern Mediterranean WHO Region, EUR:

European WHO Region, ICER: Incremental Cost-Effectiveness Ratio (US$ per DALY averted), LMIC: Low-and middle-income country, MAP: Microarray Patch,

MDV: Multiple Dose Vial, SDV: Single Dose Vial, SEAR: Southeast Asian WHO Region, US$: United States Dollars, WHO: World Health Organization, WPR: Western

Pacific WHO Region

Data for individual LMICs available in the S1 File.

https://doi.org/10.1371/journal.pgph.0000394.t003

Fig 2. Incremental cost-effectiveness of MAPs at increasing price-per-unit values in each WHO region. Note:

Shading represents interquartile range of 1000 model simulations. As ICER increases (ascends along the Y-axis), cost-

effectiveness of MAPs decreases. Above dotted line indicates additional costs per DALY averted over the cohort

lifetime, below indicates costs-saved per DALY averted over the cohort lifetime. Abbreviations: AFR: African WHO

Region, AMRO: American WHO Region, DALY: disability-adjusted life years, EMRO: Eastern Mediterranean WHO

region, EURO: European WHO Region, ICER: incremental cost-effectiveness ratio, LMIC: low- and middle-income

countries, MAP: microarray patch, SEARO: Southeast Asian WHO Region, WHO: World Health Organization,

WPRO: Western Pacific WHO Region.

https://doi.org/10.1371/journal.pgph.0000394.g002
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were seen in 4 (67%) of the WHO regions and 41 (51%) of the LMICs, further reducing to 4

(67%) and 36 (45%), respectively, at $5.00 per MAP. Even though cost-savings reduced as the

price of MAPs increased, analysis against estimates of national willingness-to-pay thresholds

($ per DALY averted) suggested that, for prices up to $5.00 per MAP, use under model sce-

nario 1 could be considered cost-effective in all but one modelled LMIC (Fig B in S1 Text).

Although less efficient, cost-savings were still observed in multiple analysed settings when

MAPs were also used to replace a proportion of existing hepatitis B birth dose coverage by

qualified health workers (scenario 2). At a procurement price of $1.65 per MAP, replacing 1%

of existing coverage in addition to expanding coverage in communities by 1%, generated cost-

savings in at least 4 (67%) WHO regions and 53 (66%) modelled LMICs. Comparatively, when

replacing 10% of existing coverage at a procurement price of US$5.00 per MAP, cost-savings

were seen in no WHO regions and only 12(15%) LMICs. Evaluation against national willing-

ness-to-pay thresholds indicated that at $1.65 per MAP, model scenario 2 could be considered

cost-effective in all but a single LMIC; while at a price of US$3.30 or US$5.00 per MAP, use

may no longer be considered cost effective in at least seven and up to fourteen LMICs (Fig B in

S1 Text).

Despite some heterogeneity across individual LMICs in the results of the one-way sensitiv-

ity analyses (S1 File), for the majority it was disease management costs that were the main

driver of cost-effectiveness when holding MAP price constant (Fig 3). Assumptions regarding

MAP administration time (human resource costs) and benefits of ambient storage (outreach

costs) only showed modest impacts on cost-effectiveness. Other drivers related to the vaccine,

including supply chain costs had more effect on the model outputs when MAPs were assumed

to replace existing coverage (scenario 2). In contrast, baseline coverage levels did not alter

cost-effectiveness when MAPs were only assumed to expand coverage and not replace existing

coverage (scenario 1). Further, when a baseline scenario with traditional vial vaccines being

stored under the CTC was investigated, findings showed no meaningful difference to cost-

effectiveness outcomes when using MAPs to expand hepatitis B birth dose coverage (Fig G

and Table I in S1 Text).

Discussion

Using a mathematical model, we demonstrate that MAPs—even at much higher procurement

prices relative to current vial presentations—could provide a cost-saving or highly cost-effec-

tive mechanism for increasing the reach of hepatitis B birth dose vaccination. Our findings

indicate that use of MAPs to increase birth dose coverage to previously unreached births

would be their most cost-effective use, saving costs attributable to mother-to-child hepatitis B

transmission in 50, 41 and 36 analysed LMICs at respective commodity costs of US$1.67, US

$3.30, and US$5.00 per dose. Although less efficient, use of MAPs to also replace existing hepa-

titis B birth dose vaccination was found to remain cost-effective in most analysed LMICs. Our

findings are consistent with previous economic evaluations demonstrating value for money

provided by hepatitis B birth dose vaccination [64], with the WHO recently describing it as the

most efficient intervention for combatting the ongoing hepatitis B burden [65].

This work adds to previous evaluations which show both the CTC approach, and use of

CPADs, as highly cost-effective mechanisms to enhance birth dose vaccination coverage in

LMICs [14, 15]. We demonstrate that MAPs would likely work synergistically with any future

CTC licenced vaccines and recognise development of these remain important. However, his-

toric uptake of other CTC licensed vaccines has been slow—due to numerous reasons such as

cost and fear of health worker confusion [10, 18]–and in isolation would not address the prob-

lem of qualified health workers needing to reach births outside of health facilities. MAPs could
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both bypass standard cold chain storage constraints and allow lay health workers within the

community to provide timely birth dose vaccinations to previously unreachable births. CPADs

have successfully been piloted to overcome this barrier [66]; yet uptake remains slow in most

settings due to cost, cold chain volumes, market availability and lack of support from procurers

or funding bodies. MAPs are likely to surpass CPADs on several product fronts (size, no sharps

waste, ease of use), and due to ongoing catalytic work being undertaken by global stakeholders.

Specifically, MAPs were prioritized by the Vaccine Innovation Prioritisation Strategy Alliance,

which has developed action plans to accelerate their development for several vaccine applica-

tions, is incentivizing investment in MAPs, and is engaging in activities that will position

MAPs for greater uptake once available [24, 25, 31, 67].

Fig 3. Tornado plots displaying outcomes of one-way sensitivity analysis holding MAP price constant. Notes: Top:

1% additional coverage (scenario 1) within all LMICs. Bottom: Scenario 1 + 1% replacement coverage with MAPs in

LMICs (scenario 2). HBsAg and HBeAg upper and lower bounds correspond with values given in Table 2. Facility

birth and baseline HepB-BD coverage’s lower bound = 5%, upper bound = 99%. MAPs could reduce outreach costs by

20% for community births vaccinated by a qualified health worker and 50% for community births vaccinated by a

trained lay health worker; upper-bound vaccine administration time is estimated at two minutes (120 seconds).

Commodity costs used upper and lower bounds of estimates (see Table C in S1 Text), while supply chain costs were

doubled or halved for MAPs, as cost impact remains uncertain. Abbreviations: DALY: disability-adjusted life years,

HBeAg: hepatitis B envelope antigen, HBsAg: hepatitis B surface antigen, HepB-BD: hepatitis B birth dose, ICER:

incremental cost-effectiveness ratio, LMICs: low-and middle-income countries, MAP: microarray patch.

https://doi.org/10.1371/journal.pgph.0000394.g003
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Our analysis showed that use of MAPs to expand birth dose coverage in the community

provided greater value than when used concurrently to replace a proportion of existing cover-

age. Consistent with previous hepatitis B birth dose modelling, our findings support the use of

more expensive vaccine modalities, such as MAPs, to reach births where current presentations

may not be able to reach [14]. Nevertheless, implementation experiences with CPADs indicate

health workers may prefer use of combination products such as MAPs, due to the speed and

simplicity they afford [20, 66]. While we show this decreases efficiency of MAPs for the hepati-

tis B birth dose; this practice, when paired alongside vaccination of previously unreached

births, remained cost-effective in most analysed LMICs. We also note that reductions in effi-

ciency were dampened as more previously unvaccinated births received a timely birth dose,

potentially supporting use in this manner if additional coverage is seen as the priority.

It remains unclear how individual LMICs would benchmark cost-effectiveness, what with

many other factors influencing decisions to adopt new health interventions. In this analysis we

have assessed different use cases and price points for MAPs, reporting whether they are likely

to be either cost saving or cost-effective as benchmarked against estimated national willing-

ness-to-pay thresholds per unit of health. However, consideration also needs to be given to

affordability: MAPs cost savings would be accrued over the lifetime of a birth cohort, while

MAPs procurement presents an additional upfront cost of size, dependent on the population

in need. Hence, factors such as disease control priorities (e.g., relative importance of hepatitis

B or infectious diseases within the health budget allocation) will serve as major considerations

in the affordability of MAPs within LMICs, once available. Nevertheless, the estimates of the

ICERs of MAPs for different use cases and price points provided by this study enable them to

be objectively compared to other key interventions.

First, hepatitis B birth dose MAPs are still a developing technology, and currently the prod-

uct profile and programmatic impact are yet to be determined, key inputs that would impact

the cost-effectiveness. Given these uncertainties in model inputs, our analysis conducted sce-

nario and sensitivity analyses to identify the key drivers influencing this early-stage value prop-

osition but revisions to this model may be warranted as the product progresses through

development stages and during programmatic introduction. Second, our model did not

account for the impact that a birth dose vaccination may have on early life horizontal transmis-

sion, potentially underestimating the impact and cost-effectiveness of expanding coverage.

However, in settings where horizontal transmission is believed to be the key driver of ongoing

burden, rates of mother-to-child transmission were lower within the model [51]. Third, we did

not include the cost impact of other mother-to-child-transmission strategies, such as antivirals

in late pregnancy or use of passive immunoprophylaxis (hepatitis B immune globulin); but

within many LMICs, coverage with these interventions is low or unfeasible [7, 68]. Lastly, our

results are only representative of 80 LMICs with existing HepB-BD vaccination coverage and

do not provide any evidence to support MAPs for introducing a birth dose vaccination pro-

gram, although it would likely be cost saving or cost-effective. In particular, the regional analy-

sis excludes data from countries without birth dose programs. Therefore, the weighted average

parameters are representative not of each region but of a subset of countries within each region

only (each region can be thought of as an aggregate of countries where data are available).

Conclusion

These findings suggest that use of MAPs to expand hepatitis B birth dose vaccination coverage

in LMICs is likely to be cost saving or cost-effective. While it is likely to be several years before

a relevant MAP product is approved for use and on the market, this work supports ongoing

research and development of MAPs to prevent mother-to-child transmission of hepatitis B.
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