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Abstract

Reliable subnational estimates of TB incidence would allow national policy makers to focus

disease control resources in areas of highest need. We developed an approach for generat-

ing small area estimates of TB incidence, and the fraction of individuals missed by routine

case detection, based on available notification and mortality data. We demonstrate the fea-

sibility of this approach by creating municipality-level burden estimates for Brazil. We devel-

oped a mathematical model describing the relationship between TB incidence and TB case

notifications and deaths, allowing for known biases in each of these data sources. We

embedded this model in a regression framework with spatial dependencies between local

areas, and fitted the model to municipality-level case notifications and death records for Bra-

zil during 2016–2018. We estimated outcomes for 5568 municipalities. Incidence rate ran-

ged from 8.6 to 57.2 per 100,000 persons/year for 90% of municipalities, compared to 44.8

(95% UI: 43.3, 46.8) per 100,000 persons/year nationally. Incidence was concentrated geo-

graphically, with 1% of municipalities accounting for 50% of incident TB. The estimated frac-

tion of incident TB cases receiving diagnosis and treatment ranged from 0.73 to 0.95 across

municipalities (compared to 0.86 (0.82, 0.89) nationally), and the rate of untreated TB ran-

ged from 0.8 to 72 cases per 100,000 persons/year (compared to 6.3 (4.8, 8.3) per 100,000

persons/year nationally). Granular disease burden estimates can be generated using rou-

tine data. These results reveal substantial subnational differences in disease burden and

other metrics useful for designing high-impact TB control strategies.

Introduction

Tuberculosis (TB) is a leading infectious cause of death globally [1] despite the availability of

effective combination drug regimens. A major contributor to ongoing TB mortality is the large
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fraction of cases that are not detected, and therefore not treated. In 2019, the World Health

Organization (WHO) estimated that 29% (21–36%) of incident TB cases did not get diagnosed

or receive treatment [1]. More effective approaches for case finding, diagnosis and linkage to

care are needed to reduce the fraction of TB case that do not receive treatment [2], which con-

tributes to TB morbidity and onward TB transmission.

While there is only limited evidence supporting untargeted active TB case finding activities

as an effective strategy to reduce TB transmission in communities [3], trials [4] and modeling

studies [5] suggest that active TB case finding interventions targeted to highest risk sub-popu-

lations and spatial areas of disease concentration could have a sizeable epidemiologic impact.

Identifying spatial areas of TB disease concentration, and especially areas where rates of undi-

agnosed TB may be high, remains a substantial challenge. In most settings, it is difficult to

determine whether spatial heterogeneity in notification rates can be attributed to actual differ-

ences in TB incidence or to differences in surveillance system quality. This variability in the

quality and completeness of surveillance systems make it difficult to reliably estimate subna-

tional TB disease incidence and the local rates of undiagnosed TB.

Several approaches have been developed to describe subnational patterns of TB disease bur-

den. These include methods that apply spatial smoothing methods to TB case notification data

directly (not addressing the problem of under-detection) [6], use expert input and program-

matic data to decompose national incidence esimates to local areas [7,8], or implicity assume

that case detection rates are constant across modeled locations [9]. In this paper, we describe

extensions to a published method for estimating subnational TB burden [10], which allows sta-

ble estimates to be generated at a fine geographic scale. Under this approach, local area esti-

mates of TB incidence and the completeness of case detection are generated using a spatial-

mechanistic model fit to routine data on TB case notifications and reported deaths.

We demonstrate the feasibility of this approach using data from Brazil. The WHO estimates

that Brazil had a national TB incidence of 45 (39–52) per 100,000 in 2018, with a case detection

rate of 87% (75% - 100%) [1]. Routine reporting for Brazil demonstrate substantial variation in

notification rates across districts, and past studies employing simpler versions of the methods

used in this study have suggested considerable subnational variation in incidence and case

detection rates [10,11]. In this study, we report estimates of TB incidence, the fraction of cases

treated, and the rate of untreated TB disease for each of 5568 contiguous municipalities in the

country over the period 2016–2018.

Methods

Overview

We developed a novel method for generating small-area TB incidence estimates based on a

previous mathematical model of TB incidence and case detection [10]. We made three specific

changes to this previous work in order to produce small-area estimates: 1) we incorporated the

spatial structure of municipalities to allow smoothing of noisy estimates across neighboring

areas; 2) we aggregated notifications over a three-year period to smooth year-to-year stochastic

variation at the municipal-level; and 3) we made adjustments to the previous method used to

estimate the probability of death during TB treatment.

A small set of sociodemographic predictors were also included in the model to allow for

correlations between municipalities with similar characteristics. The model estimates inci-

dence as the sum of individuals with TB who initiate treatment, die without initiating treat-

ment, or ‘self-cure’ without initiating treatment. Accounting for these pathways, we fit the

model to the observed number of individuals with TB who receive treatment and the observed

number of TB deaths in each of Brazil’s 5568 contiguous municipalities.
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Data

We accessed tuberculosis case notifications from 2016 to 2018 (n = 276,915) from Brazil’s

Notifiable Diseases Information System (SINAN; Sistema de Informação de Agravos de Notifi-
cação) [12]. Because TB treatment is exclusively accessed via Brazil’s public healthcare system,

TB case notifications are considered an accurate proxy for treatment initiation [10]. Case noti-

fications were spatially referenced based on the recorded municipality of residence. In cases

where municipality of residence was missing or coded incorrectly, municipality of treatment

was used as a proxy (n = 202, 0.07%). We excluded cases that did not represent new diagnoses

among living individuals (individuals who had received a misdiagnosis of TB (n = 6,063,

2.2%), were continuing care after transferring from another clinic (n = 7,762, 2.8%), were con-

tinuing care after previously being considered lost to follow-up (n = 22,242, 8.0%), or who had

received a diagnosis of TB postmortem (n = 1,974, 0.7%)). In addition, we excluded cases

where the municipality of residence had no neighboring municipalities (the island municipali-

ties Ilhabela, SP and Fernando de Noronha, PE; n = 24, 0.009%). All case notifications had a

recorded treatment outcome. Duplicate notifications are systematically removed from the

database, and we did not detect any remaining duplicates in the analyzed dataset.

We accessed tuberculosis mortality data from 2016 to 2018 from the Brazilian Mortality

Information System (SIM; Sistem de Informação de Mortalidade) [13]. We considered an indi-

vidual to have died while actively infected with TB if at least one International Classification of

Disease (ICD-10) code related to tuberculosis was listed as a primary or secondary cause of

death [14]. We considered ICD-10 codes A15.0–A19.9, B20.0, K67.3, K93.0, M49.0, N74.0–

N74.1, P37.0, U84.3; this list includes the code for TB/HIV co-infection. Deaths were spatially

referenced based on municipality of residence. In addition, we used a linkage of the SIM and

SINAN systems [15] to estimate the probability of death for case notifications with “death” or

“loss to follow-up” as their reported treatment outcome.

Finally, we collated municipal-level data on sociodemographic characteristics (Table 1).

These variables were chosen based on their expected relationship to TB burden [16] or the

completeness of case detection.

Model description

We specified Poisson likelihood functions for total SINAN case notification data and SIM

mortality data over the period 2016–2018.

Case Notificationsi � Poissonðgi � ai � biÞ

TB Mortalityi � Poissonðgi � ai � ½ðbi � diÞ þ ðð1 � biÞ � ð1 � mÞÞ� � bhi
� εiÞ

For municipality i, where δi represents population size, αi represents the modeled TB inci-

dence rate, βi represents the modeled fraction of cases treated, δi represents the probability of

death during treatment, μ represents the probability of surviving the disease episode without

treatment, bh represents the fraction to total deaths recorded in SIM (calculated for the state

(h) in which the municipality is located), and εi represents an adjustment for misreporting of

TB deaths in the SIM database.

We followed the implementation of the modified Besag-York-Mollie (BYM2) model

described by Morris et al. [21–23] to incorporate the spatial structure of municipalities in our

model. We selected the BYM2 model because it does not presume spatial autocorrelation; the

model includes a mixing parameter which distributes random variance in model estimates

across spatial and non-spatial effects, making it an appropriate choice when the presence of

spatial autocorrelation is uncertain [24]. We specified exponential and inverse logit functions
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for incidence (αi) and fraction treated (βi), respectively:

ai ¼ expðp0 þ p1 i þ XT
i pÞ

bi ¼ logit� 1ðo0 þ o1i þ ZT
i oÞ

For municipality i, where π0 and ω0 are constants; Xi and Zi are vectors of municipal-

level covariates; and π and ω are the associated vectors of regression coefficients. The vector

Xi includes the covariates percentage of crowded households, percentage of municipality clas-
sified as a favela (slum) or other subnormal housing, percentage of individuals in poverty,

whether there is a prison in the municipality, number of public hospital beds per capita, pri-
mary healthcare access, and average GDP per capita. The vector Zi includes the covariates
percentage of individuals in poverty, whether there is a prison in the municipality, number of
public hospital beds per capita, primary healthcare access, and average GDP per capita. Apart

from individuals recorded as having been misdiagnosed, we assumed that all notified cases

represent individuals who truly had TB. Similarly, we did not consider false-positive diag-

nosis among SIM TB death data. Finally, π1i and ω1i are the combined random and spatial

Table 1. Model inputs.

Variable Description Data Source Year(s)

Used

TB Case & Death Data

Case Notifications Number of TB cases SINAN-TB [12] 2016–18

TB Mortality Number of deaths with a TB-related ICD-10 code as a primary or secondary cause SIM [13] 2016–18

TB Deaths after

Notification

The fraction of cases in SINAN-TB with “Death’ as an outcome that can be linked

to a death in SIM occurring within 365 days of the case notification.

Bartholomay et al. [15] 2015–

2016

Treatment Outcome is

“Death”

Fraction of notified TB cases with a known outcome where “death” is the outcome SINAN-TB [12] 2016–18

Treatment Outcome is

“Loss to Follow Up”

Fraction of notified TB cases with a known outcome where “loss to follow-up” is the

outcome

SINAN-TB [12] 2016–18

Poorly Defined Cause of

Death

Percentage of deaths with a primary cause of death listed as an ICD-10 code

considered "poorly defined" (ICD-10 codes R0-R99)

Health Informatics, Brazilian

Ministry of Health (DATASUS) [13]

2016–18

SIM Coverage Correction factor for under-reporting of all deaths in the mortality system (SIM) Brazilian Institute of Geography and

Statistics (IBGE) [17]

2018

Population Population estimates by municipality or state IBGE [17] 2016–18

Sociodemographic Variables

Household Crowding† Percentage of households with more than two people per bedroom Atlas of Human Development in

Brazil [18]

2010

Subnormal Agglomerations† Percentage of population living in a structure classified as a "subnormal," including

favelas and homes without access to running water or electricity

IBGE [17] 2010

Poverty† Percentage of individuals earning R$255 (approximately $68) or less each month Atlas of Human Development in

Brazil [18]

2010

Prison Indicates whether a municipality has a prison (binary) in any year included in the

study period.

Brazilian Ministry of Justice and

Public Security [19]

2016–18

Public Hospital Beds Number of public hospital beds, per capita DATASUS [20] 2016–18

Primary Care Access Number of Family Health Teams per 4,000 people, by territory and year. One team

per 4,000 population represents target coverage level; some municipalities surpass

this coverage level.

DATASUS [20] 2016–18

GDP Per Capita Economic value of goods produced IBGE [17] 2016–18

† For the five municipalities created after the 2010 census, data from the municipality to which the territory previously belonged were used.

https://doi.org/10.1371/journal.pgph.0000725.t001
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effects of the BYM2 model:

p1i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � rp

p
� yp;i þ

ffiffiffiffiffi
rp
S

r

� �p;i

� �

� sp

o1i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ro

p
� yo;i þ

ffiffiffiffiffi
ro
S

r

� �o;i

� �

� so

For municipality i, where φi represents an intrinsic conditional auto-regressive spatial com-

ponent, θi is a non-spatial random component, ρ models the proportion of variance from the

spatially structured effect, and S is a scaling factor computed from the spatial adjacency matrix.

The scaling factor is chosen such that the Var(φi)� 1; additionally, the prior on θ is fixed such

that Var(θi)� 1, making σ the overall standard deviation of the combined random effects

component [21–23].

In addition, we estimated the probability of death among individuals who initiated treatment:

PrðdeathjtreatmentÞi ¼ di ¼ zi � lþ ii � Z

For municipality i, where zi is the probability that death is listed as the treatment outcome,

ιi is the probability that loss to follow-up is listed as the treatment outcome, λ is that probability

that an individual with treatment outcome of death will appear in the death record, and η is

the probability that an individual whose treatment outcome was lost to follow up will appear

in the death record. We determined the means of the prior distributions for zi and ιi from

state-level data, dividing the number of outcomes listed as death and lost to follow-up, respec-

tively, by the number of treatment notifications with a definitive treatment outcome (cure,

death, loss to follow-up, or treatment failure). We calculated the means of the prior distribu-

tions for λ and η based on a linkage of SINAN and SIM [15]. We calculated the fraction of

individuals with a treatment outcome of “death” or “loss to follow-up” (respectively) linked to

a death record in SIM within 365 days of their case notification. Because 2016 was the last year

for which death data were available in the linked dataset, we restricted this analysis to case

notifications from 2015.

Finally, we estimated the systematic underreporting of TB as a cause of death:

Death Adjustmenti ¼ εi ¼ logit� 1ðk1 þ k2i � sk þ k3xiÞ

For municipality i, where κ1 is a constant, κ2 is a municipal-level random effect, σκ is the

standard deviation, xi is the percentage of deaths in SIM attributed to a poorly-defined cause,

and κ3 is the associated regression coefficient (based on values elicited through an expert opin-

ion survey [10]). We assumed that underreporting of TB as a cause of death is not a spatially

dependent process.

Estimation and Implementation

There is substantial uncertainty around true values for several model parameters. We used a

Bayesian approach to represent and propagate this uncertainty through the analysis, utilizing

prior probability distributions to describe plausible ranges for model parameters (S1 Table).

When fitting the model likelihood functions to data, we used a three years of input municipal-

ity data. Summing cases and deaths over a three-year period decreased the stochastic uncer-

tainty associated with low case counts and reduced the number of municipalities with no

reported TB deaths in the study period, improving inference for these municipalities.

The model was implemented in stan [25] using the rstan [26] package. We ran 6000 itera-

tions on four chains, keeping 500 iterations after warm-up and thinning by a factor of two for
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a total of 1000 posterior draws. Running on four-chains in parallel using the Yale Center for

Research Computing’s high-performance computing cluster took approximately 8.5 hours,

based on the reported elapsed time. The mean R̂ was 1.005 and there were no diagnostic warn-

ings. We calculated point estimates as the mean of the posterior draws. We calculated equal-

tailed 95% posterior intervals using the 2.5th and 97.5th percentiles of these distributions. To

calculate state- and national-level results we summed estimates across municipalities for each

posterior draw before calculating point estimates and intervals. Parameter posterior distribu-

tions can be found in S2 Table. Input data and model code are available at github.com/mel-hc/

TB_saie.

Results

Over the period 2016–2018, there were 239,369 individuals who initiated treatment for a

newly diagnosed case of TB. Nationally, we observed 38.5 notified TB cases per 100,000 per-

son-years over the three-year study period. In this same period, there were 59,183 deaths

where TB was listed on the death certificate (as the underlying or contributory cause), corre-

sponding to 3.5 deaths per 100,000 person-years.

TB incidence

We estimated a national incidence rate of 44.8 (95% credible interval: 43.3, 46.8) per 100,000

person-years, for the three-year study period. The TB incidence rate varied substantially across

and within states (Fig 1). Average state-level incidence rate ranged from 13.8 (12.7, 15.0) per

100,000 person years in the Federal District to 93.4 (88.8, 98.9) in Amazonas.

The median municipal incidence rate was 19.3 per 100,000 and the estimated incident TB

rate ranged from 4.6 to 1172 per 100,000 per year (S1A Fig). The majority of incident TB cases

were concentrated in a small number of municipalities. Over half of TB incidence in each state

was attributed to 1.1% to 6.7% of municipalities within that state. In Amazonas, 72.5% (71.2%,

73.7%) of incident TB occurred among individuals living in Manaus, and in Rio de Janeiro

State, 52.2% (51.2%, 53.3%) of incident TB occurred among individuals living in Rio de Janeiro

municipality. Nationally, 1% of municipalities accounted for 50.0% (49.7%, 50.4%) of incident

TB. Because Brazil’s population is highly concentrated in urban municipalities, we expect a

small number of municipalities to account for a large share of incident TB. While these larger

municipalities share several features that promote TB transmission (high population density,

populations living in subnormal agglomerations), we found a relatively weak correlation

between municipal population size and TB incidence rate (Pearson correlation coefficient (ρ)

= 0.09, p< 0.001). A map of incident TB rates, by municipality, can be found in Fig 2A.

A small number of municipalities (n = 39) had a mean estimated incident TB rate in excess

of 150 per 100,000 inhabitants per year. Most of these municipalities had a large number of

notified cases (average notified cases = 217) relative to their small population (average popula-

tion = 28,855). Additionally, 95% of these municipalities (n = 37) contained a prison, and for

these municipalities the incarcerated population was large relative to total population (median

175 incarcerated individuals to 1000 inhabitants) (S3 Table). Across all municipalities, the

presence of a prison was a significant predictor of elevated TB incidence rate, corresponding

to a 1.52 (1.46, 1.59) increase in the rate ratio of TB incidence, conditional on socioeconomic

factors and healthcare quality. Collectively, municipalities with prisons had a higher TB inci-

dence rate (51.9 [50.2, 54.2]) than municipalities without prisons (33.5 [32.2, 35.3]),

p< 0.001). In municipalities with prisons, TB incidence rates correlate strongly with the num-

ber of incarcerated individuals per 1000 residents (Pearson correlation coefficient (ρ) = 0.87,
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p< 0.001). Municipalities with more than 10 incarcerated individuals to 1000 inhabitants had

a median TB incidence rate of 67.7 (range: 9.2, 1172) per 100,000.

Fraction of incident TB receiving treatment

We estimated that the average fraction of incident TB cases receiving treatment in Brazil was

0.86 (0.82, 0.89). As with estimates of incident TB, the fraction of treated cases varied by state,

from 0.81 (0.75, 0.85) in Alagoas, 0.89 (0.86, 0.92) in São Paulo. Across municipalities, the esti-

mated fraction treated ranged from 0.73 to 0.95 (S1B Fig). Areas where the fraction of TB cases

that receive treatment is low are generally concentrated in the Northeast region of the country

(Fig 2B).

Rate of untreated TB

We estimate the rate of untreated tuberculosis as the product of the incident TB rate and 1

minus the fraction treated. Nationally, there were an average 13,049 (9941, 17247) individuals

with incident TB that did not receive treatment each year (6.3 [4.8, 8.3] per 100,000 person-

Fig 1. Violin plots of fraction treated (top) and incident TB (bottom). White dots represent the population-weighted state averages.

https://doi.org/10.1371/journal.pgph.0000725.g001
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years). Rates of untreated TB varied substantially across states, from 2.0 (1.3, 3.0) per 100,000

in the Federal District to 13.1 (8.9, 18.8) in Amazonas (Fig 3).

We estimated high rates of untreated TB throughout Brazil, but found that these areas were

generally concentrated in urban coastal municipalities and in the North region (Fig 4). Rio de

Janeiro municipality had the largest number of untreated TB of any municipality, with an aver-

age 1031 (664, 1469) untreated TB cases each year. Collectively, the 65 municipalities with the

highest number of untreated individuals accounted for 50.2% (47.8%, 52.7%) of untreated inci-

dent TB in Brazil (S4 Table). A 1% increase in the fraction treated across these 65 municipali-

ties would result in 477 (462, 501) fewer untreated individuals each year; a 1% increase in

fraction treated across all municipalities would result in 926 (897, 970) fewer untreated indi-

viduals each year.

Model sensitivity to prior distributions

We conducted sensitivity analyses to understand the impact of the choice of prior distribution

for the probability of survival without treatment (an input estimated based on expert opinion).

First, we re-fit the model with weakly informative priors and found that the posterior distribu-

tion was sensitive to the choice of model prior. We also found that the posterior probability of

survival without treatment correlates strongly with national estimates of the TB incidence rate

(Pearson correlation coefficient (ρ) = 0.89, p< 0.001) and fraction treated (Pearson correlation

coefficient (ρ) = -0.90, p<0.001) (S2 Fig). However, the relative rank of municipal incidence

rate and treatment coverage estimates when the model was run with strong priors around

extreme values (0.3, 0.7) of survival without treatment were very strongly correlated (Spear-

man’s rank correlation coefficient (ρ) = 0.99, p< 0.001 and (ρ) = 0.98, p< 0.001, respectively).

Fig 2. Map of municipal estimates of (A) incident TB per 100,000 population per year and (B) the fraction of individuals with incident TB receiving treatment.

Shapefiles were downloaded using the geobr package for the R programming language, which sources shapefiles from IBGE: https://www.ibge.gov.br/en/

geosciences/territorial-organization/territorial-meshes/.

https://doi.org/10.1371/journal.pgph.0000725.g002
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Discussion

We present a spatially-explicit Bayesian model to estimate rates of TB incidence and treatment

initiation. We demonstrate the feasibility of this approach for generating small area disease

burden estimates with routinely-collected data on case notifications and deaths. Applying this

approach to data from Brazil, we found substantial subnational variation in TB epidemiology.

Consequently, a small number of municipalities were responsible for the majority of incident

TB in Brazil. Additionally, we found that the presence of prison in a municipality was associ-

ated with higher TB rates, a finding which is supported by previous work on TB incidence in

Brazilian prisons [27] and their surrounding communities [28]. We present a metric of

untreated TB which can be used to identify municipalities where a large number of incident

TB cases did not initiate treatment (Fig 3, S4 Table). Improving case detection and treatment

initiation rates in these municipalities could be an effective strategy for reducing the burden of

TB in Brazil. Finally, we aggregated municipal-level results to the state-level and found that

our point estimates for incidence and fraction treated generally fell within the uncertainty

Fig 3. State-level estimates of the incident TB rate per 100,000 population per year (y-axis) and average fraction treated per year (x-axis), with isopleths

of untreated TB per 100,000 population per year (grey curved lines).

https://doi.org/10.1371/journal.pgph.0000725.g003
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bounds of previously published state-level estimates [10], though with lower estimates of the

fraction treated (S3 Fig). Aggregating to the national level, our estimates of incident TB per

100,000 person years (44.8 [43.4, 46.8]) and fraction treated (0.86 [0.82, 0.89]) were consistent

with estimates produced by the WHO (45 [39, 52], and 0.87 [0.75, 1.00], respectively) [1].

This approach is not the first that has been proposed to generate subnational TB burden

estimates. One approach that has been used in other large high TB burden countries is the

Fig 4. Map of municipal estimates of untreated incident TB per 100,000 population per year. Shapefiles were downloaded using the geobr package for the R

programming language, which sources shapefiles from IBGE: https://www.ibge.gov.br/en/geosciences/territorial-organization/territorial-meshes/.

https://doi.org/10.1371/journal.pgph.0000725.g004
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SUBsET method [7,8]. As applied in Indonesia, this method starts from WHO-estimated TB

incidence for the country, then decomposes this total into district-level values based on predic-

tors defined through expert elicitation (population size, urbanization, socio-economic indica-

tors). Case detection rates are then calculated as the ratio of notifications to estimated

incidence. While this method leverages local knowledge on epidemiological drivers, it excludes

TB notifications and death data from the incidence estimation, which may provide valuable

additional signals of disease burden. In another published study, province-level mathematical

models were constructed for South Africa to estimate both disease burden estimates and inves-

tigate policy scenarios [9]. While the use of fully-developed policy models allowed this study to

directly compare control options in each province, the inference approach was not designed to

identify differences in case detection between provinces, and instead a common case detection

rate was applied in all locations based on the national WHO estimate. A recent study in Ethio-

pia employed a Hidden Markov Model and spatiotemporal smoothing to link case notifica-

tions to unobserved TB incidence. This approach allowed for local differences in case

detection rates, with these differences identified primarily through spatiotemporal random

effects and the presence or absence of a health facility [29]. Other studies that have provided

high granularity burden estimates have smoothed case notifications directly, implicitly assum-

ing perfect case detection rates [6]. Finally, several approaches have been developed to leverage

TB prevalence survey data to produce subnational TB burden estimates (applied in Pakistan

[30] and Bangladesh [31]). While prevalence survey data represent a valuable additional source

of information on the distribution of TB, these surveys are expensive to undertake and are not

available for all countries.

Although the approach described here potentially resolves many of these limitations, this

study has several limitations. First, the model is designed to correct for the misattribution of

TB deaths to other causes, but this adjustment may be insufficient in some cases, leading to

underestimates of incident TB rates in municipalities with exceptionally poor death records.

Secondly, we found that the posterior distribution of the probability of survival without treat-

ment was dependent on the choice of prior distribution, and model outcomes were sensitive to

this parameter. The probability of death without treatment in the antibiotic era is not easily

observable; our choice of prior distribution represents our best possible estimate. However, if

the probability of survival without treatment were lower than our estimate, the model would

underestimate the incident TB rate and overestimate the fraction treated (S2 Fig). Thirdly, our

analytic strategy did not consider the possibility of overdiagnosis of TB. These false-positive

diagnoses are an acknowledged risk of TB diagnostic algorithms, particularly when TB is diag-

nosed based on clinical criteria [32]. This could produce biased estimates of the fraction

treated by overestimating treatment initiations and treatment fatality rates. Over the study

period, we found that 87% of notified cases in Brazil were tested with highly-specific bacterio-

logical tests (microscopy, culture, or molecular (GeneXpert) tests). Among notified cases with-

out one of these tests, 72% had x-ray findings indicative of TB. These figures suggest that

overdiagnosis is a relatively minor feature of TB diagnosis in Brazil, and unlikely to meaning-

fully affect our modelled estimates. Our analysis also did not include primary abandonment

(diagnosed individuals who do not initiate treatment or who default within the first 30 days),

however programmatic data suggest these individuals represent less than 1% of all

notifications.

Finally, this analysis did not consider some risk factors for TB mortality that may have

improved inference. The most important of these is HIV, which substantially increases mortal-

ity rates for individuals with TB disease [33,34]. If individuals who are co-infected with TB and

HIV are more likely to die from TB in the absence of treatment, the municipalities with high

TB-HIV coinfection rates could have upwardly biased incidence estimates. Conversely, if
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TB-HIV deaths are more likely to be misclassified as other categories of HIV/AIDS related

deaths, this would mean that incidence estimates for high TB-HIV municipalities would be

biased downward. The net effect of these two potential biases is unclear. Although HIV surveil-

lance in Brazil is believed to be reasonably complete [35], HIV testing is not consistently per-

formed with TB diagnosis (17.5% not performed or missing), making it difficult to infer rates

of TB-HIV co-infection for this analysis. It may be necessary to extend this analytic approach

to explicitly account for TB-HIV in order to apply it in high HIV prevalence settings.

The approach presented here can be a valuable tool enabling countries to better understand

TB burden on a fine spatial scale. This approach uses routinely-collected data on case notifica-

tions and deaths, making it applicable to settings where the number of individuals receiving

TB treatment is known and quality cause-specific death records are available. In settings where

a large fraction of areas has no reported cases or deaths in a given year, aggregating over multi-

ple years can reduce stochastic uncertainty in model results. The modified Besag-York-Mollié

spatial and random effect terms can also be extended to account for non-contiguous areas.

Furthermore, because the modified Besag-York-Mollié approach has been shown to be unbi-

ased in applications with no spatial autocorrelation [24], the model does not need to be repara-

metrized for settings where the spatial autocorrelation in TB burden may be small or

negligible.

Small area incidence estimates generated from this approach can help local health agencies

tailor programmatic improvements to their specific epidemiological situations. Targeting

improvements in TB case finding in municipalities with high rates of untreated TB could result

in large increases in the number of infected individuals initiating treatment and ultimately

decrease TB incidence and mortality.
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gica. Sistema de Informação de Agravos de Notificação–Sinan. Available from: http://tabnet.datasus.

gov.br/cgi/menu_tabnet_php.htm [Accessed June 1 2021].
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19. Ministério da Justiça e Segurança Pública. Departamento Nacional Penitenciário. Levantamento Nacio-
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